Bulletin (New Series) of the American Mathematical Society

Hyperbolic geometry: The first 150 years

John W. Milnor

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 6, Number 1 (1982), 9-24.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183548588

Mathematical Reviews number (MathSciNet)
MR634431

Zentralblatt MATH identifier
0486.01006

Subjects
Primary: 01A55: 19th century 01A60: 20th century 51M10: Hyperbolic and elliptic geometries (general) and generalizations
Secondary: 57R15: Specialized structures on manifolds (spin manifolds, framed manifolds, etc.) 20H10: Fuchsian groups and their generalizations [See also 11F06, 22E40, 30F35, 32Nxx]

Citation

Milnor, John W. Hyperbolic geometry: The first 150 years. Bulletin (New Series) of the American Mathematical Society 6 (1982), no. 1, 9--24. http://projecteuclid.org/euclid.bams/1183548588.


Export citation

References

  • [1827] C. F. Gauss, Disquisitiones generales circa superficies curvas, Commentationes Gottingensis 6 (Werke 4, 218-258; German summary, 341-347).
  • [1829-30] N. I. Lobachevsky, On the foundations of geometry, Kazan Messenger 25-28; German transl., 'Zwei geometrische Abhandlungen', Leipzig, 1898.
  • [1832] T. Clausen, Ueber die Function sin φ + (1/22) sin 2φ + (1/32) sin 3φ + etc., J. Reine Angew. Math. 8, 298-300.
  • [1832] J. Bolyai, The absolute science of space, independent of the truth or falsity of Euclid’s Axiom 11 (which can never be proved a priori), Maros-Vásárhelyini.
  • [1836] N. I. Lobachevsky, Imaginary geometry and its application to integration, Kazan (German transl. Abh. Gesch. Math. 19, 1904).
  • [1837] N. I. Lobachevsky, Géometrie imaginaire, J. Reine Angew. Math. 17, 295-320.
  • [1859] A. Cayley, Sixth memoir upon quantics, Phil. Trans. 149, 61-91.
  • [1868] B. Riemann, Ueber die Hypothesen welche der Geometrie zu Grunde liegen, Abh. K. G. Wiss. Göttingen 13 (from his Inaugural Address of 1854).
  • [1868] E. Beltrami, Saggio di interpetrazione della geometria non-euclidea, Gior. Mat. 6, 248-312 (Also Op. Mat. 1, 374-405; Ann. École Norm. Sup. 6 (1869), 251-288).
  • [1868] E. Beltrami, Teoria fondamentale degli spazii di curvatura costante, Annali di mat. ser. II 2, 232-255 (Op. Mat. 1, 406-429; Ann. École Norm. Sup. 6 (1869), 345-375).
  • [1871] F. Klein, Über die sogenannte Nicht-Euklidische Geometrie, Math. Ann. 4, 573-625 (cf. Ges. Math. Abh. 1, 244-350).
  • [1871] E. Betti, Sopra gli spazi di un numero qualunque di dimensioni, Annali di mat. ser. II 4, 140-158.
  • [1873] H. A. Schwarz, Ueber diejenigen Fälle in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt, J. Reine Angew. Math. 75, 292-335 (Ges. Math. Abh. 2, 211-259).
  • [1882] H. Poincaré, Theorie des groupes fuchsiens, Acta Math. 1, 1-62; (Oeuv. 2, 108-168).
  • [1883] H. Poincaré, Mémoire sur les groupes kleinéens, Acta Math. 3, 49-92; (Oeuv. 2, 258-299).
  • [1884] E. Picard, Sur un groupe de transformations des points de l'espace situés du même côté d'un plan, Bull. Soc. Math. France 12, 43-47.
  • [1890] W. Dyck, Beiträge zur Analysis situs. II, Math. Ann. 37 273-316.
  • [1890] F. Klein, Zur Nicht-Euklidischen Geometrie, Math. Ann. 37, 544-572 (Ges. Abh. 1, 353-383).
  • [1891] L. Bianchi, Geometrische Darstellung der Gruppen Linearer Substitutionen mit ganzen complexen Coefficienten nebst Anwendungen auf die Zahlentheorie, Math. Ann. 38, 313-333.
  • [1891] W. Killing, Ueber die Clifford-Klein'schen Raumformen, Math. Ann. 39, 258-278.
  • [1895] H. Poincaré, Analysis situs, J. École Polyt. 1, 1-121 (Oeuv. 6, 193-288).
  • [1898] J. Hadamard, Les surfaces à courbures opposées et leur lignes géodésiques, J. Math. Pures Appl. Ser. 5 4, 27-73 (Oeuv. 2, 729-775).
  • [1900] C. F. Gauss, Werke 8, 175-239.
  • [1908] H. Tietze, Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten, Monatshefte für Math. Phys. 19, 1-118.
  • [1912] H. Gieseking, Analytische Untersuchungen ueber topologische Gruppen, Thesis, Muenster (Compare Magnus (1974), 153).
  • [1912] L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann. 71, 97-115.
  • [1913] O. Veblen and J. W. Alexander, Manifolds of n dimensions, Ann. of Math. (2) 14, 163-178.
  • [1912] H. Weyl, Die Idee der riemannschen Fläche, Teubner, Leipzig.
  • [1914] F. Hausdorff, Grundzüge der Mengenlehre, von Veit, Leipzig.
  • [1919] G. Humbert, Sur la mesure des Classes d'Hermite de discriminant donné dans un corps quadratique imaginaire, et sur certains volumes non euclidiens, Comptes Rendus (Paris) 169, 448-454.
  • [1923] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Akad. Verl., Leipzig.
  • [1925] H. Hopf, Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95, 313-339.
  • [1928] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris.
  • [1931] H. Hopf and W. Rinow, Über den Begriff der vollständigen differentialgeometrischen Fläche, Comment. Math. Helv. 3, 209-225.
  • [1935] H. S. M. Coxeter, The functions of Schläfli and Lobatschefsky, Quart. J. Math. 6, 13-29 (pp. 3-20 of twelve geometric essays, S. Ill. Univ. Press, Carbondale, 1968).
  • [1937] J. H. C. Whitehead, On doubled knots, J. London Math. Soc. 12, 63-71 (Works 2, 59-67).
  • [1942] H. S. M. Coxeter, Non-Euclidean geometry, Univ. Toronto Press, Toronto.
  • [1958] L. Lewin, Dilogarithms and associated functions, MacDonald, London.
  • [1963] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2, 111-112.
  • [1970] G. A. Margulis, Isometry of closed manifolds of constant negative curvature with the same fundamental group, Soviet Math. Dokl. 11, 722-723.
  • [1970] E. M. Andreev, On convex polyhedra [of finite volume] in Lobačevskiĭ space, Mat. Sbornik 81, 445-478 and 83, 256-260 (transl. 10, 413-440 and 12, 255-259).
  • [1971] G. D. Mostow, The rigidity of locally symmetric spaces, Proc. (1970) Internat. Congr. Math., vol. 2, pp. 187-197, Gauthier-Villars, Paris.
  • [1973] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. Math. Studies, No. 78, Princeton Univ. Press, Princeton, N. J.
  • [1973] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21, 255-286.
  • [1974] W. Magnus, Noneuclidean tesselations and their groups, Academic Press, New York.
  • [1975] R. Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77, 281-288.
  • [1977] A. Ash, Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones, Math. Ann. 225, 69-76.
  • [1978] W. Thurston, Geometry and 3-manifolds, Lecture Notes, Princeton University.
  • [1978] N. Wielenberg, The structure of certain subgroups of the Picard group, Math. Proc. Cambridge Philos. Soc. 84, 427-436.
  • [1979] U. Haagerup and H. Munkholm, Simplices of maximal volume in hyperbolic n-space, preprint, Odense University.
  • [1980] H. J. Munkholm, Simplices of maximal volume in hyperbolic space, Gromov’s norm, and Gromov's proof of Mostow's rigidity theory (following Thurston), pp. 109-124 of Topology Symposium—Siegen 1979, ed. Koschorke and Neumann, Springer Lecture Notes in Math., no. 788.
  • [1980] R. Rieley, Applications of a computer implementation of Poincaré's theorem on fundamental polyhedra, preprint, I.A.S.
  • [1980] R. Rieley, Seven excellent knots, preprint, I.A.S.
  • [1980] M.-F. Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112, 21-32.
  • [1981] A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8, 1-33.
  • [1981] M. Gromov, Hyperbolic manifolds according to Thurston and Jórgensen, Sémin. Bourbaki 546, Springer Lecture Notes in Math., no. 842, pp. 40-53.
  • [1981] D. Sullivan, Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de dimension 3 fibrées sur S1, Sémin. Bourbaki 554, Springer Lecture Notes in Math., no. 842, pp. 196-214.
  • [1981] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry (to appear).
  • [1981] W. Thurston, Hyperbolic structures on 3-manifolds, I: Deformation of acylindrical manifolds (to appear).