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Using the Power of Two Choices
to Improve Bloom Filters

Steve Lumetta and Michael Mitzenmacher

Abstract.  We consider the combination of two ideas from the hashing literature: the
power of two choices and Bloom filters. Specifically, we show via simulations that,
in comparison with a standard Bloom filter, using the power of two choices can yield
modest reductions in the false positive probability using the same amount of space
and more hashing. While the improvements are sufficiently small that they may not be
useful in most practical situations, the combination of ideas is instructive; in particular,
it suggests that there may be ways to obtain improved results for Bloom filters while
using the same basic approach they employ, as opposed to designing new, more complex
data structures for the problem.

[. Introduction

A Bloom filter [Bloom 70] is a simple, space-efficient randomized data structure
for representing a set in order to support membership queries that sometimes
gives false positives. Bloom filters have proven useful, for example, in the con-
text of routers, where off-chip memory accesses are dramatically slower than
on-chip memory accesses and sets (e.g., lists of source-destination pairs, attack
signatures, etc.) must be represented space-efficiently. Further applications and
related variations are discussed extensively in the survey paper [Broder and
Mitzenmacher 04]. While alternative data structures have recently appeared
[Pagh et al. 05], the Bloom filter’s simplicity, straightforward mapping to hard-
ware, and excellent performance ensure that it will continue to be of great use
in many applications. We briefly review Bloom filters in Section 2. For now, it
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suffices to know that Bloom filters hash each element of the set to a vector of
indices using a group of hash functions.

In this paper, we combine a Bloom filter with a seemingly unrelated but pow-
erful technique often applied to improve load balancing, the power of two choices
[Azar et al. 99, Mitzenmacher 96, Mitzenmacher et al. 01, Vocking 99]. With
this technique, an item is stored at the least loaded of two (or more) random
alternatives. We briefly review the power of two choices in Section 2.

The standard analysis for deriving the optimal configuration of a Bloom filter
assumes the use of a single group of hash functions to check for set membership.
The power of two choices allows us to reduce the false positive probability while
maintaining the form and the character of the original Bloom filter. The basic
idea for combining the two techniques is to use two independent groups of hash
functions for inserting elements into the Bloom filter. When checking for the
membership of an element, both groups of hash functions are used, and a positive
response is returned if either group indicates that the element is present. By
allowing a choice of which hash function group is used to record the presence of
an element in the set, we can reduce the false positive probability. Specifically, we
show via simulations and numerical analysis that, in comparison with a standard
Bloom filter, using the power of two choices can yield modest reductions in the
false positive probability using the same amount of space and more hashing. As
Bloom filters are often used in situations where a fixed amount of space is the
primary constraint, if these gains were sufficiently large, they could prove useful
in practice. While the gains we have found thus far do not yet suggest that this is
the case, we find the fact that improvement occurs an interesting combinatorial
curiosity that may suggest further ideas for improvement.

2. Background

2.1.  Bloom Filter Review

We first review the concepts behind Bloom filters; for mathematical details,
see the survey [Broder and Mitzenmacher 04]. A Bloom filter represents a set
S = {x1,x9,...,2,} of n elements from a universe U using an array of m bits,
which we denote by B[0],..., B[m — 1], initially all set to zero. The filter uses
a group H of k independent hash functions, hq, ..., hy, all with the same range
{0,...,m — 1}, where it is assumed that these hash functions independently
map each element in the universe to a random number uniformly over the range.
(While the randomness of the hash functions is clearly an optimistic assumption,
it is standard and convenient for Bloom filter analyses.) For each element = € 5,
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the bits B[h;(x)] are set to one for 1 <7 < k. (A bit can be set to one multiple
times.) To answer a query of the form “Is y € S7”, we check whether all h;(y)
are set to one. If not, y is not a member of S, by the construction. If all h;(y)
are set to one, then the data structure answers that y is in S, and hence a Bloom
filter may yield a false positive.

The probability of a false positive for an element not in the set, or the false
positive probability, can be easily derived. If p is the fraction of ones in the filter,
it is simply p*. A standard combinatorial argument gives that p is concentrated

—kn/m

. k. N
around 1 — e , and the expression (1 — e’k"/m) is minimized when k =

In2- (m/n), giving a false positive probability f of

f= (1 _ e—kn/m)’“ — (;)k ~ (0.6185)™/™. (2.1)

In practice, of course, k must be an integer. Also, in practical situations where
Bloom filters are used, m/n (the number of bits per set element) and & should
be thought of as constants. For example, when m/n = 8 and k = 5, the false
positive probability is just over 0.02.

We emphasize an important intuition that guides some of our results. Note
that as the number of hash functions k increases, there are more chances to find
a zero when examining the Bloom filter, decreasing the chance of a false positive.
On the other hand, larger values of k also produce more ones in the Bloom filter,
increasing the chance of a false positive. The end result of this tradeoff yields
the above optimization.

While the above analysis gives the optimal configuration for a standard Bloom
filter, it is known that Bloom filters are not information-theoretically optimal
[Broder and Mitzenmacher 04, Pagh et al. 05]. That is, it is possible to devise a
data structure using less space that obtains the same false positive probability.
It is therefore not surprising that we can improve on the Bloom filter construc-
tion; what is surprising is that we can improve on it while keeping essentially
the same fundamental approach and the essential simplicity of a standard Bloom
filter. While the improvement we have found is small, if more substantial im-
provements from similar methods could be found, it could be of significant prac-
tical importance. Bloom filters are used in many applications, and particularly
in hardware applications, the simplicity of the Bloom filter approach is key for
implementation.

An important variation of a Bloom filter is a counting Bloom filter, where
each entry in the Bloom filter is not a single bit but a small counter that tracks
the number of elements that have hashed to that location [Fan et al. 00]. A
standard Bloom filter can be derived from a counting Bloom filter by setting
all nonzero counts to one. Counting Bloom filters allow deletions; when an
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element is deleted, the corresponding counters are decremented. Counters must
be chosen large enough to avoid overflow; for most applications, four bits suffice
[Fan et al. 00].

2.2.  Power of Two Choices Review

The seminal example of the power of two choices stems from the results of Azar,
Broder, Karlin and Upfal [Azar et al. 99]. It is well known that when n balls
are sequentially placed uniformly at random into n bins, the fullest bin has with
high probability (1 4 o(1))Inn/Inlnn balls in it. The result of [Azar et al. 99]
is that if for each ball we instead choose two bins at random and sequentially
place each ball into the one which is less full at the time of placement, then with
high probability the fullest bin contains only Inlnn/In2+ O(1) balls. This idea
of allowing choice to improve load balance has spawned a large literature; see,
for example, [Mitzenmacher et al. 01].

A natural extension of this idea in the setting of Bloom filters is to allow each
set element a choice of how to be recorded in the filter, by giving two (or more)
groups of hash functions that can record an element. Here, the goal is not to
balance the load but rather to minimize the number of bits set to one in the
filter. The idea, however, follows the theme of providing better performance
by introducing choices. We note that the conjunction of the power of choice
and Bloom filters has appeared previously [Kumar and Crowley 05]. There
the authors, in the context of a hash table construction, have choices in how
to partition items into subtables of the hash table. A Bloom filter is used to
summarize which subtable contains which item. Each subtable has an associated
Bloom filter; the authors use the effect of the item placement on the false positive
probabilities of the Bloom filters to guide their choice of subtable. They found
experimentally that this approach greatly improved lookup performance, in that
they could generally easily detect in which subtable the item appeared, with few
errors caused by false positives on set items in other Bloom filters. Our work can
be seen as an extrapolation of these ideas to the different problem of creating a
single Bloom filter for a set.

3. Using Two Choices with Bloom Filters

We consider the following variation on a Bloom filter. We again have a set S
of n elements and m bits available for a Bloom filter. Instead of one group of
hash functions, we now have two groups: group H consists of Ay, ho, ..., h; and
group G consists of g1,92,...,9k. Again, we treat all hash functions as being
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perfectly independent random hash functions. Note that this requires 2k total
hash functions, instead of k as for a standard Bloom filter.

Each element in the set S should have all bits from the hashes from either
group G or group H set to one. That is, if we let B[h;(x)] be the Bloom filter
bit given by hashing x with h;, we have the following constraint: we require that
for every element x € S, either B[h;(x)] =1 for all i € [1, k] or Blg;(z)] = 1 for
all i € [1,k]. (The oris not exclusive; both events may occur.) We say that for
x € S either G must cover x or H must cover x, where cover has the natural
meaning. A false positive occurs for an element y ¢ S if either B[h;(y)] = 1 for
all i € [1,k] or Blg;(y)] = 1 for all ¢ € [1,k] (or both); that is, either G or H
covers y even though y ¢ S. We address the question of how to choose which
bits are actually set to one given the set S shortly. Although this idea extends
naturally to more than two groups of hash functions, we focus on the case of two
groups for ease of exposition.

Using two groups of hash functions would seem to increase the chances of
a false positive, in that there are now two ways for a false positive to occur.
Specifically, if p is the fraction of ones in the filter, the probability of a false
positive is now 1—(1—p*)2 ~ 2p*. On the other hand, we now have an additional
choice of which bits in the filter are set to one; if this choice sufficiently reduces
the number of bits set to one in the filter, overall there may be a reduction in the
false positive probability. This is exactly the tradeoff that we explore. The cost
of this scheme is that additional hashing and lookups into the Bloom filter are
now required; for any specific application, this cost must be considered against
the improvement in the false positive probability. Whether this approach takes
more time depends upon the setting; for example, hashes are often parallelized
in hardware, in which case more hardware resources may be required instead of
more time to compute more hashes and perform more lookups in parallel. Also,
as previously stated, in many cases fixed space is the primary constraint when
Bloom filters are used, as one is trying to fit the Bloom filter into a cache or fast
memory. Finally, when we discuss our experiments, we will suggest a technique
that greatly reduces the amount of hashing (but not the number of lookups)
required. We assume henceforth that additional hashing and lookups are not a
concern.

We consider two main settings. In the online setting, elements of S are pre-
sented one at a time, and after each element x; appears, the Bloom filter must
be updated so that either G or H covers z in the filter; moreover, a bit once
set to the value one keeps the value one subsequently. This latter restriction
is meant to encode the idea that we are not storing the elements of S, so we
cannot naturally change which group is being used to fulfill the constraint for a
previously seen element.



22 Internet Mathematics

In the offline setting, all the elements of S are initially given, and we seek
to minimize the number of ones in the filter while covering all elements of S.
Obviously, this provides us with significantly more power in setting the bits of
the Bloom filter. Ideally, we might find the optimal offline solution, which would
minimize the number of ones in the filter, but this appears to be a hard problem,
even in this setting, as we discuss in Section 3.2.

In both the online and offline settings, we find that reductions in the false
positive probability are possible, using simple and efficient greedy algorithms to
set up the filter. We emphasize that the additional work for our modified Bloom
filter is essentially all in the construction phase; lookups are done in the same
fashion, except that one must do more hashing and examine more bits. While
the gains are small, the fact that gains are possible suggests further exploration
of these techniques.

3.1.  Online Solutions

In this section, we analyze the optimal online solution, using both simulations
and numerical analysis.

In the online setting, since the false positive probability depends only on the
number of ones in the filter, the natural greedy approach is to determine, when
considering an element x, how many additional bits would have to be set to one
to cover it by G and by H and then to modify the smallest number of bits from
these two choices. We prove that this greedy process is stochastically optimal,
in that it stochastically dominates any other strategy. That is, if X, is the
number of bits set to one by the greedy strategy after ¢ elements are placed in
the filter, and Y; is the number of bits set to one by some other strategy (that
is independent of future choices), then

Pr(X; > w) < Pr(Y; > w)

for any number w and any 1 <t < n.
Theorem 3.1. The greedy strategy stochastically dominates any other strategy.

Proof. We need to show that
Pr(X; > w) < Pr(Y; > w),

where X; is the number of bits set to one by the greedy strategy and Y; is the
number of bits set to one by an alternative strategy. We induct on ¢, with the
statement being vacuously true at t = 0. Suppose that at time ¢t —1, for all w, we
have Pr(X;—1 > w) < Pr(Y;—1 > w). We can then couple the configurations of
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the bit array given by the greedy strategy with the configurations of the bit array
given by the alternative strategy so that, in the coupling, the greedy configuration
always has fewer bits set to one than the corresponding alternative configuration.
Consider any such pair of configurations Cx ;1 and Cy,_; for the greedy and
alternative strategies, respectively. We can then couple the random locations
given by the hash functions at time ¢ so that, as much as possible, whenever a
bit from Cy_1 is chosen that is already covered, a corresponding bit in Cx ;1
is chosen that is already covered. With such a coupling, we are guaranteed that
the resulting configuration C'x; from the greedy algorithm will have fewer bits
set to one than the resulting configuration Cy ; for the alternative; it follows that

Pr(X; >w) < Pr(Y; > w)
as desired. 0

Let X denote the final number of ones in the filter when the greedy strategy
is used. Although we have not found a simple closed form for the expectation
E[X], a standard martingale argument shows that X is concentrated around
E[X] with high probability.

Theorem 3.2.
Pr(|X — E[X]| > ) < 2e /20K,

Proof. Let Z; represent the list of 2k locations given by the hashes for the ith
element (ordered in any appropriate fashion, so that the locations for G and
H are determined) to be greedily placed into the filter. Consider the Doob
martingale given by

W, =FEX | Z1,Z,...,7Z;].

Here, Wy = E[X], and W,, = X. It is clear that |W; — W;_1| < k. This can
be formalized, for example, by a simple coupling argument. Consider the state
of the filter after the ith element, which introduces at most k more ones into
the array. Let us consider any two possible filters that may arise after the first
i elements have entered. Without loss of generality, suppose that the first has
a ones and the second has b > a ones. We can always couple the choices of the
remaining elements so that the first filter obtains at least as many ones at each
step as the second filter under the online greedy algorithm (until some possible
point where the number of ones becomes equal). It follows that the difference
in expectations |W; — W;_1| is at most k. Given this, the result follows by the
standard form of the Azuma-Hoeffding inequality. O
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A more refined analysis of W; —W,_; along the lines of [Kamath et al. 95] could
give even tighter bounds, but its point here is simply to show that concentration
occurs.

Recall that X; is the number of ones in the filter after ¢ elements have been
placed. For reasonable values, the distribution of X; can be calculated iteratively,
allowing a numerical computation of E[X]. Specifically, given a value for X,
one can compute the distribution of the number of ones to be added; this allows
one to compute the distribution of X;; from X,.

A related approach that allows excellent approximations of the expectations
with significantly less computation uses an approximate version of this iterative
calculation. In what follows we for convenience assume that k is a constant in-
dependent of n, which is the standard case for a Bloom filter. Let By (k,p) and
By (k, p) represent independent binomial random variables corresponding to k tri-
als each with success probability p (and hence mean kp). A good approximation
for the number of ones in the filter can be given by the equation

Xit1 = Xt + min(By(k,1 — X¢/m), Ba(k, 1 — X /m)). (3.1)

The intuition for this equation is that the number of new one bits needed to cover
an element for each family is given by k& hashes, each of which gives a location
that must be set to one with probability 1 — X;/m. This expression is only
an approximation, however, since it is possible that two hash values h;(z) and
hj(xz) will be the same; hence, the number of ones needed to cover an element
is not exactly a binomial, although this is correct up to O(1/m) terms. Such
smaller order terms have negligible effect, so this equation could also be used to
approximately iteratively calculate the distribution of the number of ones after
t elements appear.

This approximation is more useful, however, if we focus on the expected per-
formance by letting ¢’ = t/n, thereby rescaling time to run from 0 to 1 instead
of from 0 to n, and letting z(t') = X;/m. This yields a differential equation
approximating the difference equation associated with the distribution X;:

dz  Elmin(By(k,1 - 2), Ba(k,1 — 2)]
prie min . (3.2)

We note that, using the theory of martingales, one can show that the evolution
of X, closely follows that of the differential equation, and Chernofi-like bounds
can be given; see [Kurtz 70, Shwartz and Weiss 95, Wormald 95| for details.
Using Theorem 1 of [Wormald 95], for example, gives the following result.
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Theorem 3.3. With probability 1 — o(1), X = X,, = mz(1) 4+ o(m).

Proof. Note that the process X; has bounded jumps as long as k is a constant, as
| X¢+1 — X¢| < k. Further, Equation (3.1) shows that

ElXi1 — Xy | Xo, X1, ..., Xy = Emin(Bi(k, 1 — X¢/m), Bo(k, 1 — Xy /m))].

The right-hand side is a continuous function of X;/n and satisfies a natural
Lipschitz condition as given in [Wormald 95]. The conditions of Theorem 1 of
[Wormald 95] are therefore satisfied, and the correspondence to the differential
equation and the theorem follow. O

Equation (3.2) does not appear to have a simple closed-form solution, although
it can easily be numerically evaluated and used in place of or in conjunction with
simulations. Notice that Equation (3.2) highlights the role played by the fraction
m/n, the number of bits per set element, since the result of this differential
equation depends only on m/n and not on m and n individually. Hence, up to
asymptotically vanishing terms, the false positive probability is a function of m/n
and k, as is Equation (2.1) for the standard Bloom filter analysis. Equation (3.2)
generalizes in the natural way when the number of choices is greater than two.
We compare the results from this equation to our simulations below. Also, note
that the form of Equation (3.2) for one group of hash functions, namely

dz  E[(Bi(k,1—-2)] k(1-=2)

dt’ m/n  m/n

b

can be solved exactly to yield Equation (2.1), giving another derivation of this
equation.

Our experimental results for the online setting are given in Table 1. We have
considered cases with 8, 16, and 32 bits per set element, which are standard
configurations. The case of ¢ = 1 choice, corresponding to a standard Bloom
filter, is compared with ¢ = 2 choices and ¢ = 3 choices. Recall that the total
number of hashes required is then ck. The results presented are for the best
value of k, the number of hash functions, over 1000 trials for each setting of
parameters. We model our random hash functions by assigning each hash of
an element a number generated using a standard 48-bit pseudorandom number
generator.

For a small number of bits per set element (m/n = 8), we see no improvement.
When m/n = 16, we see small improvement, and for m/n = 32 the false positive
rate is reduced by a factor slightly less than two for ¢ = 2 choices and by a factor
slightly greater than two for ¢ = 3 choices. In intuitive terms, we require many
bits per set element before the greedy algorithm reduces the number of ones
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l n m [ c [ k [ Observed false positive probability ‘
10,000 | 80,000 | 1 | 6 2.159 x10~ 2
10,000 | 80,000 | 2 | 7 2.323 x10 2
10,000 | 80,000 | 3 | 7 2.389 x10 2
10,000 | 160,000 | 1 | 11 4.588 x10~ 7
10,000 | 160,000 | 2 | 13 3.935 x10 1
10,000 | 160,000 | 3 | 13 3.607 x10 ¢
10,000 | 320,000 | 1 | 22 2.106 x10~ 7
10,000 | 320,000 | 2 | 24 1.285 x10 "
10,000 | 320,000 | 3 | 25 9.980 x10®
Table I. Average results for the greedy online algorithm from 1000 trials per

experiment. Recall that n is the number of elements, m is the number of bits, ¢
is the number of choices, and k is the number of hash functions. The value of k
with the best observed false positive probability is used for each setting of n, m,
and c. Note the case ¢ = 1 corresponds to a standard Bloom filter.

in the filter sufficiently to make up for the two opportunities to obtain a false
positive. Also, note that because fewer bits are set to one in the Bloom filter
using this approach, the optimal results are obtained when using larger values of
k than in a standard Bloom filter, and more generally the best k increases with
the number of choices c.

We point out that the use of 10,000 elements does not affect our results; the
numbers are nearly identical for 100,000 elements, as the key parameter is the
ratio m/n. There is some variance; over 1000 trials with m/n = 32, ¢ = 2, and
k = 24, the observed false positive probability (calculated based on the number
of ones in the filter) varied between 1.206 x 10~7 and 1.378 x 10~7; this is similar
to the variance for m/n = 32 for a standard Bloom filter, where the false positive
probability ranged from 1.955 x 10~7 to 2.270 x 10~". Finally, our results are
quite robust to small changes in the parameters. For example, changing the
number of hash functions to another number near the optimal also leads to very
small changes. For example, while the best choice of 13 hash functions when
m/n = 16 gave an average false positive probability of 3.935 x 10~% over 1000
trials, using 12 hash functions gave an average of 3.954 x 10, and using 14 gave
an average of 4.035 x 1074,

It is also worth noting that the differential Equation (3.2) is very accurate, as
we show in Table 2. For the optimal configurations presented in Table 1, the
predicted fraction of ones in the Bloom filter from Equation (3.2) matches the
average from our experiments to essentially four decimal places (with one case
off in the last digit due to rounding). We conclude that Equation (3.2) can be
used to accurately predict performance.
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| n | m [ec] k | Observed fraction of ones [ Prediction of (3.2) |
10,000 | 80,000 | 2 | 7 0.5296 0.5296
10,000 | 80,000 | 3 | 7 0.5020 0.5019
10,000 | 160,000 | 2 | 13 0.5187 0.5187
10,000 | 160,000 | 3 | 13 0.4994 0.4994
10,000 | 320,000 | 2 | 24 0.5016 0.5016
10,000 | 320,000 | 3 | 25 0.5022 0.5022

Table 2. Comparing the average results for the greedy online algorithm from 1000
trials per experiment with a numerical evaluation from the differential equations
(to four decimal places).

As previously mentioned, the most glaring problem with this scheme is the
number of hashes required, which grows as ck. We therefore suggest an improve-
ment that substantially reduces the amount of hashing required. In [Kirsch and
Mitzenmacher 05], it is shown that two hash functions can be used to mimic k
hash functions with no change in the asymptotic false positive probability of a
Bloom filter. The general approach is simple: for an element x, compute hashes
aq(z) and ag(z) in the range [0,m), and let h;(z) = a1 (x) + (i — 1)as(z) mod m
for i € [1,k]. (In the case here where m is even, it makes sense to choose as(z)
to be a random odd number, which we do in our experiments; see [Kirsch and
Mitzenmacher 05] for more details on the approach.) If we use the same approach
here for each group of hash functions, then while ck lookups are still required,
now only 2¢ hashes are required, a significant reduction. Averaging the results
of 1000 trials gives the same observed numerical results for the fraction of ones
in the filter as in Table 2, to four decimal places and correspondingly roughly
the same false positive probability.!

This is not surprising, given the results of [Kirsch and Mitzenmacher 05], which
show that this choice of hash functions, asymptotically, has essentially the same
behavior as random hash functions in the framework of Bloom filters. It would
seem that we might hope to prove this, perhaps following the statement and
proof of Theorem 3.3 regarding the limiting fraction of ones, but the dependence
in the hash functions makes the approach less clear. We leave this as a problem
for future work.

LAs explained more carefully in [Kirsch and Mitzenmacher 05], the asymptotic false pos-
itive probability using just two hash functions to mimic k hash functions is the same as the
asymptotic false positive probability using k hash functions. For very small false positive prob-
abilities, such as when m/n = 32, the asymptotics may not be suitably accurate for small m
and n, leading to a noticeable performance difference. The same occurs in this setting; for m/n
up to 16, however, in our experiments the difference is generally very small once n is above
10,000, and the performance of our schemes using choice still appears better than a standard
Bloom filter. For more on this phenomenon, see [Kirsch and Mitzenmacher 05].
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3.2.  Offline Solutions

In this section, we consider a greedy algorithm that extends our online solution
to the offline case, and we examine its performance via simulation.

In the offline setting, one is given the entire set in advance, and the goal
is to design a Bloom filter with the smallest possible false positive probability
(equivalently, the smallest number of ones given m, n, k, and the groups of hash
functions) while ensuring that all elements are covered.

In its general form, the problem of finding the smallest possible covering is at
least as hard as that of finding a minimum vertex cover. To see this, consider
an input graph G = (V, E) for the minimum vertex cover problem. Associate
the vertices of the graph with filter bits and the edges with set elements. In this
correspondence, we have k = 1; the set elements each have two corresponding
bits (the adjacent vertices), and at least one of them must be set to one (i.e.,
chosen to be in the vertex cover). The minimum vertex cover corresponds to a
minimal number of filter bits being set to one, giving the smallest false positive
probability for elements outside the set with random hashes. This reduction
shows that the case where k = 1 is at least as hard as finding a minimum
vertex cover and hence is NP-hard. In our setting, because groups correspond to
random hash values, there might still be an efficient algorithm that works with
high probability. At this point, however, we know of no efficient algorithm.

Even if we have no algorithm for the optimal solution, for comparison pur-
poses it could also be useful to have a probabilistic argument giving insight into
the distribution of the number of ones required. Denote the minimum possible
number of ones in the final filter in the offline setting by the random variable X.
As with the online setting, while we do not currently have an argument giving
the expectation of X, we can say that X is concentrated around its expectation,
using almost exactly the same martingale argument as in Theorem 3.2. (One
can again show that if one sets

W, =E[X | Z1,%,..., %],

then |W1 - Wi—l‘ S k)

Although we do not have an optimal algorithm, there are several natural
heuristic algorithms one can apply to this problem: hill-climbing, tabu search,
simulated annealing, etc. For our experiments, we chose an extremely simple
greedy algorithm; while more sophisticated approaches may perform better, for
many applications a simple and quick approach is likely to be desirable. Our
algorithm repeatedly walks over the elements of the set (in some fixed order) and
re-optimizes the choice of group for each element in turn. In more detail, in the
first pass, one applies the greedy online algorithm. Subsequently, each element
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is associated with either G or H, which was the choice last used to cover the
element. As we pass through the elements in turn, each element x is temporar-
ily deleted from the filter, and then we greedily re-choose with which group to
associate z (and set the filter bits accordingly). This choice is determined by
which family requires fewer additional bits to be set to one to cover the element,
given the current choices of the other elements. In this setting, we break ties
randomly; we note that breaking ties randomly improves performance nontriv-
ially over breaking ties in some fixed manner such as, for example, by the order
of the groups.

The re-optimization step can easily be accomplished, for example, by using a
counting Bloom filter to enable deletion and then simply deleting (after the first
round of insertions) and re-inserting each element in turn. Although we present
this approach as an offline algorithm, it could also be used as a background task
to improve performance in the online setting if elements are stored as they arrive.

Our simple martinagle argument of Theorem 3.2 does not immediately extend
to this case, as there are nontrivial interactions in the repeated re-optimization
that are more difficult to deal with. Our experimental results below suggest that
variance among trials is fairly small. Also, the differential equations approach
does not apply for related reasons. Further analysis of the offline setting remains
open.

Our experimental results for the offline setting are given in Table 3. We have
again considered cases with 8, 16, and 32 bits per set element. In this table we
also consider the number of rounds used in the offline greedy algorithm, where
in each round each element of the set is (re-)inserted one time. The results
presented are for the best value of k, the number of hash functions, over 1000
trials for each setting of parameters.

Because our greedy algorithm breaks ties randomly, it is not clear when it
enters a local minimum from which no further improvement will occur. We found
that with 10,000 elements and two choices, ten rounds appeared sufficient to get
us very close to the minimum; five further rounds led to further decreases in the
average false positive probability of around 1-2%. Similarly, about 30 rounds
appear sufficient when ¢ = 3. Similar results were obtained with experiments
with 100,000 elements.

As one would expect, the gains are significantly greater than in the online case.
Here, even when m/n = 8, the false positive probability is reduced from over
2% to near 1.5% using two choices, and below 1.25% using three choices. The
false positive rate of 1.25% is better than what can be achieved using 9 bits per
element in a standard Bloom filter, thus potentially giving about a 10% space
improvement in a space-limited scenario. Similarly, two choices reduces the false
positive probability by roughly a factor of two for 16 bits, and over a factor of
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l n m [ c [ k [ Rounds [ Observed false positive probability ‘
10,000 | 80,000 | 1| 6 n/a 2.159 x10~ 2
10,000 | 80,000 | 2 | 7 10 1.505 x10 2
10,000 | 80,000 | 2 | 8 15 1.485 x10~2
10,000 | 80,000 | 3 | 8 30 1.237 x1072
10,000 | 80,000 | 3 | 8 40 1.222 x10 2
10,000 | 160,000 | 1 | 11 n/a 4.588 x10~*
10,000 | 160,000 | 2 | 14 10 2.259 x10~*
10,000 | 160,000 | 2 | 14 15 2.223 x10 1
10,000 | 160,000 | 3 | 15 30 1.604 x10~*
10,000 | 160,000 | 3 | 15 40 1.582 x10~7
10,000 | 320,000 | 1 | 22 n/a 2.106 x10~ 7
10,000 | 320,000 | 2 | 26 10 6.260 x10~°
10,000 | 320,000 | 2 | 26 15 6.143 x10°°
10,000 | 320,000 | 3 | 27 30 3.579 x10° 8
10,000 | 320,000 | 3 | 27 40 3.525 x10~°

Table 3. Average results for the greedy offline algorithm from 1000 trials per
experiment. Again, the case ¢ = 1 corresponds to a standard Bloom filter.
Rounds refers to the number of times each element is inserted into the filter.

three for 32 bits. Going to three choices leads to further improvements; for 32
bits, the gain is roughly a factor of six.

Again, our results appear to scale: the numbers are similar for 100,000 ele-
ments, with the same number of rounds. There is some variance, but the greedy
algorithm also appears to generally concentrate around its expectation over a suf-
ficient number of rounds. For example, over 1000 trials with m/n = 32, ¢ = 2,
k = 26, and 15 rounds, the false positive probability varied between 5.706 x 10~8
and 6.486 x 10~8. Also, as before, our results are quite robust to small changes
in the parameters m/n and k, although here the number of rounds plays a key
role in the overall performance.

Also, as with the online setting, in our experiments the fraction of ones in the
filter differs little if we switch to using dependent hashes of the form h;(z) =
a1 (z) 4 (i — 1)az(z) mod m for i € [1,k]. The false positive probability appears
nearly the same. This hashing approach would likely be desirable if this variation
of Bloom filters was used in practice.

4. Conclusion

We have demonstrated that, when constructing a Bloom filter, the power of
two choices can yield improvements in the false positive probability using the
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same amount of space, at the expense of more hashing. The advantage of this
approach is that it keeps all of the appealing properties of a Bloom filter, such as
its simplicity and ease of implementation, while yielding better results. It also
provides an interesting and perhaps somewhat surprising example of the utility
of the power of two choices in a different setting. The negatives of this approach
are that it requires more hashing (although, as we have described, this can be
ameliorated) and more bit lookups, and at this point the gains obtained are quite
small.

This work suggests several additional open questions. First, an analysis of
the optimal offline schemes, as well as an analysis of some easily implementable
offline scheme, would be desirable, as they would allow design decisions without
resorting to simulations. Second, a simple closed form (or very good approxima-
tion) for Equation (3.2) would be useful. Third, it would be intereseting to have
a proof that using the techniques of [Kirsch and Mitzenmacher 05] to reduce
hashing yields the same asymptotic performance. Fourth, it would be useful
to extend these results to hold under simple implementable hash functions (as
in [Dietzfelbinger and Woelfel 03]) instead of the random hash function model.
Most importantly, this work opens the door to the possibility that there are
further ways to improve the performance of Bloom filters through simple modifi-
cations that preserve their desirable properties. Such improvements would likely
be useful in many implementations and are a worthy subject of further study.

We offer one final suggestion. Here, we have studied the case where the two
groups of hash functions are completely independent. This may not be the right
approach. Perhaps there is a natural way of making the hash functions dependent
that would improve both the false positive probability and decrease the overall
hashing requirements of using multiple groups. Developing and analyzing a
useful dependence appears to be a challenging combinatorial problem.
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