The Annals of Probability

First passage percolation has sublinear distance variance

Itai Benjamini,Gil Kalai, and Oded Schramm

Full-text: Open access

Abstract

Let $0 < a < b < \infty$, and for each edge e of $\Z^d$ let $\omega_e=a$ or $\omega_e=b$, each with probability $1/2$, independently. This induces a random metric $\dist_\omega$ on the vertices of $\Z^d$, called first passage percolation. We prove that for $d>1$, the distance $\dist_\omega(0,v)$ from the origin to a vertex $v$, $|v|>2$, has variance bounded by $C|v|/\log|v|$, where $C=C(a,b,d)$ is a constant which may only depend on a, b and d. Some related variants are also discussed.

Article information

Source
Ann. Probab. Volume 31, Number 4 (2003), 1970-1978.

Dates
First available: 12 November 2003

Permanent link to this document
http://projecteuclid.org/euclid.aop/1068646373

Digital Object Identifier
doi:10.1214/aop/1068646373

Mathematical Reviews number (MathSciNet)
MR2016607

Zentralblatt MATH identifier
02077583

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization 28A35: Measures and integrals in product spaces 60E15: Inequalities; stochastic orderings

Keywords
Hypercontractive harmonic analysis discrete harmonic analysis discrete cube random metrics discrete isoperimetric inequalities influences

Citation

Benjamini, Itai; Kalai, Gil; Schramm, Oded. First passage percolation has sublinear distance variance. The Annals of Probability 31 (2003), no. 4, 1970--1978. doi:10.1214/aop/1068646373. http://projecteuclid.org/euclid.aop/1068646373.


Export citation

References

  • Baik, J., Deift, P. and Johansson, K. (1999). On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 1119--1178.
  • Beckner, W. (1975). Inequalities in Fourier analysis. Ann. of Math. 102 159--182.
  • Bobkov, S. G. and Houdre, C. (1999). A converse Gaussian Poincare-type inequality for convex functions. Statist. Probab. Lett. 44 281--290.
  • Bonami, A. (1970). Etude des coefficients Fourier des fonctiones de $L^p(G)$. Ann. Inst. Fourier (Grenoble) 20 335--402.
  • Bourgain, J., Kahn, J., Kalai, G., Katznelson, Y. and Linial, N. (1992). The influence of variables in product spaces. Israel J. Math. 77 55--64.
  • Deuschel, J.-D. and Zeitouni, O. (1999). On increasing subsequences of I.I.D. samples. Combin. Probab. Comput. 8 247--263.
  • Durrett, R. (1999). Perplexing problems in probability. Progr. Probab. 44 1--33.
  • Friedgut, E. (200X). Influences in product spaces, KKL and BKKKL revisited. Preprint.
  • Johansson, K. (2000). Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Related Fields 116 445--456.
  • Kahn, J., Kalai, G. and Linial, N. (1988). The influence of variables on Boolean functions. In Proceedings of the 29th Annual Symposium on Foundations of Computer Science 68--80. IEEE Computer Science Press, Washington, DC.
  • Kesten, H. (1986). Aspects of first passage percolation. École d'Été de Probabilités de Saint-Flour, XIV. Lecture Notes in Math. 1180 125--264. Springer, Berlin.
  • Kesten, H. (1993). On the speed of convergence in first passage percolation. Ann. Appl. Probab. 3 296--338.
  • Ledoux, M. (2001). The Concentration of Measure Phenomenon. Amer. Math. Soc., Alexandria, VA.
  • Newman, C. M. and Piza, M. (1995). Divergence of shape fluctuations in two dimensions. Ann. Probab. 23 977--1005.
  • Pemantle, R. and Peres, Y. (1994). Planar first-passage percolation times are not tight. In Probability and Phase Transition (G. Grimmett, ed.) 261--264. Kluwer, Dordrecht.
  • Talagrand, M. (1994). On Russo's approximate zero--one law. Ann. Probab. 22 1576--1587.
  • Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81 73--205.