The Annals of Applied Probability

Analysis of phase transitions in the mean-field Blume–Emery–Griffiths model

Richard S. Ellis, Peter T. Otto, and Hugo Touchette

Full-text: Open access

Abstract

In this paper we give a complete analysis of the phase transitions in the mean-field Blume–Emery–Griffiths lattice-spin model with respect to the canonical ensemble, showing both a second-order, continuous phase transition and a first-order, discontinuous phase transition for appropriate values of the thermodynamic parameters that define the model. These phase transitions are analyzed both in terms of the empirical measure and the spin per site by studying bifurcation phenomena of the corresponding sets of canonical equilibrium macrostates, which are defined via large deviation principles. Analogous phase transitions with respect to the microcanonical ensemble are also studied via a combination of rigorous analysis and numerical calculations. Finally, probabilistic limit theorems for appropriately scaled values of the total spin are proved with respect to the canonical ensemble. These limit theorems include both central-limit-type theorems, when the thermodynamic parameters are not equal to critical values, and noncentral-limit-type theorems, when these parameters equal critical values.

Article information

Source
Ann. Appl. Probab. Volume 15, Number 3 (2005), 2203-2254.

Dates
First available in Project Euclid: 15 July 2005

Permanent link to this document
http://projecteuclid.org/euclid.aoap/1121433782

Digital Object Identifier
doi:10.1214/105051605000000421

Mathematical Reviews number (MathSciNet)
MR2152658

Zentralblatt MATH identifier
1113.82017

Subjects
Primary: 60F10: Large deviations 60F05: Central limit and other weak theorems
Secondary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs

Keywords
Equilibrium macrostates second-order phase transition first-order phase transition large deviation principle

Citation

Ellis, Richard S.; Otto, Peter T.; Touchette, Hugo. Analysis of phase transitions in the mean-field Blume–Emery–Griffiths model. Ann. Appl. Probab. 15 (2005), no. 3, 2203--2254. doi:10.1214/105051605000000421. http://projecteuclid.org/euclid.aoap/1121433782.


Export citation

References

  • Ausloos, M., Clippe, P., Kowalski, J. M. and Pękalski, A. (1980). Magnetic lattice gas. Phys. Rev. A 22 2218--2229.
  • Barré, J., Mukamel, D. and Ruffo, S. (2001). Inequivalence of ensembles in a system with long-range interactions. Phys. Rev. Lett. 87 030601.
  • Barré, J., Mukamel, D. and Ruffo, S. (2002). Ensemble inequivalence in mean-field models of magnetism. Dynamics and Thermodynamics of Systems with Long Range Interactions. Lecture Notes in Phys. 602 45--67. Springer, New York.
  • Blume, M., Emery, V. J. and Griffiths, R. B. (1971). Ising model for the $\lambda$ transition and phase separation in $\mboxHe^3$-$\mboxHe^4$ mixtures. Phys. Rev. A 4 1071--1077.
  • Capel, H. W. (1966). On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32 966--987.
  • Capel, H. W. (1967). On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting II. Physica 33 295--331.
  • Costeniuc, M., Ellis, R. S. and Touchette, H. (2005). Complete analysis of phase transitions and ensemble equivalence for the Curie--Weiss--Potts model. J. Math. Phys. 46 063301.
  • Eisele, T. and Ellis, R. S. (1983). Symmetry breaking and random waves for magnetic systems on a circle. Z. Wahrsch. Verw. Gebiete 63 297--348.
  • Ellis, R. S. (1985). Entropy. Large Deviations and Statistical Mechanics. Springer, New York.
  • Ellis, R. S., Haven, K. and Turkington, B. (2000). Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Statist. Phys. 101 999--1064.
  • Ellis, R. S., Monroe, J. L. and Newman, C. M. (1976). The GHS and other correlation inequalities for a class of even ferromagnets. Comm. Math. Phys. 46 167--182.
  • Ellis, R. S. and Newman, C. M. (1979). Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44 117--139.
  • Ellis, R. S., Newman, C. M. and O'Connell, M. R. (1981). The GHS inequality for a large external field. J. Statist. Phys. 26 37--52.
  • Ellis, R. S., Newman, C. M. and Rosen, J. S. (1980). Limit theorems for sums of dependent random variables occurring in statistical mechanics, II: Conditioning, multiple phases, and metastability. Z. Wahrsch. Verw. Gebiete 51 153--169.
  • Ellis, R. S., Touchette, H. and Turkington, B. (2004). Thermodynamic verses statistical nonequivalence of ensembles for the mean-field Blume--Emery--Griffiths model. Phys. A 335 518--538.
  • Hoston, W. and Berker, A. N. (1991). Multicritical phase diagrams of the Blume--Emery--Griffiths model with repulsive biquadratic coupling. Phys. Rev. Lett. 67 1027--1030.
  • Kivelson, S. A., Emery, V. J. and Lin, H. Q. (1990). Doped antiferromagnets in the weak-hopping limit. Phys. Rev. B 42 6523--6530.
  • Lajzerowicz, J. and Sivardière, J. (1975). Spin-1 lattice-gas model. I. Condensation and solidification of a simple fluid. Phys. Rev. A 11 2079--2089.
  • Newman, K. E. and Dow, J. D. (1983). Zinc-blende-diamond order-disorder transition in metastable crystalline (GzAs)$_1-x$Ge$_2x$ alloys. Phys. Rev. B 27 7495--7508.
  • Nienhuis, B., Berker, A. N., Riedel, E. K. and Schick, M. (1979). First- and second-order phase transitions in Potts models: Renormalization-group solution. Phys. Rev. Lett. 43 737--740.
  • Otto, P. T. (2004). Study of equilibrium macrostates for two models in statistical mechanics. Ph.D. dissertation, Univ. Massachusetts, Amherst. Available at http://www.math.umass. edu/~rsellis/pdf-files/Otto-thesis.pdf.
  • Rockafellar, R. T. (1970). Convex Analysis. Princeton Univ. Press.
  • Schick, M. and Shih, W.-H. (1986). Spin-1 model of a microemulsion. Phys. Rev. B 34 1797--1801.
  • Sivardière, J. and Lajzerowicz, J. (1975). Spin-1 lattice-gas model. II. Condensation and phase separation in a binary fluid. Phys. Rev. A 11 2090--2100.
  • Sivardière, J. and Lajzerowicz, J. (1975). Spin-1 lattice-gas model. III. Tricritical points in binary and ternary fluids. Phys. Rev. A 11 2101--2110.