Bulletin (New Series) of the American Mathematical Society

Riemann-Roch theorems for higher algebraic $K$-theory

Henri Gillet

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. (N.S.) Volume 3, Number 2 (1980), 849-852.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183547545

Mathematical Reviews number (MathSciNet)
MR578377

Zentralblatt MATH identifier
0438.14016

Subjects
Primary: 14F12 14C35: Applications of methods of algebraic $K$-theory [See also 19Exx]
Secondary: 18F25: Algebraic $K$-theory and L-theory [See also 11Exx, 11R70, 11S70, 12- XX, 13D15, 14Cxx, 16E20, 19-XX, 46L80, 57R65, 57R67]

Citation

Gillet, Henri. Riemann-Roch theorems for higher algebraic $K$-theory. Bulletin (New Series) of the American Mathematical Society 3 (1980), no. 2, 849--852. http://projecteuclid.org/euclid.bams/1183547545.


Export citation

References

  • 1. P. Baum, W. Fulton and R. MacPherson, Riemann-Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 101-146.
  • 2. P. Baum, Riemann-Roch and topological K-theory, Acta. Math, (to appear).
  • 3. S. Bloch, Algebraic K-theory and crystalline cohomology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 187-268.
  • 4. S. Bloch and A. Ogus, Gesten's conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. 7 (1974), 181-202.
  • 5. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972.
  • 6. K. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973), 419-458.
  • 7. B. Iversen, Local Chern classes, Ann. Sci. École Norm. Sup 9 (1976), 155-169.
  • 8. D. Quillen, Higher algebraic K-theory. I, Lecture Notes in Math., vol. 341, Springer-Verlag, Berlin and New York, 1972.
  • 9. C. Soulé, Thesis, University of Paris, 1979.