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SEMI-TENSOR PRODUCT OF MATRICES AND ITS SOME
APPLICATIONS TO PHYSICS ∗

DAIZHAN CHENG† AND YALI DONG†

Abstract. In this paper we first give a general definition of a new kind of matrix products,
called the semi-tensor product, which was firstly proposed in [4]. Certain new properties related to
the later applications are proved. Using them, some problems in physics are investigated. First of all,
the Carleman linearization of some dynamic physical systems is considered. It is used to investigate
the invariants. A rigorous proof for the solvability is presented. Secondly, the problems of invariants
of planar polynomial systems is converted to the solvability of a set of algebraic equations. Thirdly,
we consider the contraction of a tensor field. A simple proof for general contraction is obtained.

1. Introduction. A new matrix product, called the semi-tensor product was
introduced in [4]. Some of its applications have also been revealed there. In this paper,
we first generalize the definition of semi-tensor product to matrices with arbitrary
dimensions. Then certain new properties are proved, which are necessary for further
investigation.

As an auxiliary tool, some properties of the commutation matrix are also inves-
tigated.

Some physical problems are discussed in the paper by using semi-tensor products.
First, we consider the Carleman linearization of a nonlinear system, particularly, a
polynomial system. We give a rigorous proof for the necessity of the equations for
the polynomial type of first integrals. Moreover, for planar case, a more general type
of first integrals is considered. A set of algebraic equations are presented for the
existence of more general type of integrals.

Another problem considered is the contraction of tensor fields. A general proof
for the formula of contraction of tensor fields is presented. It is used a lot in general
relativity, but we did not see a proof for general case.

It is obvious that the new matrix product is useful in many other physical prob-
lems. The main purpose of this paper is to introduce this new matrix product and to
show some of its applications.

The rest of the paper is organized as the follows: In section 2 the general definition
for left and right semi-tensor products are given. Several examples are presented in
section 3. The commutation matrix and its properties are discussed in section 4.
Section 5 gives a tensor form expression for polynomials. Some properties, which are
required in later discussion are presented in section 6. Section 7 gives certain formulas
and properties of Carleman Linearization. The invariants of a planar polynomial
systems is discussed in section 8. Section 9 devotes to the general property of the
contraction of tensor fields. Section 10 is the conclusion.

2. Semi-tensor Product of matrices. Given two matrices A ∈ Mm×n and
B ∈ Mp×q, where Ms×t is the set of s × t matrices. In this section we consider the
left and the right semi-tensor products of A and B. We need the following notations:
Let a, b ∈ Z+, where Z+ is the set of positive integers. We denote by a∧ b the largest
common divisor of a and b, and a ∨ b the least common multiplier. For instance,
6 ∧ 8 = 2 and 6 ∨ 8 = 24.
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Definition 2.1. Let A ∈ Mm×n, B ∈ Mp×q and α = n ∨ p. Then the left
semi-tensor product of A and B, denoted by A � B, is defined as

A � B = (A ⊗ Iα
n
)(B ⊗ Iα

p
). (2.1)

The right semi-tensor product of A and B, denoted by A � B, is defined as

A � B = (Iα
n
⊗ A)(Iα

p
⊗ B). (2.2)

Where ⊗ is the Kronecker product of matrices.

Note that if n = p these two products are degenerated to the conventional matrix
product. So both of them are generalizations of the conventional matrix product.

The following properties are fundamental. Using definition, they can be proved
by straightforward but tedious computations. So the proofs are omitted.

Proposition 2.2. The semi-tensor products satisfy
1. Distributivity

(A + B) � C = (A � C) + (B � C),
(A + B) � C = (A � C) + (B � C),
C � (A + B) = (C � A) + (C � B),
C � (A + B) = (C � A) + (C � B).

(2.3)

2. Associativity

(A � B) � C = A � (B � C),
(A � B) � C = A � (B � C). (2.4)

Many properties of the conventional matrix product remain true for this (left or
right) semi-tensor product. For instance, we give the following:

Proposition 2.3. 1. (A � B)T = BT
� AT ; (A � B)T = BT

� AT .
2. If M ∈ Mm×pn, then M � In = M and M � In = M ; If M ∈ Mpm×n, then

Im � M = M and Im � M = M .
In the following let A, B be two square matrices.
3. A � B and B � A ( A � B and B � A) have the same characteristic function.
4. tr(A � B) = tr(B � A); tr(A � B) = tr(B � A).
5. If both A and B are orthogonal, (or upper triangular, or diagonal), then so is

A � B or A � B.
6. If either A or B is invertible, then A � B ∼ B � A and A � B ∼ B � A, where

∼ means two matrices are similar.
7. If both A and B are invertible, then

(A � B)−1 = B−1
� A−1; (A � B)−1 = B−1

� A−1.

8. The determinants of the products are

det(A � B) = (det(A))
α
n (det(B))

α
p ; det(A � B) = (det(A))

α
n (det(B))

α
p ,

where α, n, and p are as in Definition 2.1.
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Proposition 2.4. 1. Let A ∈ Mm×n and B ∈ Mp×q. Then C = A�B = (Cij),
i = 1, · · · ,m, j = 1, · · · , q, with

Cij = Ai
� Bj . (2.5)

where Ai is i-th row of A and Bj is the j-th column of B.
2. Let A and B be split into blocks as A = (Aij) and B = (Bij). Assume

dim row(Aik)
dim column(Bkj)

=
n

p
, ∀i, j, k.

Then C = (Cij), with

Cij =
∑

k

Aik
� Bkj . (2.6)

It is worth to emphasize that the right semi-tensor product does not have similar
properties as in Proposition 2.4. So the left semi-tensor product is more convenient
in use. In the sequel, we consider the left semi-tensor product as a conventional
extension of conventional matrix product.

Let A ∈ Mm×n and m ∧ n = t. Set m = m0t and n = n0t, then m0 and n0 are
co-prime. We define a power of A as{

A1 = A,

Ak+1 = A � Ak, k ≥ 1.

Similarly, {
A�1 = A,

A�(k+1) = A � A�k, k ≥ 1.

As for the dimension of Ak or A�k, it is easy to prove by mathematical induction
that Ak ∈ Mmk

0 t×nk
0 t and A�k ∈ Mmk

0 t×nk
0 t.

Let A ∈ Mm×n and B ∈ Mp×q. In practical problems the most useful case for
the semi-tensor product is either n is a factor of p, i.e., nt = p for some integer t, or
p is a factor of n, i.e., n = pt for some integer t. For the first case we denote

A ≺t B. (2.7)

For the second case we denote

A 	t B. (2.8)

In the rest of this paper we assume, without any exception, that
A1. Either (2.7) or (2.8) holds.

As a convention, sometimes we simply use AB = A � B. There is no confusion
because when the dimensions of A and B are suitable for conventional matrix product
the left semi-tensor product coincides with the conventional matrix product.
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3. Some Examples. In this section we give some simple examples to show the
new matrix products.

Example 3.1. Let X ∈ R
m and Y ∈ R

n. Then

X � Y = (X ⊗ In)Y = (x1y1 · · ·x1yn · · · xmy1 · · ·xmyn)T = X ⊗ Y ;

X � Y = (In ⊗ X)Y = (x1y1 · · ·xmy1 · · · x1ym · · ·xmyn)T = Y ⊗ X;

Example 3.2. Let

A =
(

a11 a12 a13 a14

a21 a22 a23 a24

)
, B =

⎛
⎜⎜⎜⎝

b11 b12

b21 b22

...
b61 b62

⎞
⎟⎟⎟⎠ .

Then α = 4 ∨ 6 = 12, β = 4 ∧ 6 = 2, and

A � B = (A ⊗ I3)(B ⊗ I2)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a11b11 + a13b41 a12b21 + a14b51 a11b12 + a13b42 a12b22 + a14b52

a12b31 + a14b61 a11b11 + a13b41 a12b32 + a14b62 a11b12 + a13b42

a11b21 + a13b51 a12b31 + a14b61 a11b22 + a13b52 a12b32 + a14b62

a21b11 + a23b41 a22b21 + a24b51 a21b12 + a23b42 a22b22 + a24b52

a22b31 + a24b61 a21b11 + a23b41 a22b32 + a24b62 a21b12 + a23b42

a21b21 + a23b51 a22b31 + a24b61 a21b22 + a23b52 a22b32 + a24b62

⎞
⎟⎟⎟⎟⎟⎟⎠

A � B = (I3 ⊗ A)(I2 ⊗ B)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a11b11 + a12b21 + a13b31 + a14b41 a11b12 + a12b22 + a13b32 + a14b42

a21b11 + a22b21 + a23b31 + a24b41 a21b12 + a22b22 + a23b32 + a24b42

a11b51 + a12b61 a11b52 + a12b62

a21b51 + a22b61 a21b52 + a22b62

0 0
0 0

0 0
0 0
a13b11 + a14b21 a13b12 + a14b22

a23b11 + a24b21 a23b12 + a24b22

a11b31 + a12b41 + a13b51 + a14b61 a11b32 + a12b42 + a13b52 + a14b62

a21b31 + a22b41 + a23b51 + a24b61 a21b32 + a22b42 + a23b52 + a24b62

⎞
⎟⎟⎟⎟⎟⎟⎠

The following example shows how the multi-fold of cross-product in R
3 be per-

formed semi-tensor product.

Example 3.3. Consider the cross-product in R3. Let e1 = i, e2 = j and e3 = k,
and

ei × ej =
3∑

k=1

ck
ijek, i, j = 1, 2, 3.
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Construct a matrix, called the structure matrix as

M =

⎛
⎝c1

11 c1
12 c1

13 c1
21 c1

22 c1
23 c1

31 c1
32 c1

33

c2
11 c2

12 c2
13 c2

21 c2
22 c2

23 c2
31 c2

32 c2
33

c3
11 c3

12 c3
13 c3

21 c3
22 c3

23 c3
31 c3

32 c3
33

⎞
⎠

=

⎛
⎝0 0 0 0 0 1 0 −1 0

0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎞
⎠ .

Consider Xs = (as, bs, cs)T ∈ R3, s = 1, · · · , n. Then it is easy to see that

X1 × X2 = M � X1 � X2 = MX1X2.

Since the semi-tensor product is associative, unlike the cross product we don’t need
to worry about the order of the product. In general

(· · · (X1 × X2) × · · · ) × Xn = MnX1X2 · · ·Xn.

The last example gives an additional reason for introducing the left semi-tensor
product.

Example 3.4. Let X,Y,Z,W ∈ R
n. Then

(XY T )(ZWT ) ∈ Mn×n.

Let’s do the following transformation (within conventional matrix product) :

(XY T )(ZWT ) = X(Y T Z)WT = (Y T Z)XWT = Y T (ZX)WT . (3.1)

The above transformation seems legal because Y T Z is a scaler and the conventional
matrix product is associative. But finally we meet ZX, which is not defined. Now if
we generalize the conventional matrix product to left semi-tensor product, the puzzle
is solved completely. Not only ZX is well defined but also the equality (3.1) holds
perfectly.

4. Commutation Matrix. The commutation matrix was introduced in [8]. We
give a constructive definition:

Definition 4.1. An mn × mn matrix W[m,n] is called a commutation ma-
trix if we label its columns by (11, 12, · · · , 1n, · · · ,m1,m2, · · · ,mn) and its rows by
(11, 21, · · · ,m1, · · · , 1n, 2n, · · · ,mn), and set its entries in the (I, J)-th row and (i, j)-
th column as

w(IJ),(ij) = δI,J
i,j =

{
1, I = i and J = j,

0, otherwise.
(4.1)

When m = n we denote W[n,n] = W[n].

Example 4.2. Let m = 2 and n = 3, W[2,3] is expressed as

(11) (12) (13) (21) (22) (23)

W[2,3] =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(11)
(21)
(12)
(22)
(13)
(23)

.
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While W[3,2] is

(11) (12) (21) (22) (31) (32)

W[3,2] =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(11)
(21)
(31)
(12)
(22)
(32)

.

We refer to [7] and [9] for the following properties.

Proposition 4.3. 1. The inverse and the transpose of a commutation matrix
are

W[n,m] = WT
[m,n] = W−1

[m,n]. (4.2)

2. When n = m (4.2) becomes

W[n] = WT
[n] = W−1

[n] . (4.3)

Given a matrix A = (aij) ∈ Mm×n. We use Vc(A) and Vr(A) for its column
stacking form and row stacking form respectively. That is,

Vc(A) = (a11 · · · am1, · · · , a1n · · · amn)T ,

Vr(A) = (a11 · · · a1n, · · · , am1 · · · amn)T .

The commutation matrix can realize the swap between row and column stacking
forms of a matrix:

Proposition 4.4. Let A ∈ Mm×n. Then{
W[m,n]Vr(A) = Vc(A),
W[n,m]Vc(A) = Vr(A).

(4.4)

The following factorization property is very useful for simplifying the product of
swap matrices etc.

Proposition 4.5 [5].

W[p,qr] = (Iq ⊗ W[p,r])(W[p,q] ⊗ Ir) = (Ir ⊗ W[p,q])(W[p,r] ⊗ Iq), (4.5)

W[pq,r] = (W[p,r] ⊗ Iq)(Ip ⊗ W[q,r]) = (W[q,r] ⊗ Ip)(Iq ⊗ W[p,r]). (4.6)
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5. Tensor Form of Polynomials. Denote by Bk
n the set of k-th homogeneous

polynomials in R
n. It is obvious that xk is a basis. That is, let p(x1, · · · , xn) ∈ Bk

n.
Then there exists a row vector F ∈ R

nk

such that

p(x) = Fxk (= F � x � · · · � x︸ ︷︷ ︸
k

). (5.1)

Of course xk is a redundant basis. So the coefficient array F is not unique. F is
a symmetric coefficient array, if for same monomials (such as x2

1x2 and x2x
2
1), the

corresponding coefficients are equal.
A natural basis, denoted by x(k), is

x(k) = (xk
1 , xk−1

1 x2, · · · , xn−1x
k−1
n , xk

n)T ,

that is, arrange the set of k-th degree monic monomials in alphabetic order.
It can be proved by mathematical induction that the dimension of x(k) is

s := dim(x(k)) =
(n + k − 1)!
k!(n − 1)!

; k ≥ 0, n ≥ 1.

Then there exist two matrices TN (n, k) ∈ Mnk×s and TB(n, k) ∈ Ms×nk , such that

xk = TN (n, k)x(k), x(k) = TB(n, k)xk.

Moreover, it is an immediate consequence of the definition that

TB(n, k)TN (n, k) = Is.

Now given a p(x) ∈ Bk
n, which is expressed as

p(x) = Fxk = Gx(k),

then FTN = G.
But since xk is redundant, GTB is only the symmetric expression of F .
Next, we consider the differential of a matrix with differentiable function entries.

Definition 5.1. Let H = (hij(x)) be a p × q matrix with the entries hij(x) as
smooth functions of x ∈ R

n. Then the differential of H is defined as a p × nq matrix
obtained by replacing each element hij by its differential dhij = (∂hij(x)

∂x1
, · · · ,

∂hij(x)
∂xn

).

Our goal is to apply it to polynomials. We construct an nk+1 × nk+1 matrix Φk

as

Φk =
k∑

s=0

Ins ⊗ W[nk−s,n]. (5.2)

Then we have the following differential form of xk, which is fundamental in the further
approach.

Proposition 5.2 [5].

D(xk+1) = Φk � xk. (5.3)
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6. Some Properties. In this section we give a few properties of the semi-tensor
product. Most of the proofs can be obtained by definitions and straightforward com-
putations.

Proposition 6.1. Assume A ∈ Mm×n is given.
1. Let Z ∈ Rt be a row vector. Then

A � Z = Z � W[m,t] � A � W[t,n] = Z � (It ⊗ A). (6.1)

2. Let Z ∈ Rt be a column vector. Then

Z � A = W[m,t] � A � W[t,n] � Z = (It ⊗ A) � Z. (6.2)

3. Let X ∈ Rt be a column, Y ∈ Rs be a row. Then

XY = Y � W[t,s] � X. (6.3)

Proposition 6.2. Let A ∈ Mm×n and B ∈ Mp×q. Then

W[m,p](A ⊗ B)W[q,n] = (B ⊗ A). (6.4)

Particularly,

(Ip ⊗ A)W[n,p] = W[m,p](A ⊗ Ip), (6.5)

The following property of swap is very useful.

Proposition 6.3. Let Xi ∈ R
ni , i = 1, · · · ,m. Then(

In1 ⊗ · · · ⊗ Ini−1 ⊗ W[ni,ni+1] ⊗ Ini+2 ⊗ · · · ⊗ Inm

)
X1 · · ·Xi−1XiXi+1Xi+2 · · ·Xm

= X1 · · ·Xi−1Xi+1XiXi+2 · · ·Xm.

(6.6)

A natural question is: why we need semi-tensor product? Before ending this
section, we should like to answer this question. It can be seen easily that a semi-tensor
product can be expressed by conventional matrix product with Kronecker product.
But the point is: if an expression has both conventional and Kronecker products, the
associativity doesn’t exist. But since conventional product is a particular semi-tensor
product, the associativity remains true between them. This advantage makes many
manipulations of matrix products possible. In later discussion it can be seen from
time to time. Without semi-tensor product, some formulas are just impossible (not
only difficult) to be deduced.

7. Carleman Linearization. In this section the tensor product form will be
used to analyze the Carleman linearization. Using the linearization form, a kind of
first integrals are investigated and a general formula is obtained.

Consider a dynamical system

ẋ = f(x), x ∈ R
n, (7.1)
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where f(x) is an analytic vector field with f(0) = 0.
J. Carleman has proposed a method to embed it into an infinite dimensional

linear system. We refer to [11], [1] and the references there in for details and later
development.

Choosing x, x2, · · · as a basis, the system (7.1) can be expressed as

ẋ = F1x + F2x
2 + F3x

3 + · · · , (7.2)

where F1 is an n × n matrix and F2 is of n × n2 and so on.
We may consider x2, x3 etc. as a set of independent arguments and calculate

their derivatives to get the Carleman linearization form as⎛
⎜⎜⎜⎝

ẋ

ẋ2

ẋ3

...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

A11 A12 A13 A14 · · ·
0 A22 A23 A24 · · ·
0 0 A33 A34 · · ·
...

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

x
x2

x3

...

⎞
⎟⎟⎟⎠ . (7.3)

Theorem 7.1. In Carleman linearization form (7.3) the coefficients Aij are
determined by the following equations.⎧⎨

⎩
A1i = Fi, i ≥ 1,

Ak,k+s =
k−1∑
i=0

Ini ⊗ Fs+1 ⊗ Ink−1−i .
(7.4)

Proof. According to chain rule, we have

d

dt
(xk) =

k−1∑
i=0

xiẋxk−i−1 =
∞∑

s=0

k−1∑
i=0

xiFs+1x
k−i+s.

Using equation (6.2), we have

xiFs+1x
k−i+s = (Ini ⊗ Fs+1) � xk+s = (Ini ⊗ Fs+1 ⊗ Ink−i−1)xk+s.

The equation (7.4) follows.

We can formally express (7.3) in a linear form as

Ẋ = AX, (7.5)

where A is an infinite dimensional block upper triangular matrix.
An infinite dimensional block upper triangular matrix has some special properties,

which make the expression (7.5) meaningful. We give a brief discussion here:
Denote the upper left (leading) k blocks minor of an infinite dimensional block

upper triangular matrix A by Ak. That is

Ak =

⎛
⎜⎜⎜⎝

A11 A12 · · · A1k

0 A22 · · · A2k

...
0 0 · · · Akk

⎞
⎟⎟⎟⎠ .
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We say a block upper triangular matrix with square diagonal blocks to have a
set of structure constants (k1, k2, · · · ) if the dimensions of the diagonal blocks are
dim(Aii) = ki × ki. For instance, for equation (7.3) the structure constants are
(n, n2, n3, · · · ). For statement ease, we identify Ak with it extension: an infinite
dimensional block upper triangular matrix, Ae

k with Ak as its upper-left minor and
zero for all other elements. Using this convention, the coefficient matrix, A, can be
considered as

A = lim
k→∞

Ak.

This limit is well defined because if we denote the (ij)-th element of Ak as ak
ij ,

then the sequence of {ak
ij , k = 1, 2, · · · } has the form as

(a1
ij , a

2
ij , · · · , ak

ij , · · · ) = (0, · · · , 0, cij , cij , cij , · · · ),

i.e., it is a constant sequence except the first finite terms. Based on the same argument
the following notations are well defined.

Definition 7.2. 1. Let A and B be two block upper triangular infinite dimen-
sional matrices with same structure constants. Then we define the product of A and
B as

AB := lim
k→∞

AkBk.

2. Assume Aii, i = 1, 2, · · · are invertible, then we define

A−1 := lim
k→∞

A−1
k .

3.

eA := lim
k→∞

eAk .

Now it is natural to use linear solution

X = eAtX0

as the solution of the non-linear system (7.3). In fact, we can use only finite term to
approximate the solution.

Denote the (i, j)-th block of eAkt by Ek
ij(t). Then it is easy to see that

Es
ij(t) = Ek

ij(t), s > k, i, j ≤ k.

Hence we can define

Xn(t) =
n∑

k=1

Ek
1k(t)Xk

0 .

From (7.3) it is clear that if

X(t) = lim
n→∞Xn(t)
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exists, then it is the solution of (7.1) with X(0) = X0.
We are particularly interested in the upper triangular matrices obtained by Car-

leman linearization. In the Carleman linearization form (7.3) suppose F1 = A11 is
stable (anti-stable), i.e., Reσ(A11) < 0 ( Reσ(A11) > 0 ), then A is invertible. In fact,
we have

Theorem 7.3. Assume F1 = A11 has eigenvalues as σ(A11) = {λ1, · · · , λn},
then Aii, i ≥ 2 have eigenvalues

σ(Aii) = {λk1 + · · · + λki
| k1, · · · , ki = 1, · · · , n}.

Proof. First, we assume the eigenvalues of A11 are distinct and their corresponding
eigenvectors are

{ξ1, · · · , ξn}.
Then a straightforward computation shows that

Aii(ξk1 � · · · � ξki
) = (λk1 + · · · + λki

)(ξk1 � · · · � ξki
).

To avoid notational mess, we show it for only i = 2. By (7.4) we have

A22 = In ⊗ A11 + A11 ⊗ In.

Then

A22(ξi � ξj) = (In ⊗ A11 + A11 ⊗ In)(ξi � ξj)
= (In ⊗ A11)(ξi � ξj) + (A11 ⊗ In)(ξi � ξj)
= λjξi � ξj + λiξi � ξj .

Since all λi are distinct, we can claim that all

{ξi � ξj | i, j = 1, · · · , n}
are linearly independent. In fact, since λi are distinct, all ξi are linearly independent.
Now a straightforward computation shows that

(ξ1, · · · , ξn) ⊗ (ξ1, · · · , ξn) = (ξ1ξ1, · · · , ξ1ξn, · · · , ξnξ1, · · · , ξnξn).

The claim follows.
Hence the eigenvalues of A22 are

σ(A22) = {λi + λj | i, j = 1, · · · , n}.
By continuity, the eigenvalue structure is also true even the multi-fold eigenvalues
exist.

Next, we consider a polynomial system

ẋ = F1x + F2x
2 + · · · + Fkxk. (7.6)

The Carleman linearization technique is used to investigating its first integrals of
the form

H(t, x) = e−ξtP (x).
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Particularly, this kind of first integrals of Lorenz systems were discussed in [11] ,
of Lotka-Volterra systems were discussed in [1].

Assume P (x) = P0 + P1x + · · · + Psx
s, with symmetric coefficients P1, · · · , Ps.

(Where “symmetric” means the coefficients for the same monomial terms with differ-
ent factor orders are the same. Say, the coefficients for x2

1x2, x1x2x1 and x2x
2
1 are

the same.) It is easy to see that if ξ �= 0, then P0 = 0. So we simply assume P0 = 0.

Setting dH(t, x)/dt = 0, we get

(P1, · · · , Ps)

⎛
⎜⎝A11 · · · · · · A1k

. . . . . .
Ass · · · · · · As,s+k−1

⎞
⎟⎠
⎛
⎜⎜⎜⎝

x
x2

...
xs+k−1

⎞
⎟⎟⎟⎠

= ξ(P1, · · · , Ps)

⎛
⎜⎜⎜⎝

x
x2

...
xs

⎞
⎟⎟⎟⎠ .

(7.7)

Since the basis, xk, is redundant, the coefficients are not unique. Using this
form to search first integral may be too conservative. In other words, the conditions
obtained may not be necessary, because under another equivalent coefficients another
kind of first integral may also be obtained.

To get necessary and sufficient condition we have to convert the system into the
natural basis. Set

Pi = P̃iTB(n, i), Ãij = TB(n, i)AijTN (n, j).

Putting them into (7.7), it turns out to be

(P̃1, · · · , P̃s)

⎛
⎜⎝Ã11 · · · · · · Ã1k

. . . . . .
Ãss · · · · · · Ãs,s+k−1

⎞
⎟⎠
⎛
⎜⎜⎜⎝

x
x(2)

...
x(s+r−1)

⎞
⎟⎟⎟⎠

= ξ(P̃1, · · · , P̃s)

⎛
⎜⎜⎜⎝

x
x(2)

...
x(s)

⎞
⎟⎟⎟⎠ .

Theorem 7.4. Denote hi = P̃T
i , Bij = ÃT

ji. Then system (7.6) has first integral
H(t, x), iff, there exists ξ such that the following equations have non-zero solution
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(h1, · · · , hs). ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

B11 0 0 · · · 0
B21 B22 0 · · · 0
...

Bs1 Bs2 · · · Bs,s

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

h1

h2

...
hs

⎞
⎟⎟⎟⎟⎠ = ξ

⎛
⎜⎜⎜⎜⎝

h1

h2

...
hs

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bs+1 1 Bs+1 2 · · · Bs+1 s

...
Bk 1 Bk 2 · · · Bk s

0 Bk+1 2 · · · Bk+1 s

...
0 · · · 0 Bs+k−1 s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

h1

h2

...
hs

⎞
⎟⎟⎟⎟⎠ = 0.

(7.8)

Next, we consider the solution form of equation (7.8). We need some a new
notation: Let Id(I;nk) be the set of k-th fold indexes. That is, I = (i1, · · · , ik) and
let ik goes from 1 to n first, then ik−1 and so on. e.g.,

Id(I; 23) = (111, 112, 121, 122, 211, 212, 221, 222).

A row of vector h ∈ R
nk

is said to be symmetric with respect to Id(I;nk), if

hi1,··· ,ik
= hiσ(1),··· ,iσ(k) , ∀σ ∈ Sk.

Where the Sk is the permutation group. e.g.,

h = (2, 1, 1, 1, 3, 1, 3, 3,−2)

is symmetric with respect to Id(I; 23). because

h112 = h121 = h211 = 1, h122 = h212 = h221 = 3.

The following lemma itself is interesting.

Lemma 7.5. Assume the row vector h ∈ Rnk

is indexed by Id(I;nk) and is
symmetric with respect to Id(I;nk). F ∈ Mn×n. Set

A = F ⊗ Ink−1 + In ⊗ F ⊗ Ink−2 + · · · + Ink−1 ⊗ F.

Then hA is also symmetric with respect to Id(I;nk).

Proof. Interchanging any two indexes can be realized by interchanging adjacent
indexes. Hence we have only to show that hA is invariant under the interchange of
two adjacent indexes. Set

Φ = Inj−1 ⊗ W[n] ⊗ Ink−j−1 .

It is obvious that swapping the j-th and the (j + 1)-th indexes of h yields the new
vector hΦ. Since h is symmetric with respect to Id(I;nk), then hΦ = h, and hence
hΦA = hA. To see hA is symmetric, i.e., hAΦ = hA, it suffices to show that

AΦ = ΦA.
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Note that the terms in A have the following form:

I ⊗ · · · ⊗ I ⊗ F ⊗ I ⊗ · · · ⊗ I. (7.9)

If F does not locate on j or j + 1 position, then it is obvious that Φ commutes with
equation (7.9). So we have only to consider the related two terms in A. That is to
show that

W[n](F ⊗ I + I ⊗ F ) = (F ⊗ I + I ⊗ F )W[n].

Note that W−1
[n] = W[n], equation (6.5) implies the above equality.

Proposition 7.6. Let the eigenvalues of F1 in (7.6) be σ = {λ1, · · · , λn}. Then
in equation (7.8) the eigenvalues of Bkk are

σ(Bkk) = {λi1 + · · · + λik
| i1, · · · , ik = 1, · · · , n}.

Proof. Since Bkk = ÃT
kk and the eigenvalues of Akk is σk, it is enough to show

that Ãkk and Akk have same eigenvalues. Let µ be an eigenvalue of Ãkk. Then there
exists a P̃ �= 0 such that

P̃ Ãkk = µP̃ .

By definition, Ãkk = TB(n, k)AkkTN (n, k). Note that TB(n, k)TN (n, k) = I, then

P̃ TB(n, k)AkkTN (n, k)

⎛
⎜⎜⎜⎝

x(1)

x(2)

...
x(k)

⎞
⎟⎟⎟⎠ = µP̃TB(n, k)TN (n, k)

⎛
⎜⎜⎜⎝

x(1)

x(2)

...
x(k)

⎞
⎟⎟⎟⎠ . (7.10)

Set P = P̃ TB(n, k), then P �= 0 is a symmetric set. For P , (7.10) becomes

PAkk

⎛
⎜⎜⎜⎝

x1

x2

...
xk

⎞
⎟⎟⎟⎠ = µP

⎛
⎜⎜⎜⎝

x1

x2

...
xk

⎞
⎟⎟⎟⎠ . (7.11)

According to Lemma 7.5, PAkk is still a symmetric set. By the uniqueness of the
symmetric coefficients, we have

PAkk = µP.

Hence, µ is also an eigenvalue of Akk.
Conversely, assume µ is an eigenvalue of Akk. Then µ = λi1 + · · · + λik

. Denote
by Yj the eigenvector of F1 with respect to λij

, then we construct

Y =
∑

σ∈Sk

Yσ(1) ⊗ · · · ⊗ Yσ(k),

where Sk is the k-th order symmetric group. It is obvious that

Y Akk = µY.
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Since Y is symmetric, there exists Ỹ �= 0 such that Y = Ỹ TB(n, k). It follows that

Ỹ TB(n, k)Akk = µỸ TB(n, k).

Right multiply both sides of the above equation by TN (n, k) yields

Ỹ Ãkk = µỸ .

That is, µ is an eigenvalue of Ãkk.

Proposition 7.7. 1. If equation (7.8) has solution h �= 0, then

ξ = c1λi1 + · · · + csλis
.

where λi1 , · · · , λis
∈ σ(F1); c1, · · · , cs are either 1 or 0.

2. If h has a component hj �= 0, then ξ ∈ σj. If h has t non-zero components,
hi1 �= 0, · · · , hit

�= 0, then σs has at least a t fold elements. Here σt = {c1λi1 + · · ·+
ctλit

| c1, · · · , ct ∈ {0, 1}}.
3. If (7.6) has a linear first integral H(t, x) = e−ξthT x, then for any integer

j > 0, Hj(t, x) = e−jξt(hT )jxj is a first integral of (7.6).

Proof. 1 and 2 are the immediate consequence of the Proposition 7.6. We prove
3. If (7.6) has a linear first integral H(t, x) = e−ξthT X, then{

F1h = ξh,

Fih = 0, i = 2, · · · , k.

Let p = (0n, 0n2 , · · · , 0nj−1 , hj), where 0k is the zero vector in Rk. Since

Aj,j+s−1 = Inj−1 ⊗ Fs + Inj−2 ⊗ Fs ⊗ I + · · · + Fs ⊗ Inj−1 ,

then {
Ajjh

j = jξhj ,

Ajth
j = 0, t = j + 1, · · · , j + k − 1,

which implies that p satisfies (7.7) with ξ being replaced by jξ.

Proposition 6.7 provides a convenient tool for searching the first integrals. In fact,
after fixed the ξ, the problem becomes a problem of solving linear algebraic system.
For Lorenz system, 1–2 of Proposition 7.7 are known [1]. So the current result stated
here is a generalization of their work.

Example 7.8. Lotka-Volterra equations model the interactions between biologi-
cal species and chemical reactions. Lotka-Volterra equation can be written as

ẋi = xi

⎛
⎝ai +

n∑
j=1

bijxj

⎞
⎠ , i = 1, · · · , n. (7.12)

Let n = 2 [11]. Set

A11 =
(

a1 0
0 a2

)
, A12 =

(
b11 b12 0 0
0 0 b21 b22

)
.
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Then

A22 = A11 ⊗ I2 + I2 ⊗ A11 =

⎛
⎜⎜⎝

2a1 0 0 0
0 a1 + a2 0 0
0 0 a1 + a2 0
0 0 0 2a2

⎞
⎟⎟⎠ ,

A23 = A12 ⊗ I2 + I2 ⊗ A12

=

⎛
⎜⎜⎝

2b11 b12 b12 0 0 0 0 0
0 b11 b21 b12 + b22 0 0 0 0
0 0 0 0 b11 + b21 b12 b22 0
0 0 0 0 0 b21 b21 2b22

⎞
⎟⎟⎠ .

The Carleman linearized form becomes⎛
⎜⎜⎜⎝

ẋ
ẋ2

ẋ3

...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

A11 A12 0 0 · · ·
0 A22 A23 0 · · ·
0 0 A33 A34 · · ·
...

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

x
x2

x3

...

⎞
⎟⎟⎟⎠ .

Say, we search for the first integral of the form: H(t, x) = e−ξt(P1x + P2x
2). Then

TB(2, 2) =

⎛
⎝1 0 0 0

0 0.5 0.5 0
0 0 0 1

⎞
⎠ , TN (2, 2) =

⎛
⎜⎜⎝

1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎠ ,

TN (2, 3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B11 = AT
11, B21 = ÃT

12 = TB(2, 1)A12TN (2, 2) =
(

b11 b12 0
0 b21 b22

)
,

BT
22 = TB(2, 2)A22TN (2, 2) =

⎛
⎝2a1 0 0

0 a1 + a2 0
0 0 2a2

⎞
⎠ ,

BT
32 = TB(2, 2)A23TN (2, 3) =

⎛
⎝2b1 2b12 0 0

0 b11 + b21 b12 + b22 0
0 0 2b21 2b22

⎞
⎠ .

We conclude that the second degree integral exists iff the following equation has
non-zero solution: ⎧⎪⎨

⎪⎩
(

B11 0
B21 B22

)(
h1

h2

)
= ξ

(
h1

h2

)
,

B32h2 = 0,

where the only possible ξ should be ξ ∈ {a1, a2, 2a1, 2a2, a1 + a2}.
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8. Invariants of Planar Polynomial Systems. In this section we consider the
invariants of planar polynomial systems with non-polynomial invariants. Consider a
polynomial system

ẋ = F0 + F1x + · · · + Fkxk, x ∈ R
2. (8.1)

The invariants considered are of the form

H(x, t) = eξtxα
1 xβ

2 (P0 + P1x + · · · + Plx
l). (8.2)

This kind of invariants was investigated in [1]. Recently, the Darboux method has
been used in searching such invariants [2].

Our purpose is to convert the problem into a set of algebraic equations. Using
(5.3), the time derivative of H(x, t) is

dH
dt = ∂H

∂t + DH · ẋ
= ξeξtxα

1 xβ
2 (P0 + P1x + · · · + Plx

l)
+ eξt(αxα−1

1 xβ
2 , βxα

1 xβ−1
2 )(P0 + P1x + · · · + Plx

l)(F0 + F1x + · · · + Fkxk)
+ eξtxα

1 xβ
2 (P1 + P2Φ1x + · · · + PlΦl−1x

l−1)(F0 + F1x + · · · + Fkxk).

Setting

dH

dt
= 0

and noting that

x1x2 = (0 1 0 0)x2, (αx2, βx1) = (0 β α 0)x,

we have

ξ(0 1 0 0)x2(P0 + P1x + · · · + Plx
l)

+ (0 β α 0)x(P0 + P1x + · · · + Plx
l)(F0 + F1x + · · · + Fkxk)

+ (0 1 0 0)x2(P1 + P2Φ1x + · · · + PlΦl−1x
l−1)(F0 + F1x + · · · + Fkxk)

= 0.

(8.3)

Using (6.2), it can be expressed as

ξ(0 1 0 0)[(I4 ⊗ P0)x2 + (I4 ⊗ P1)x3 + · · · + (I4 ⊗ Pl)xl+2]
+ (0 β α 0)[(I2 ⊗ P0)x + (I2 ⊗ P1)x2 + · · · + (I2 ⊗ Pl)xl+1]
× (F0 + F1x + · · · + Fkxk)
+ (0 1 0 0)[(I4 ⊗ P1)x2 + (I4 ⊗ P2Φ1)x3 + · · · + (I4 ⊗ PlΦl−1)xl+1]
× (F0 + F1x + · · · + Fkxk)

= 0.

Using (6.2) again, we can multiply the products out to get

l+1∑
s=1

ξ(0 1 0 0)[I4 ⊗ Ps−1]xs+1

+
k+l∑
s=0

(0 β α 0)
i+j=s∑

i=0,j=0

[(I2 ⊗ Pi)(I2i+1 ⊗ Fs−i)]xs+1

+
k+l∑
s=1

(0 1 0 0)
i+j=s∑

i=1,j=0

[(I4 ⊗ PiΦi−1)(I2i+1 ⊗ Fs−i)]xs+1

= 0.
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Converting term by term to natural basis, we have the following result.

Theorem 8.1. The system (8.1) has invariant of the form of (8.2), iff the
following algebraic equations have solution (ξ, α, β, P0, · · · , Pl):

(0 β α 0)[(I2 ⊗ P0)(I2 ⊗ F0)] = 0{
ξ(0 1 0 0)(I4 ⊗ Ps−1) + (0 β α 0)

i+j=s∑
i=0,j=0

[(I2 ⊗ Pi)(I2i+1 ⊗ Fs−i)]

+ (0 1 0 0)
i+j=s∑

i=1,j=0

[(I4 ⊗ PiΦi−1)(I2i+1 ⊗ Fs−i)]

}
TN (2, s + 1) = 0,

s = 1, · · · , l + 1{
(0 β α 0)

i+j=s∑
i=0,j=0

[(I2 ⊗ Pi)(I2i+1 ⊗ Fs−i)]

+ (0 1 0 0)
i+j=s∑

i=1,j=0

[(I4 ⊗ PiΦi−1)(I2i+1 ⊗ Fs−i)]

}
TN (2, s + 1) = 0,

s = l + 2, · · · , l + k.

(8.4)

Remark. The advantage of this approach lies on: 1. It can be solved numerically
by computer. 2. The approach can be easily extended to higher dimensional case.

To depict the second item in above remark, consider the case of n = 3. 3D Lotka-
Volterra system has been discussed in [3]. Using our approach, assume the system
considered is (8.1) with x ∈ R

3, and the invariants are of the form:

H(x, t) = eξtxα
1 xβ

2xγ
3(P0 + P1x + · · · + Plx

l). (8.5)

Then one sees easily that

x1x2x3 = (00000︸ ︷︷ ︸
5

1 0 · · · 0︸ ︷︷ ︸
21

)x3 := δx3;

and

(αx2x3 βx1x3 γx1x2) = (0 γ β 0 0 α 0 0 0)x2 := ηx2.

Then the corresponding (8.3) becomes

ξδx3(P0 + P1x + · · · + Plx
l)

+ ηx2(P0 + P1x + · · · + Plx
l)(F0 + F1x + · · · + Fkxk)

+ δx3(P1 + P2Φ1x + · · · + PlΦl−1x
l−1)(F0 + F1x + · · · + Fkxk)

= 0.

(8.6)

Then the rest argument in the above remains available for producing the set of alge-
braic equations.

This approach provides only the algebraic equations for the solutions. It doesn’t
provide all detailed solutions as in [3].
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9. Contraction of Tensor Field. The semi-tensor product is a powerful tool
for treating multi-dimensional data in matrix form. This is one of its major contri-
butions.

The following statement is cited from [6]: “It is also sometimes convenient to
use matrix methods to handle the summations over repeated suffixes. These meth-
ods are restricted to quantities carrying either one or two suffixes, enabling them
to be arranged as either one-dimensional arrays (row vectors or column vectors) or
two-dimensional arrays (matrices).” In the above statement one sees easily that in
conventional way only one or two dimensional data can be treated in matrix form.
But semi-tensor product, collaborated with tensor product and swap matrix etc., can
treat higher dimensional data in matrix way easily.

For instance, in this section we consider the contraction of a tensor field [6, 10].
Let σ ∈ T r

s (V ) be a tensor field of the type (r, s) on an n dimensional vector space
V , 1 ≤ p ≤ r, 1 ≤ q ≤ s. We define a contraction, πp

q : T r
s (V ) → T r−1

s−1 (V ) in the
following way: Fix a basis (d1, · · · , dn) for V and its dual basis (e1, · · · , en) for V ∗

respectively. For ω ∈ T r
s (V ), denoted by

ωi1···ir
j1···js

= ω(di1 , · · · , dir
; ej1 , · · · , ejs), i1, · · · , ir, j1, · · · , js = 1, · · · , n.

Then we get an nr+s-dimensional data, and arrange them into a matrix, Mω, as

Mω =

⎛
⎜⎜⎜⎝

ω1···11
1···11 ω1···12

1···11 · · · ωn···nn
1···11

ω1···11
1···12 ω1···12

1···12 · · · ωn···nn
1···12

...
ω1···11

n···nn ω1···12
n···nn · · · ωn···nn

n···nn

⎞
⎟⎟⎟⎠ . (9.1)

Matrix Mω is called the structure array of the tensor ω. Now it is not difficult to
verify the following formula:

ω(σ1, · · · , σs;X1, · · · ,Xr)
= σs � · · · � σ1 � Mω � X1 � · · · � Xr.

(9.2)

Next we define the contraction, πp
q (σ) by its structure matrix, with the entries

determined by

ω
i1···îp···ir

j1···ĵq···js
=
∑

ip=jq

ω
i1···ip···ir

j1···jq···js
. (9.3)

Where the “̂·” means the corresponding index is missed.
Since the definition depends on the basis (generally, in tensor field case, it depends

on the coordinate change), we have to show that this definition is independent of the
coordinate change. It was said that under the suffix form, the proof is “cumbersome”
[6]. We will give an elegant matrix proof. In addition, the structure matrix of the
contracted tensor will be obtained.

First of all, we give the structure matrix of πp
q (σ). Let ξ = ns−1 and η = nr−1.

Then the structure matrix Mσ can be split as

Mσ =

⎛
⎜⎝M11 · · · M1η

...
Mξ1 · · · Mξη

⎞
⎟⎠ , (9.4)
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where each block Mij is an n × n matrix.
Then a straightforward computation shows that

Lemma 9.1. Assume p = r and q = s. Then we have

Mπr
s(σ) =

⎛
⎜⎝tr(M11) · · · tr(M1η)

...
tr(Mξ1) · · · tr(Mξη)

⎞
⎟⎠ := TR(Mσ). (9.5)

The operator TR takes trace for all split n × n blocks.

Now for general case, we have to swap the index p with r, and the index q with
s. The swap of any two elements can be realized by a sequence of the swaps of two
adjacent elements. Using (6.6), we have the swapped structure matrix as the follows:

M̃σ =
∏s−q−1

t=0 (Ins−2−t ⊗ W[n] ⊗ Int)Mσ

∏r−p−1
t=0 (Inr−2−t ⊗ W[n] ⊗ Int)

:= Π1MσΠ2.
(9.6)

Similar to M , we can split M̃ into ξ × η blocks of n × n matrices, denoted by M̃ij .
Then we have

Proposition 9.2. The structure matrix of πp
q (σ) is

Mπp
q (σ) = TR(M̃σ) = TR(Π1MσΠ2). (9.7)

We give a simple example to show this contraction.

Example 9.3. Let n = 2, r = 2, and s = 3. We consider π1
1(σ). Denote

Mσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
111 a12

111 a21
111 a22

111

a11
112 a12

112 a21
112 a22

112

a11
121 a12

121 a21
121 a22

121

a11
122 a12

122 a21
122 a22

122

a11
211 a12

211 a21
211 a22

211

a11
212 a12

212 a21
212 a22

212

a11
221 a12

221 a21
221 a22

221

a11
222 a12

222 a21
222 a22

222

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Π1 =
∏1

t=0 I21−t ⊗ W[2] ⊗ I2t = (I2 ⊗ W[2])(W[2] ⊗ I2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



SEMI-TENSOR PRODUCT OF MATRICES 585

Π2 = W[2] =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

Then

Π1MσΠ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
111 a21

111 a12
111 a22

111

a11
211 a21

211 a12
211 a22

211

a11
112 a21

112 a12
112 a22

112

a11
212 a21

212 a12
212 a22

212

a11
121 a21

121 a12
121 a22

121

a11
221 a21

221 a12
221 a22

221

a11
122 a21

122 a12
122 a22

122

a11
222 a21

222 a12
222 a22

222

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using it, the Proposition 9.2 yields

Mπ1
1(σ) =

⎛
⎜⎜⎝

a11
111 + a21

211 a12
111 + a22

211

a11
112 + a21

212 a12
112 + a22

212

a11
121 + a21

221 a12
121 + a22

221

a11
122 + a21

222 a12
122 + a22

222

⎞
⎟⎟⎠ .

Next, we prove that the structure matrix defined by (9.6) is independent of the
coordinate change. Now assume we have a coordinate change as z = z(x) with the
Jacobian matrix as J = ∂z

∂x .
The following Lemma can be verified by straightforward computation.

Lemma 9.4. 1. Let P ∈ Ms×m, Q ∈ Mn×n, and Ai ∈ Mn×rn, i = 1, · · · ,m.
Set

Ã =

⎛
⎜⎝ Ã1

...
Ãm

⎞
⎟⎠ = (P ⊗ Q)

⎛
⎜⎝A1

...
Am

⎞
⎟⎠ = (P ⊗ Q)A.

Then ⎛
⎜⎝ Ã1

...
Ãm

⎞
⎟⎠ = P �

⎛
⎜⎝QA1

...
QAm

⎞
⎟⎠ .

Moreover,

TR(Ã) = P · TR

⎛
⎜⎝QA1

...
QAm

⎞
⎟⎠ .

2. Let P ∈ Mm×s, Q ∈ Mn×n, and Ai ∈ Mnr×n, i = 1, · · · ,m. Set

Ã =
(
Ã1, · · · , Ãm

)
= (A1, · · · , Am) (P ⊗ Q) = A(P ⊗ Q).

Then (
Ã1, · · · , Ãm

)
= (A1Q, · · · , AmQ) P.
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Moreover,

TR(Ã) = TR (A1Q, · · · , AmQ) P.

Now we are ready to prove the main result: the contraction is well defined.

Theorem 9.5. The contraction defined by (9.3) is independent of the coordi-
nates.

Proof. Let

Mσ =

⎛
⎜⎝M11 · · · M1η

...
Mξ1 · · · Mξη

⎞
⎟⎠ .

Using Proposition 9.2, we have

Mπp
q (σ) = TR (Π1MσΠ2) .

Now consider a coordinate change z = z(x), then Mσ becomes M̄σ, which is

M̄σ = J−1 ⊗ · · · ⊗ J−1︸ ︷︷ ︸
s

Mσ J ⊗ · · · ⊗ J︸ ︷︷ ︸
t

.

Notice that Π1 is commutative with J−1 ⊗ · · · ⊗ J−1︸ ︷︷ ︸
s

, and Π2 is commutative with

J ⊗ · · · ⊗ J︸ ︷︷ ︸
t

. Applying Proposition 9.2 to M̄σ, we have

M̄πp
q (σ) = TR

⎛
⎝Π1 (J−1 ⊗ · · · ⊗ J−1)︸ ︷︷ ︸

s

Mσ (J ⊗ · · · ⊗ J)︸ ︷︷ ︸
t

Π2

⎞
⎠

= TR

⎛
⎝(J−1 ⊗ · · · ⊗ J−1)︸ ︷︷ ︸

s

(Π1MσΠ2) (J ⊗ · · · ⊗ J)︸ ︷︷ ︸
t

⎞
⎠

= TR

⎛
⎜⎝((J−1 ⊗ · · · ⊗ J−1)︸ ︷︷ ︸

s−1

⊗J−1)(M̃σ)((J ⊗ · · · ⊗ J)︸ ︷︷ ︸
t−1

⊗J)

⎞
⎟⎠

= (J−1 ⊗ · · · ⊗ J−1︸ ︷︷ ︸
s−1

)TR(J−1(M̃σ)J)(J ⊗ · · · ⊗ J︸ ︷︷ ︸
t−1

)

= (J−1 ⊗ · · · ⊗ J−1︸ ︷︷ ︸
s−1

)TR(M̃σ)(J ⊗ · · · ⊗ J︸ ︷︷ ︸
t−1

)

= (J−1 ⊗ · · · ⊗ J−1︸ ︷︷ ︸
s−1

)Mπp
q (σ)(J ⊗ · · · ⊗ J︸ ︷︷ ︸

t−1

).

Note that the last third equality is from Lemma 9.4. The proof is completed.
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10. Conclusion. In this paper the left and right semi-tensor products of any
two matrices were defined and several basic properties were obtained. Then under the
assumption A1 a few further properties, which are necessary for the later discussions,
were investigated.

As applications of the semi-tensor products to physics, some physical problems
were considered. First of all, the general formula for the Carlman’s linearization was
presented. The necessary and sufficient condition for the existence of polynomial type
of first integrals was proved. Then for planar polynomial systems a non-polynomial
type of invariants was investigated. The problem was converted to the solvability of
a set of algebraic equations. Another problem considered is the contraction of tensor
fields, which is useful in relativity etc. We gave a rigorous proof and provided a matrix
structure for the contracted tensor field.
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