Bulletin of the American Mathematical Society

Duality for groups

Saunders MacLane

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc. Volume 56, Number 6 (1950), 485-516.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
http://projecteuclid.org/euclid.bams/1183515045

Mathematical Reviews number (MathSciNet)
MR0049192

Zentralblatt MATH identifier
0045.29905

Citation

MacLane, Saunders. Duality for groups. Bull. Amer. Math. Soc. 56 (1950), no. 6, 485--516. http://projecteuclid.org/euclid.bams/1183515045.


Export citation

References

  • 1. E. Artin, The free product of groups, Amer. J. Math. vol. 69 (1947) pp. 1-4.
  • 2. P. Bernays, A system of axiomatic set theory, Journal of Symbolic Logic, I, vol. 2 (1937) pp. 65-77; II, vol. 6 (1941) pp. 1-17; III, vol. 7 (1942) pp. 65-89; IV, vol. 7 (1942) pp. 133-145; V, vol. 8 (1943) pp. 89-106; VI, vol. 13 (1948) pp. 65-79.
  • 3. G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. vol. 31 (1935) pp. 433-454.
  • 4. G. Birkhoff, Universal algebra, Proceedings of the First Canadian Mathematical Congress, Montreal, 1945, pp. 310-326.
  • 5. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications vol. 25, rev. ed., New York, 1948.
  • 6. N. Bourbaki, Éléments de mathématique, vol. II, Algèbre, Chap. I. Structures Algébriques, Paris, 1946.
  • 7. S. Eilenberg and S. MacLane, Group extensions and homology, Ann. of Math. vol.43 (1942) pp. 757-831.
  • 8. S. Eilenberg and S. MacLane, General theory of natural equivalences, Trans. Amer Math. Soc. vol. 58 (1945) pp. 231-295.
  • 9. S. Eilenberg and N. E. Steenrod, Axiomatic approach to homology theory, Proc. Nat. Acad. Sci. U. S. A. vol. 31 (1945) pp. 117-120.
  • 10. S. Eilenberg and N. E. Steenrod, Foundations of algebraic topology, to appear.
  • 11. K. Gödel, The consistency of the continuum hypothesis, Annals of Mathematics Studies, no. 3, Princeton, 1940.
  • 12. P. Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc. (2) vol. 36 (1933) pp. 29-95.
  • 13. P. Hall, Verbal and marginal subgroups, Journal für Mathematik vol. 182 (1940) pp. 156-157.
  • 14. W. Hurewicz, Zu einer Arbeit von O. Schreier, Abh. Math. Sem. Hamburgischen Univ. vol. 8 (1930) pp. 307-314.
  • 15. B. Jónsson and A. Tarski, Direct decomposition of finite algebraic systems, Notre Dame Mathematical Lectures, no. 5, Notre Dame, 1947.
  • 16. S. MacLane, Groups, categories, and duality, Proc. Nat. Acad. Sci. U.S.A. vol. 34 (1948) pp. 263-267.
  • 17. S. MacLane and J. H. C. Whitehead, On the 3-type of a complex, Proc. Nat. Acad., Sci. U.S.A. vol. 36 (1950) pp. 41-47.
  • 18. W. Magnus, Allgemeine Gruppentheorie, Enzykopädie der Mathematischen Wissenschaften, 2d ed., vol. I, 1, no. 4, part 1, Leipzig and Berlin, 1939.
  • 19. K. Shoda, Ueber die allgemeinen algebraischen Systemen, Proc. Imp. Acad. Tokyo, I, vol. 17 (1941) pp. 323-327; II, III, IV, vol. 18 (1942) pp. 179-184, 227-232, 276-279; V, VI, VII, vol. 19 (1943) pp. 114-118, 259-263, 515-517; VIII, vol. 20 (1944) pp. 584-588.
  • 20. A. Tarski, Cardinal algebras, Oxford and New York, 1949.
  • 21. B. L. van der Waerden, Free products of groups, Amer. J. Math. vol. 70 (1948) pp. 527-528.
  • 22. H. Zassenhaus, Lehrbuch der Gruppentheorie, Leipzig and Berlin, 1937.