Bulletin of the American Mathematical Society

Jordan algebras and their applications

Kevin Mccrimmon

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 84, Number 4 (1978), 612-627.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183540925

Mathematical Reviews number (MathSciNet)
MR0466235

Zentralblatt MATH identifier
0421.17010

Subjects
Primary: 17Cxx: Jordan algebras (algebras, triples and pairs) 17B25: Exceptional (super)algebras 17B60: Lie (super)algebras associated with other structures (associative, Jordan, etc.) [See also 16W10, 17C40, 17C50] 32M15: Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras [See also 22E10, 22E40, 53C35, 57T15]

Citation

Mccrimmon, Kevin. Jordan algebras and their applications. Bulletin of the American Mathematical Society 84 (1978), no. 4, 612--627. http://projecteuclid.org/euclid.bams/1183540925.


Export citation

References

  • 1. A. A. Albert, On a certain algebra of quantum mechanics, Ann. of Math. (2) 35 (1934), 65-73.
  • 2. E. Alfsen, F. Schultz and E. Störmer, A Gelfand-Neumark theorem for Jordan algebras (to appear).
  • 3. H. Braun and M. Koecher, Jordan Algebren, Springer-Verlag, Berlin, 1966.
  • 4. P. M. Cohn, On homomorphic images of special Jordan algebras, Canad. J. Math. 6 (1954), 253-264.
  • 5. P. M. Cohn, Free rings and their relations, Academic Press, New York, 1971.
  • 6. J. Faulkner, Octonion planes defined by quadratic Jordan algebras, Mem. Amer. Math. Soc. No. 104 (1970).
  • 7. F. Gürsey, Algebraic methods and quark structure, Proc. Kyoto Conf. on Math. Prob. in Theoretical Phys. 1975.
  • 8. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
  • 9. L. K. Hua, On semihomomorphisms of rings and their applications in projective geometry, Uspehi Mat. Nauk 8 (1953), no. 3 (53), 143-148.
  • 10. N. Jacobson, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., vol. 39, Amer. Math. Soc., Providence, R.I., 1969.
  • 11. N. Jacobson, Lectures on quadratic Jordan algebras, Tata Institute Lecture Notes, Bombay, 1969.
  • 12. N. Jacobson, Structure theory for a class of Jordan algebras, Proc. Nat. Acad. Sci. U. S. A. 55 (1966), 243-251.
  • 13. N. Jacobson, Exceptional Lie algebras, Dekker, New York, 1971.
  • 14. P. Jordan, J. von Neumann and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (2) 36 (1934), 29-64.
  • 15. V. Kac, Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras (to appear).
  • 16. J. Kaplansky, Graded Lie and Jordan algebras (to appear).
  • 17. M. Koecher, On Lie algebras defined by Jordan algebras, Aarhus Univ. Lecture Notes, Aarhus, 1967.
  • 18. M. Koecher, Jordan algebras and their applications, Univ. Minnesota Lecture Notes, Minneapolis, 1962.
  • 19. M. Koecher, An elementary approach to bounded symmetric domains, Rice Univ. Lecture Notes, Houston, 1969.
  • 20. O. Loos, Jordan pairs, Lecture Notes in Math., vol. 460, Springer-Verlag, New York, 1975.
  • 21. O. Loos, Jordan pairs and bounded symmetric domains, Lecture Notes, Univ. of California at Irvine, 1977.
  • 22. K. McCrimmon, Noncommutative Jordan rings, Trans. Amer. Math. Soc. 158 (1971), 1-33.
  • 23. K. McCrimmon, A general theory of Jordan rings, Proc. Nat. Acad. Sci. U. S. A. 56 (1966), 1072-1079.
  • 24. K. McCrimmon, Jordan algebras with interconnected idempotents, Proc. Amer. Math. Soc. 19 (1968) 1327-1336.
  • 25. K. McCrimmon, Axioms for inversion in Jordan algebras, J. Algebra 47 (1977).
  • 26. K. McCrimmon, On Herstein's theorems relating Jordan and associative algebras, J. Algebra 13 (1969), 382-392.
  • 27. R. Moufang, Alternative körper und der Satz vom Vollständigen Vierseit, Abh. Math. Sem. Univ. Hamburg 9 (1933), 207-222.
  • 28. J. von Neumann, On an algebraic generalization of the quantum mechanical formalism, Mat. Sb. 1 (1936), 415-482.
  • 29. T. A. Springer, Jordan algebras and algebraic groups, Springer-Verlag, New York, 1973.
  • 30. T. A. Springer, The projective octave plane, Indag. Math. 22 (1960), 74-101.
  • 31. A. Thedy, Right alternative rings, J. Algebra 37 (1975), 1-63.
  • 32. J. Tits, Algèbres alternatives, algèbres de Jordan, et algèbres de Lie exceptionelles. I, Indag. Math. 28 (1966), 223-237.
  • 33. D. M. Topping, Jordan algebras of selfadjoint operators, Mem. Amer. Math. Soc. No. 53 (1965).
  • 34. L. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, Proc. Infinite Dimensional Holomorphy, Lecture Notes in Math., vol. 364, Springer-Verlag, New York, 1974.
  • 35. W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann, (to appear).
  • 36. M. Koecher, Jordan algebras in differential geometry, Proc. Internat. Congress I, (Nice, 1970), 279-283.