Bulletin of the American Mathematical Society

The Krull-Schmidt theorem for integral group representations

Irving Reiner

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 67, Number 4 (1961), 365-367.

Dates
First available: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183524252

Mathematical Reviews number (MathSciNet)
MR0138689

Zentralblatt MATH identifier
0099.01504

Citation

Reiner, Irving. The Krull-Schmidt theorem for integral group representations. Bulletin of the American Mathematical Society 67 (1961), no. 4, 365--367. http://projecteuclid.org/euclid.bams/1183524252.


Export citation

References

  • 1. D. G. Higman, On orders in separable algebras, Canad. J. Math. vol. 7 (1955) pp. 509-515.
  • 2. N. Jacobson, The theory of rings, Mathematical Surveys, no. 1, American Mathematical Society, 1943.
  • 3. J.-M. Maranda, On P-adic integral representations of finite groups, Canad. J. Math. vol. 5 (1953) pp. 344-355.
  • 4. J.-M. Maranda, On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Canad. J. Math. vol. 7 (1955) pp. 516-526.
  • 5. I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 142-146.
  • 6. I. Reiner, On the class number of representations of an order, Canad. J. Math. vol. 11 (1959) pp. 660-672.
  • 7. I. Reiner, The non-uniqueness of irreducible constituents of integral group representations, Proc. Amer. Math. Soc. vol. 11 (1960) pp. 655-657.
  • 8. I. Reiner and H. Zassenhaus, Equivalence of representations under extensions of local ground rings, Illinois J. Math. vol. 5 (1961) (will appear in September 1961).
  • 9. R. G. Swan, Projective modules over finite groups, Bull. Amer. Math. Soc. vol. 65 (1959) pp. 365-367.
  • 10. R. G. Swan, Induced representations and projective modules, mimeographed notes, University of Chicago, 1959.
  • 11. S. Takahashi, Arithmetic of group representations, Tôhoku Math. J. vol. 11 (1959) pp. 216-246.
  • 12. Z. I. Borevich and D. K. Faddeyev, Theory of homology in groups. II, Proc. Leningrad Univ. vol. 7 (1959) pp. 72-87.