Bulletin (New Series) of the American Mathematical Society

Tilings with congruent tiles

Branko Grünbaum and G. C. Shephard

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 3, Number 3 (1980), 951-973.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183547682

Mathematical Reviews number (MathSciNet)
MR585178

Zentralblatt MATH identifier
0463.51019

Subjects
Primary: 51M20: Polyhedra and polytopes; regular figures, division of spaces [See also 51F15] 52A45
Secondary: 05B45: Tessellation and tiling problems [See also 52C20, 52C22] 10E30 52A15: Convex sets in 3 dimensions (including convex surfaces) [See also 53A05, 53C45] 52A25 52A43

Citation

Grünbaum, Branko; Shephard, G. C. Tilings with congruent tiles. Bulletin (New Series) of the American Mathematical Society 3 (1980), no. 3, 951--973. http://projecteuclid.org/euclid.bams/1183547682.


Export citation

References

  • P. S. Aleksandrov (editor), 1969, Hilbert's Problems, Nauka, Moscow, 1969. (Russian) German translation: Die Hilbertschen Probleme, Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1971.
  • W.Baily, 1908, On models of space-filling solids, Math. Gazette 4 (1908), 297-302.
  • J. Baracs, 1979, Juxtapositions, Structural Topology 1 (1979), 59-72.
  • L. Baumgartner, 1968, Zerlegung des vierdimensionalen Raumes in kongruente Fünfzelle, Math. Phys. Semesterber. 15 (1968), 76-86.
  • L. Baumgartner, 1971, Zerlegung des n-dimensionalen Raumes in kongruente Simplexe, Math. Nachr. 48 (1971), 213-224.
  • F. E. Browder (editor), 1976, Mathematical developments arising from Hilbert problems, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R. I., 1976.
  • G. O. Brunner and F. Laves, 1978, How many faces has the largest space-filling polyhedron? Zeitschr. Kristallographie 147 (1978), 39-43.
  • P. J. Cohen, 1969, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math. 22 (1969), 131-151.
  • H. S. M. Coxeter, 1962, The classification of zonohedra by means of projective diagrams, J. Math. Pures Appl. 41 (1962), 137-156. Reprinted in: Twelve Geometric Essays, Southern Illinois Univ. Press, Carbondale, 1968, pp. 54-74.
  • H. S. M. Coxeter, 1978, Review of "Three-dimensional nets and polyhedra" by A. F. Wells, Bull. Amer. Math. Soc. 84 (1978), 466-470.
  • K. Critchlow, 1970, Order in space, Viking Press, New York, 1970.
  • L. Danzer, 1968, Zerlegbarkeit endlichdimensionaler Räume in kongruente Simplices, Math. Phys. Semesterber. 15 (1968), p. 87.
  • H. E. Debrunner, 1980, Pflasterungen des euklidischen Raumes mit kongruenten Simplexen (to appear).
  • B. N. Delone (= Delaunay), 1932, Neue Darstellung der geometrischen Kristallographie, Zeitschr. Kristallographie 84 (1932), 109-149.
  • B. N. Delone (= Delaunay), 1961, A proof of the fundamental theorem of the theory of stereohedra, Dokl. Akad. Nauk. SSSR 138 (1961), 1270-1272. (Russian)
  • B. N. Delone (= Delaunay), 1969, On Hilbert's eighteenth problem, (Russian) pages 200-203 in Aleksandrov [1969]; pages 254-258 of the German translation.
  • B. N. Delone, N. P. Dolbilin and M. I. Stogrin, 1978, Combinatorial and metric theory of planigons, Trudy Mat In-ta AN SSSR 148 (1978), 109-140. (Russian)
  • B. N. Delone, R. V. Galiulin and M. I. Štogrin, 1979, The contemporary theory of regular decompositions of the Euclidean space, pages 235-260 of Fedorov [1979]. (Russian)
  • B. Delone, N. Padurov and A. Aleksandrov, 1934, Mathematical foundations of the structural analysis of crystals, ONTI, Moscow-Leningrad, 1934. (Russian)
  • B. N. Delone and N. N. Sandakova, 1961, Theory of stereohedra, Trudy Mat. Inst. Steklov 64 (1961), 28-51. (Russian)
  • P. Engel, 1980, Ueber Wirkungsbereichsteilungen mit kubischer Symmetrie, Zeitschr. Kristallographie (to appear).
  • E. S. Fedorov, 1885, Foundations of the theory of figures, Acad. Sci. Peterburg 1885. Republished with comments, Akad. Nauk SSSR 1953. (Russian)
  • E. S. Fedorov, 1899, Regulare Plan-und Raumteilung, Abh. K. Bayer. Akad. Wiss. (II. Classe) 20 (1899), 465-588. Russian translation: Fedorov [1979].
  • E. S. Fedorov, 1979, Regular partition of plane and space, (Russian; translation of Fedorov [1899]) Nauka, Leningrad, 1979.
  • W. Fischer, 1979, Homogene Raumteilungen in konvexe Polyeder, Collected Abstracts, Symposium on Mathematical Crystallography, Riederalp, Wallis (Switzerland), August 1979, page 5.
  • L. Föppl, 1914, Der Fundamentalbereich des Diamantgitters, Phys. Zeitschr. 15 (1914), 191-193.
  • M. Gardner, 1975a, On tessellating the plane with convex polygon tiles, Scientific American, July 1975, pp. 112-117.
  • M. Gardner, 1975b, Mathematical games, Scientific American, December 1975, pp. 116-119.
  • M. Gardner, 1977, Extraordinary nonperiodic tiling that enriches the theory of tiles, Scientific American, January 1977, pp. 110-121.
  • J. Giles, Jr., 1979, Infinite-level replicating dissections of plane figures, J. Combinat Theory A 26 (1979), 319-327.
  • M. Goldberg, 1972, The space-filling pentahedra, J. Combinat. Theory A 13 (1972), 437-443.
  • M. Goldberg, 1974a, Three infinite families of tetrahedral space-fillers, J. Combinat. Theory A 16 (1974), 348-354.
  • M. Goldberg, 1974b, The space-filling pentahedra, II, J. Combinat. Theory A17 (1974), 375-378.
  • M. Goldberg, 1976, Several new space-filling polyhedra, Geometriae Dedicate 5 (1976), 517-523.
  • M. Goldberg, 1977, On the space-filling hexahedra, Geometriae Dedicata 6 (1977), 99-108.
  • M. Goldberg, 1978, On the space-filling heptahedra, Geometriae Dedicata 7 (1978), 175-184.
  • M. Goldberg, 1979, Convex polyhedral space-fillers of more than twelve faces, Geometriae Dedicata 8 (1979), 491-500.
  • B. Grünbaum and G. C. Shephard, 1977, The eighty-one types of isohedral tilings in the plane, Math. Proc. Cambridge Philos. Soc. 82 (1977), 177-196.
  • B. Grünbaum and G. C. Shephard, 1978, Isohedral tilings of the plane by polygons, Comment. Math. Helv. S3 (1978), 542-571.
  • B. Grünbaum and G. C. Shephard, 1980a, Tilings and patterns, Freeman and Co., San Francisco, 1980 (to appear).
  • B. Grünbaum and G. C. Shephard, 1980b, Spherical tilings with transitivity properties, Proc. Coxeter Symposium (to appear).
  • G. Hajos, 1942, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Z. 47 (1942), 427-467.
  • E. Heesch, H. Heesch and J. Loef, 1944, System einer Flachenteilung und seine Anwendung zum Werkstoff- und Arbeitsparen, Reichsminister für Rüstling und Kriegsproduktion, 1944.
  • H. Heesch, 1934, Über Raumteilungen, Nachr. Gesellschaft Wiss. Göttingen, Neue Folge, 1 (1934), 35-42.
  • H. Heesch, 1935, Aufbau der Ebene aus kongruenten Bereichen, Nachr. Gesellschaft Wiss. Göttingen, Neue Folge, 1(1935), 115-117.
  • H. Heesch, 1968a, Reguläres Parkettierungsproblem, Westdeutscher Verlag, Köln-Opladen, 1968.
  • H. Heesch, 1968b, Parkettierungsprobleme, Der Mathematikunterricht, Ernst Klett Verlag, Stuttgart, 1968, No. 4, pp. 5-45.
  • N. F. M. Henry and K. Lonsdale, 1965, International Tables for X-Ray Crystallography, Vol. 1, Kynoch Press, Birmingham, 1965.
  • D. Hilbert, 1900, Mathematische Probleme, Göttinger Nachrichten 1900, pp. 253-297; also Arch. Math. Phys. Ser. 3, 1 (1901), pp. 44-63 and 213-237. English translation: Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), 437-479; reprinted in Browder [1976], pp. 1-34.
  • H. Jansen, 1909, Lückenlose Ausfüllung des Rn mit gitterförmig angeordneten n-dimensionalen Quadern, Dissertation, Universität Kiel, Teubner, Leipzig 1909.
  • I. Kaplansky, 1977, Hilbert's Problems (Preliminary edition), Lecture Notes in Mathematics, Univ. of Chicago, 1977.
  • O.-H. Keller, 1930, Über die lückenlose Erfüllung des Raumes mit Würfeln, J. Reine Angew. Math. 163 (1930), 231-248.
  • R. B. Kershner, 1968, On paving the plane, Amer. Math. Monthly 75 (1968), 839-844.
  • E. Koch, 1972, Wirkungsbereichspolyeder und Wirkungsbereichsteilungen zu kubischen Gitterkomplexen mit weniger als drei Freiheitsgraden, Ph. D. Thesis, Philipps-Universität Marburg/Lahn, 1972.
  • E. Koch and W. Fischer, 1972, Wirkungsbereichstypen einer verzerrten Diamantkonfiguration mit Kugelpackungscharakter, Zeitschr. Kristallographie 135 (1972), 73-92.
  • E. Lampe, 1911, Review of Baily [1908], Fortschritte Math. 39 (1911), p. 552.
  • J. Lawrence, 1980, Tiling Rd by translates of the orthants (to appear)
  • H. D. Löckenhoff and E. Hellner, 1971, Die Wirkungsbereiche der invarianten kubischen Gitterkomplexe, Neues Jahrbuch für Mineralogie, Monatshefte. 1971, pp. 155-174.
  • B. B. Mandelbrot, 1977, Fractals, Freeman and Co., San Francisco, 1977.
  • J. Milnor, 1976, Hilbert's Problem 18: On crystallogrqphic groups, fundamental domains, and on sphere packing, pp. 491-506 in Browder [1976].
  • H. Minkowski, 1897, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Gesellschaft Wiss. Göttingen, Math.-Phys. Kl. 1987, pp. 198-219. Reprinted in: Gesammelte Abhandlungen, vol. 2, pp. 103-121. Teubner, Leipzig 1911; reprint Chelsea, New York, 1967.
  • W. Nowacki, 1935, Homogene Raumteilung und Kristallstruktur, Ph. D. Thesis, E. T. H. Zürich, 1935.
  • W. Nowacki, 1976, Über allgemeine Eigenschaften von Wirkungsbereichen, Zeitschr. Kristallographie 143 (1976), 360-368.
  • R. Penrose, 1978, Pentaplexity: A class of non-periodic tilings of the plane, Eureka (Cambridge) 39 (1978), 16-22; reprinted in Math. Intelligencer 2 (1979), 32-37.
  • O. Perron, 1940a, Über lückenlose Ausfüllung des n-dimensionalen Raumes durch kongruente Würfel, Math. Z. 46 (1940), 1-26; 161-180.
  • O. Perron, 1940b, Modulartige lückenlose Ausfullung des Rn mit kongruenten Würfeln, Math. Ann. 117 (1940), 415-447.
  • O. Perron, 1941, Modulartige lückenlose Ausfüllung des Rn mit kongruenten Würfeln, II, Math. Ann. 117 (1941), 609-658.
  • K. Reinhardt, 1918, Über die Zerlegung der Ebene in Polygone, Ph. D. Thesis, Univ. Frankfurt a.M. Noske, Borna-Leipzig, 1918.
  • K. Reinhardt, 1928, Zur Zerlegung der euklidischen Räume in kongruente Polytope, S.-Ber. Preuss. Akad. Wiss. Berlin, 1928, pp. 150-155.
  • R. M. Robinson, 1979, Multiple tilings of n-dimensional space by unit cubes, Math. Z. 166 (1979), 225-264.
  • R. M. Robinson, 1980, Can cubes avoid meeting face to facet The Mathematical Gardner, D. A. Klarner, ed. Prindle-Weber-Schmidt, Boston 1980 (to appear).
  • S. S. Ryškov and E. P. Baranovskii, 1976, The C-types of n-dimensional lattices and primitive five-dimensional parallelohedra, Trudy Mat. Inst. Akad. Nauk SSSR 137 (1976). (Russian)
  • D. Schattschneider, 1978, Tiling the plane with congruent pentagons, Math. Magazine 51 (1978), 29-44.
  • A. Seidenberg, 1954, A new decision method for elementary algebra, Ann. of Math. 60 (1954), 365-374.
  • K. Seitz, 1975, Investigations in the Hajós-Redei theory of finite Abelian groups, DM 75-6. Department of Mathematics, Karl Marx University of Economics, Budapest, 1975. i + 45 pp., MR 53 #655.
  • C. S. Smith, 1978, Structural hierarchy in science, art, and history, On Aesthetics in Science, edited by J. Wechsler. The MIT Press, Cambridge, Mass., 1978, pp. 9-53.
  • F. W. Smith, 1965, The structure of aggregates-a class of 20-faced space-filling potyhedra, Canad. J. Physics 43 (1965), 2052-2055.
  • S. K. Stein, 1974, Algebraic tiling, Amer. Math. Monthly 81 (1974), 445-462.
  • M. I. Štogrin, 1968, Regular Dirichlet partitions for the second triclinic group, Dokl. Akad. Nauk SSSR 183 (1968), 793-796. (Russian) English translation: Soviet Math. Dokl. 9 (1968), 1479-1482.
  • M. I. Štogrin, 1973, Regular Dirichlet- Voronoi partitions for the second triclinic group, Trudy Mat. Inst. Steklov vol. 123 (1973). (Russian) English translation: Proc. Steklov Inst. Math. 123 Amer. Math. Soc., Providence, R. I., 1975.
  • A. V. Šubnikov and V. A. Kopcik, 1972, Symmetry in science and art, Nauka, Moscow 1972. (Russian) English translation: A. V. Shubnikov and V. A. Koptsik, Symmetry in Science and Art., Plenum Press, New York and London, 1974.
  • A.Tarski, 1951, A decision method for elementary algebra and geometry, Univ. of California Press, Berkeley, Calif., 1951.
  • R. Williams, 1972, Natural structure: Toward a form language, Eudaemon Press, Moorpark, Calif., 1972. Second edition, Dover, New York, 1979.
  • A. M. Zamorzaev, 1965, On non-normal regular partitions of the Euclidean space, Dokl. Akad. Nauk SSSR 161 (1965), 30-31. (Russian)