### How many entries of a typical orthogonal matrix can be approximated by independent normals?

Tiefeng Jiang
Source: Ann. Probab. Volume 34, Number 4 (2006), 1497-1529.

#### Abstract

We solve an open problem of Diaconis that asks what are the largest orders of pn and qn such that Zn, the pn×qn upper left block of a random matrix Γn which is uniformly distributed on the orthogonal group O(n), can be approximated by independent standard normals? This problem is solved by two different approximation methods.

First, we show that the variation distance between the joint distribution of entries of Zn and that of pnqn independent standard normals goes to zero provided and . We also show that the above variation distance does not go to zero if and for any positive numbers x and y. This says that the largest orders of pn and qn are o(n1/2) in the sense of the above approximation.

Second, suppose Γn=(γij)n×n is generated by performing the Gram–Schmidt algorithm on the columns of Yn=(yij)n×n, where {yij;1≤i,jn} are i.i.d. standard normals. We show that goes to zero in probability as long as m=mn=o(n/logn). We also prove that in probability when mn=[nα/logn] for any α>0. This says that mn=o(n/logn) is the largest order such that the entries of the first mn columns of Γn can be approximated simultaneously by independent standard normals.

First Page:
Primary Subjects: 15A52, 60B10, 60B15, 60F05, 60F99, 62H10
Full-text: Open access

Permanent link to this document: http://projecteuclid.org/euclid.aop/1158673325
Digital Object Identifier: doi:10.1214/009117906000000205
Mathematical Reviews number (MathSciNet): MR2257653
Zentralblatt MATH identifier: 1107.15018

### References

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd ed. Wiley, New York.
Mathematical Reviews (MathSciNet): MR0771294
Zentralblatt MATH: 0651.62041
Mathematical Reviews (MathSciNet): MR0344384
Zentralblatt MATH: 0309.26002
Bai, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 611--677.
Mathematical Reviews (MathSciNet): MR1711663
Zentralblatt MATH: 0949.60077
Billingsley, P. (1979). Probability and Measure. Wiley, New York.
Mathematical Reviews (MathSciNet): MR0534323
Zentralblatt MATH: 0411.60001
Borel, E. (1906). Introduction géometrique á quelques théories physiques. Gauthier--Villars, Paris. JFM 45.0808.10
Chow, Y. S. and Teicher, H. (1988). Probability Theory, Independence, Interchangeability, Martingales, 2nd ed. Springer, New York.
Mathematical Reviews (MathSciNet): MR0953964
Zentralblatt MATH: 0652.60001
Collins, B. (2003). Intégrales matricielles et probabilitiés non-commutatives. Thèse de Doctorat, Univ. Paris 6.
D'Aristotle, A., Diaconis, P. and Newman, C. M. (2002). Brownian motion and the classical groups. Probability, Statistics and Their Applications: Papers in Honor of Rabi Bhattacharya 97--116. IMS Lecture Notes Monogr. Ser. 41. IMS, Beachwood, OH.
Mathematical Reviews (MathSciNet): MR1999417
Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Springer, New York.
Mathematical Reviews (MathSciNet): MR1619036
Zentralblatt MATH: 0896.60013
Diaconis, P. (2003). Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture. Bull. Amer. Math. Soc. (N.S.) 40 155--178 (electronic).
Mathematical Reviews (MathSciNet): MR1962294
Digital Object Identifier: doi:10.1090/S0273-0979-03-00975-3
Zentralblatt MATH: 1161.15302
Diaconis, P. and Freedman, D. (1987). A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Probab. Statist. 23 397--423.
Mathematical Reviews (MathSciNet): MR0898502
Diaconis, P. and Shahshahni, M. (1994). On the eigenvalues of random matrices. Studies in applied probability. J. Appl. Probab. 31A 49--62.
Mathematical Reviews (MathSciNet): MR1274717
Digital Object Identifier: doi:10.2307/3214948
Diaconis, P. and Evans, S. N. (2001). Linear functionals of eigenvalues of random matrices. Trans. Amer. Math. Soc. 353 2615--2633 (electronic).
Mathematical Reviews (MathSciNet): MR1828463
Digital Object Identifier: doi:10.1090/S0002-9947-01-02800-8
Zentralblatt MATH: 1008.15013
Diaconis, P. W., Eaton, M. L. and Lauritzen, S. L. (1992). Finite de Finetti theorems in linear models and multivariate analysis. Scand. J. Statist. 19 289--315.
Mathematical Reviews (MathSciNet): MR1211786
Eaton, M. L. (1989). Group Invariance Applications in Statistics. IMS, Hayward, CA.
Mathematical Reviews (MathSciNet): MR1089423
Zentralblatt MATH: 0749.62005
Gallardo, L. (1983). Au sujet du contenu probabiliste d'un lemma d'Henri Poincaré. Ann. Univ. Clemont 69 192--197.
Mathematical Reviews (MathSciNet): MR0645576
Geman, S. (1980). A limit theorem for the norm of random matrices. Ann. Probab. 8 252--261.
Mathematical Reviews (MathSciNet): MR0566592
Digital Object Identifier: doi:10.1214/aop/1176994775
Project Euclid: euclid.aop/1176994775
Zentralblatt MATH: 0428.60039
Horn, R. and Johnson, C. (1990). Matrix Analysis. Cambridge Univ. Press.
Mathematical Reviews (MathSciNet): MR1084815
Zentralblatt MATH: 0704.15002
Jiang, T. (2005). Maxima of entries of Haar distributed matrices. Probab. Theory Related Fields 131 121--144.
Mathematical Reviews (MathSciNet): MR2105046
Digital Object Identifier: doi:10.1007/s00440-004-0376-5
Zentralblatt MATH: 1067.15021
Johansson, K. (1997). On random matrices from the compact classical groups. Ann. of Math. (2) 145 519--545.
Mathematical Reviews (MathSciNet): MR1454702
Digital Object Identifier: doi:10.2307/2951843
Jonsson, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12 1--38.
Mathematical Reviews (MathSciNet): MR0650926
Digital Object Identifier: doi:10.1016/0047-259X(82)90080-X
Zentralblatt MATH: 0491.62021
Lang, S. (1987). Calculus of Several Variables. Springer, New York.
Mathematical Reviews (MathSciNet): MR0886677
Zentralblatt MATH: 0628.32001
Letac, G. (1981). Isotropy and sphericity: Some characterisations of the normal distribution. Ann. Statist. 9 408--417.
Mathematical Reviews (MathSciNet): MR0606624
Digital Object Identifier: doi:10.1214/aos/1176345406
Project Euclid: euclid.aos/1176345406
Zentralblatt MATH: 0462.62014
Maxwell, J. C. (1875). Theory of Heat, 4th ed. Longmans, London.
Maxwell, J. C. (1878). On Boltzmann's theorem on the average distribution of energy in a system of material points. Cambridge Phil. Soc. Trans. 12 547. JFM 11.0776.01
McKean, H. P. (1973). Geometry of differential space. Ann. Probab. 1 197--206.
Mathematical Reviews (MathSciNet): MR0353471
Digital Object Identifier: doi:10.1214/aop/1176996973
Zentralblatt MATH: 0263.60035
Poincaré, H. (1912). Calcul des probabilitiés. Gauthier--Villars, Paris. JFM 43.0308.04
Rains, E. M. (1997). High powers of random elements of compact Lie groups. Probab. Theory Related Fields 107 219--241.
Mathematical Reviews (MathSciNet): MR1431220
Digital Object Identifier: doi:10.1007/s004400050084
Zentralblatt MATH: 0868.60012
Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York.
Mathematical Reviews (MathSciNet): MR0346957
Zentralblatt MATH: 0256.62002
Stam, A. J. (1982). Limit theorems for uniform distributions on spheres in high-dimensional Euclidean spaces. J. Appl. Probab. 19 221--228.
Mathematical Reviews (MathSciNet): MR0644435
Digital Object Identifier: doi:10.2307/3213932
Yin, Y. Q., Bai, Z. D. and Krishnaiah, P. R. (1988). On the limit of the largest eigenvalue of the large-dimensional sample covariance matrix. Probab. Theory Related Fields 78 509--521.
Mathematical Reviews (MathSciNet): MR0950344
Digital Object Identifier: doi:10.1007/BF00353874
Zentralblatt MATH: 0627.62022
Yor, M. (1985). Inégalitiés de martingales continus arrêtès à un temps quelconques I. Lecture Notes in Math. 1118. Springer, Berlin. Zbl 0563.60045
Mathematical Reviews (MathSciNet): MR889494
Zentralblatt MATH: 0569.60075
Digital Object Identifier: doi:10.1007/BFb0075865