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DYNAMIC BIFURCATION AND STABILITY IN THE
RAYLEIGH-BÉNARD CONVECTION∗

TIAN MA † AND SHOUHONG WANG ‡

Abstract. We study in this article the bifurcation and stability of the solutions of the Boussinesq
equations, and the onset of the Rayleigh-Bénard convection. A nonlinear theory for this problem
is established in this article using a new notion of bifurcation called attractor bifurcation and its
corresponding theorem developed recently by the authors in [6]. This theory includes the following
three aspects. First, the problem bifurcates from the trivial solution an attractor AR when the
Rayleigh number R crosses the first critical Rayleigh number Rc for all physically sound boundary
conditions, regardless of the multiplicity of the eigenvalue Rc for the linear problem. Second, the
bifurcated attractor AR is asymptotically stable. Third, when the spatial dimension is two, the
bifurcated solutions are also structurally stable and are classified as well. In addition, the technical
method developed provides a recipe, which can be used for many other problems related to bifurcation
and pattern formation.

1. Introduction
Convection is the well known phenomena of fluid motion induced by buoyancy

when a fluid is heated from below. It is of course familiar as the driving force in
atmospheric and oceanic phenomena, and in the kitchen! The Rayleigh-Bénard con-
vection problem was originated in the famous experiments conducted by H. Bénard
in 1900. Bénard investigated a fluid, with a free surface, heated from below in a dish,
and noticed a rather regular cellular pattern of hexagonal convection cells. In 1916,
Lord Rayleigh [12] developed a theory to interpret the phenomena of Bénard experi-
ments. He chose the Boussinesq equations with some boundary conditions to model
Bénard’s experiments, and linearized these equations using normal modes. He then
showed that the convection would occur only when the non-dimensional parameter,
called the Rayleigh number,

R =
gαβ

κν
h4 (1.1)

exceeds a certain critical value, where g is the acceleration due to gravity, α the
coefficient of thermal expansion of the fluid, β = |dT/dz| = (T̄0 − T̄1)/h the vertical
temperature gradient with T̄0 the temperature on the lower surface and T̄1 on the
upper surface, h the depth of the layer of the fluid, κ the thermal diffusivity and ν
the kinematic viscosity.

Since Rayleigh’s pioneering work, there have been intensive studies of this prob-
lem; see among others Chandrasekhar [1] and Drazin and Reid [2] for linear theo-
ries, and Kirchgässner [5], Rabinowitz [11], and Yudovich [13, 14], and the references
therein for nonlinear theories. Most, if not all, known results on bifurcation and sta-
bility analysis of the Rayleigh-Benard problem are restricted to the bifurcation and
stability analysis when the Rayleigh number crosses a simple eigenvalue in certain
subspaces of the entire phase space obtained by imposing certain symmetry.
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It is clear that a complete nonlinear bifurcation and stability theory for this
problem should at least include:

1) bifurcation theorem when the Rayleigh number crosses the first critical num-
ber for all physically sound boundary conditions,

2) asymptotic stability of bifurcated solutions, and
3) the structure/patterns and their stability and transitions in the physical

space.
The main difficulties for such a complete theory are two-fold. The first is due to the
high nonlinearity of the problem as in other fluid problems, and the second is due to
the lack of a theory to handle bifurcation and stability when the eigenvalue of the
linear problem has even multiplicity.

The main objective of this article is to try to establish such a nonlinear theory
for the Rayleigh-Bénard convection using a new notion of bifurcation, called attractor
bifurcation, and the corresponding theory developed recently by the authors in [6].
Part of the results proved in this article is announced in [9]. We now address each
aspects of our results in this article following the three aspects of a complete theory
for the problem just mentioned along with the main idea and methods used.

First, we show that as the Rayleigh number R crosses the first critical value
Rc, the Boussinesq equations bifurcate from the trivial solution an attractor AR,
with dimension between m and m+ 1. Here the first critical Rayleigh number Rc is
defined to be the first eigenvalue of the linear eigenvalue problem, and m + 1 is the
multiplicity of this eigenvalue Rc. In comparison with known results, the bifurcation
theorem obtained in this article is for all cases with the multiplicity m+1 of the critical
eigenvalue Rc for the Bénard problem under any set of physically sound boundary
conditions. As the trivial solution becomes unstable as the Rayleigh number crosses
the critical value Rc, AR does not contain this trivial solution.

Second, as an attractor, the bifurcated attractor AR has asymptotic stability in
the sense that it attracts all solutions with initial data in the phase space outside of
the stable manifold, with co-dimension m+ 1, of the trivial solution.

As Kirchgässner indicated in [5], an ideal stability theorem would include all
physically meaningful perturbations and establish the local stability of a selected
class of stationary solutions, and today we are still far from this goal. On the other
hand, fluid flows are normally time dependent. Therefore bifurcation analysis for
steady state problems provides in general only partial answers to the problem, and is
not enough for solving the stability problem. Hence it appears that the right notion
of asymptotic stability after the first bifurcation should be best described by the
attractor near, but excluding, the trivial state. It is one of our main motivations for
introducing attractor bifurcation, and it is hoped that the stability of the bifurcated
attractor obtained in this article contributes to an ideal stability theorem.

Third, another important aspect of a complete nonlinear theory for the Rayleigh-
Bénard convection is to classify the structure/pattern of the solutions after the bifur-
cation. A natural tool to attack this problem is the structural stability of the solutions
in the physical space. Since 1997, the authors have made an extensive study toward
this goal, and established a systematic theory on structural stability and bifurcation
of 2-D divergence-free vector fields; see a survey article by the authors in [8]. Using in
particular the structural stability theorem proved in [7], we show in this article that
in the two dimensional case, for any initial data outside of the stable manifold of the
trivial solution, the solution of the Boussinesq equations will have the roll structure
as t is sufficiently large.
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Technically speaking, the above results for the Rayleigh-Bénard convection are
achieved using a new notion of dynamic bifurcation, called attractor bifurcation, in-
troduced recently by the authors in [6]. The main theorem associated with attractor
bifurcation states that as the control parameter crosses a certain critical value when
there are m + 1 (m ≥ 0) eigenvalues crossing the imaginary axis, the system bifur-
cates from a trivial steady state solution to an attractor with dimension between m
and m + 1, provided the critical state is asymptotically stable. This new bifurca-
tion concept generalizes the aforementioned known bifurcation concepts. There are a
few important features of attractor bifurcation. First, the bifurcation attractor does
not include the trivial steady state, and is stable; hence it is physically important.
Second, the attractor contains a collection of solutions of the evolution equation, in-
cluding possibly steady states, periodic orbits, as well as homoclinic and heteoclinic
orbits. Third, it provides a unified point of view on dynamic bifurcation and can be
applied to many problems in physics and mechanics. Fourth, from the application
point of view, the Krasnoselskii-Rabinowitz theorem requires the number of eigenval-
ues m+ 1 crossing the imaginary axis to be an odd integer, and the Hopf bifurcation
is for the case where m + 1 = 2. However, the new attractor bifurcation theorem
obtained in this article can be applied to cases for all m ≥ 0. In addition, the bifur-
cated attractor, as mentioned earlier, is stable, which is another subtle issue for other
known bifurcation theorems.

Of course, the price to pay here is the verification of the asymptotic stability of
the critical state, in addition to the analysis needed for the eigenvalues problems in the
linearized problem. Theorem 3.4 provides a method to obtain asymptotic stability
of the critical state for problems with symmetric linearized equations. Thanks to
this theorem, the asymptotic stability of the trivial solution to the Rayleigh-Bénard
problem is easily established. We remark here that this theorem will be useful in
many problems of mathematical physics with symmetric linearized equations.

This article is organized as follows. First in Section 2, we recall the Boussinesq
equations, their mathematical setting, and some known existence and uniqueness re-
sults of the solutions. Section 3 summaries the main attractor bifurcation theory
from [6], and a theorem, Theorem 3.4, for the asymptotic stability of the critical state
for problems for an evolution system with symmetric linearized equations. Section 4
states and proves the main attractor bifurcation results from the Rayleigh-Bénard con-
vection. Examples and topological structure of the bifurcated solutions are addressed
in Section 5. Corresponding results for the two-dimensional problem are given in Sec-
tion 6, and the concept and main results on structural stability of 2-D divergence-free
vector fields are recalled in the Appendix in Section 7.

2. Boussinesq equations and their mathematical setting

2.1. Boussinesq equations. The Bénard experiment can be modeled by
the Boussinesq equations; see among others Rayleigh [12], Drazin and Reid [2] and
Chandrasekhar [1]. They read

∂u

∂t
+ (u · ∇)u− ν∆u + ρ−1

0 ∇p = −gk[1 − α(T − T̄0)], (2.1)

∂T

∂t
+ (u · ∇)T − κ∆T = 0, (2.2)

div u = 0, (2.3)

where ν, κ, α, g are the constants defined as in (1.1), u = (u1, u2, u3) the velocity field,
p the pressure function, T the temperature function, T̄0 a constant representing the
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lower surface temperature at x3 = 0, and k = (0, 0, 1) the unit vector in x3-direction;
see Figure 2.1.

T=T 0

_

x  =h

x  =0

3

3

T=T1

_

Fig. 2.1. Flow between two plates heated from below: T̄0 > T̄1.

To make the equations non-dimensional, let

x = hx′,
t = h2t′/κ,
u = κu′/h,

T = βh(T ′/
√
R) + T̄0 − βhx′3,

p = ρ0κ
2p′/h2 + p0 − gρ0(hx′3 + αβh2(x′3)

2/2),
Pr = ν/κ.

Here the Rayleigh number R is defined by (2.1), and Pr = ν/κ is the Prandtl number.
Omitting the primes, the equations (2.2)-(2.4) can be rewritten as follows

1
Pr

[
∂u

∂t
+ (u · ∇)u+ ∇p

]
− ∆u−

√
RTk = 0, (2.4)

∂T

∂t
+ (u · ∇)T −

√
Ru3 − ∆T = 0, (2.5)

div u = 0. (2.6)

The non-dimensional domain is Ω = D × (0, 1) ⊂ R3, where D ⊂ R2 is an open
set. The coordinate system is given by x = (x1, x2, x3) ∈ R3.

The Boussinesq equations (2.4)—(2.6) are basic equations to study the Rayleigh-
Bénard problem in this article. They are supplemented with the following initial value
conditions

(u, T ) = (u0, T0) at t = 0. (2.7)

Boundary conditions are needed at the top and bottom and at the lateral bound-
ary ∂D × (0, 1). At the top and bottom boundary (x3 = 0, 1), either the so-called
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rigid or free boundary conditions are given

T = 0, u = 0 (rigid boundary), (2.8)

T = 0, u3 = 0,
∂(u1, u2)
∂x3

= 0 (free boundary). (2.9)

Different combinations of top and bottom boundary conditions are normally used in
different physical setting such as rigid-rigid, rigid-free, free-rigid, and free-free.

On the lateral boundary ∂D× [0, 1], one of the following boundary conditions are
usually used:

1. Periodic condition:

(u, T )(x1 + k1L1, x2 + k2L2, x3) = (u, T )(x1, x2, x3), (2.10)

for any k1, k2 ∈ Z.
2. Dirichlet boundary condition:

u = 0, T = 0 (or
∂T

∂n
= 0); (2.11)

3. Free boundary condition:

T = 0, un = 0,
∂uτ

∂n
= 0, (2.12)

where n and τ are the unit normal and tangent vectors on ∂D× [0, 1] respec-
tively, and un = u · n, uτ = u · τ .

For simplicity, we proceed in this article with the following set of boundary condi-
tions, and all results hold true as well for other combinations of boundary conditions.{

T = 0, u = 0 at x3 = 0, 1,
(u, T )(x1 + k1L1, x2 + k2L2, x3, t) = (u, T )(x, t),

(2.13)

for any k1, k2 ∈ Z.

2.2. Functional setting and properties of solutions. We recall here the
functional setting of equations (2.4)-(2.6) with initial and boundary conditions (2.7)
and (2.13) and refer the interested readers to Foias, Manley and Temam [3] for details.
To this end, let

H = {(u, T ) ∈ L2(Ω)3 × L2(Ω) | divu = 0, u3|x3=0,1 = 0, (2.14)
ui is periodic in the xi direction (i = 1, 2)},

V = {(u, T ) ∈ H1
0 (Ω)4 | divu = 0, (2.15)

ui is periodic in the xi direction (i = 1, 2)},
where H1

0 (Ω) is the space of functions in H1(Ω), which vanish at x3 = 0, 1 and are
periodic in the xi-directions (i = 1, 2). Here H1(Ω) is the usual Sobolev space.

Then the results concerning the existence of a solution for (2.4)-(2.6) with initial
and boundary conditions (2.7) and (2.13) are classical. For every (φ0, T0) ∈ H , (2.4)-
(2.6) with (2.7) and (2.13) possesses a weak solution

(u, T ) ∈ L∞([0, τ ];H) ∩ L2(0, τ ;V ) ∀τ > 0. (2.16)
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If (u0, T0) ∈ V , (2.4)-(2.6) with (2.7) and (2.13) possesses a unique solution on some
interval [0, τ1],

(u, T ) ∈ C([0, τ1];V ) ∩ L2(0, τ1;H2(Ω)4 ∩ V ), (2.17)

where τ1 = τ1(M) depends on a bound of the V norm of (φ0, T0):

||(u0, T0)|| ≤M.

In addition, for any ||(φ0, T0)|| ≤ δ small, (2.4)-(2.6) with (2.7) and (2.13) possesses
a unique global (in time) solution

(u, T ) ∈ C([0, τ ];V ) ∩ L2(0, τ ;H2(Ω)4 ∩ V ), ∀τ > 0. (2.18)

Thanks to these existence results, we can define a semi-group

S(t) : (u0, T0) → (u(t), T (t)),

which enjoys the semi-group properties.

3. Dynamic bifurcation of nonlinear evolution equations
In this section, we shall recall some results of dynamic bifurcation of abstract

nonlinear evolution equations developed by the authors in [6], which is crucial in the
study of the Bénard problem in this paper. In fact, we shall provide in this section a
recipe for proving dynamic bifurcations for problems with symmetric linear operators.

3.1. Attractor bifurcation. Let H and H1 be two Hilbert spaces, and
H1 ↪→ H be a dense and compact inclusion. We consider the following nonlinear
evolution equations

du

dt
= Lλu+G(u, λ), (3.1)

u(0) = u0, (3.2)

where u : [0,∞) → H is the unknown function, λ ∈ R is the system parameter,
and Lλ : H1 → H are parameterized linear completely continuous fields continuously
depending on λ ∈ R1, which satisfy⎧⎪⎨⎪⎩

Lλ = −A+Bλ is a sectorial operator,
A : H1 → H a linear homeomorphism,
Bλ : H1 → H the parameterized linear compact operators.

(3.3)

It is easy to see [4, 10] that Lλ generates an analytic semi-group {e−tLλ}t≥0. Then we
can define fractional power operators Lα

λ for any 0 ≤ α ≤ 1 with domain Hα = D(Lα
λ)

such that Hα1 ⊂ Hα2 if α1 > α2, and H0 = H .
Furthermore, we assume that the nonlinear terms G(·, λ) : Hα → H for some

1 > α ≥ 0 are a family of parameterized Cr bounded operators (r ≥ 1) continuously
depending on the parameter λ ∈ R1, such that

G(u, λ) = o(‖u‖Hα), ∀ λ ∈ R
1. (3.4)

In the applications, we are interested in the sectorial operator Lλ = −A + Bλ

such that there exist a real eigenvalue sequence {ρk} ⊂ R1 and and an eigenvector
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sequence {ek} ⊂ H1 of A: ⎧⎪⎨⎪⎩
Aek = ρkek,

0 < ρ1 ≤ ρ2 ≤ · · · ,
ρk → ∞ (k → ∞)

(3.5)

such that {ek} is an orthogonal basis of H .
For the compact operator Bλ : H1 → H , we also assume that there is a constant

0 < θ < 1 such that

Bλ : Hθ −→ H bounded, ∀ λ ∈ R
1. (3.6)

Let {Sλ(t)}t≥0 be an operator semi-group generated by the equation (3.1) which
enjoys the properties

(i) For any t ≥ 0, Sλ(t) : H → H is a linear continuous operator,
(ii) Sλ(0) = I : H → H is the identity on H , and
(iii) For any t, s ≥ 0, Sλ(t+ s) = Sλ(t) · Sλ(s)
Then the solution of (3.1) and (3.2) can be expressed as

u(t) = Sλ(t)u0, t ≥ 0.

Definition 3.1. A set Σ ⊂ H is called an invariant set of (3.1) if S(t)Σ = Σ for
any t ≥ 0. An invariant set Σ ⊂ H of (3.1) is said to be an attractor if Σ is compact,
and there exists a neighborhood U ⊂ H of Σ such that for any ϕ ∈ U we have

lim
t→∞ distH(u(t, ϕ),Σ) = 0. (3.7)

The largest open set U satisfying (3.7) is called the basin of attraction of Σ.

Definition 3.2.
1. We say that the equation (3.1) bifurcates from (u, λ) = (0, λ0) an invariant

set Ωλ, if there exists a sequence of invariant sets {Ωλn} of (3.1), 0 /∈ Ωλn

such that

lim
n→∞λn = λ0,

lim
n→∞ max

x∈Ωλn

|x| = 0.

2. If the invariant sets Ωλ are attractors of (3.1), then the bifurcation is called
attractor bifurcation.

3. If Ωλ are attractors and are homotopy equivalent to an m–dimensional sphere
Sm, then the bifurcation is called Sm–attractor bifurcation.

A complex number β = α1 + iα2 ∈ C is called an eigenvalue of Lλ if there are
x, y ∈ H1 such that

Lλx = α1x− α2y,

Lλy = α2x+ α1y.

Now let the eigenvalues (counting the multiplicity) of Lλ be given by

β1(λ), β2(λ), · · · , βk(λ) ∈ C,
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where C is the complex space. Suppose that

Reβi(λ) =

⎧⎪⎨⎪⎩
< 0, λ < λ0

= 0, λ = λ0

> 0, λ > λ0

(1 ≤ i ≤ m+ 1) (3.8)

Reβj(λ0) < 0, ∀ m+ 2 ≤ j. (3.9)

Let the eigenspace of Lλ at λ0 be

E0 = ∪1≤i≤m+1

{
u ∈ H1 | (Lλ0 − βi(λ0))ku = 0, k = 1, 2, · · ·} .

It is known that dimE0 = m+ 1.
The following dynamic bifurcation theorems for the (3.1) were proved in [6].

Theorem 3.3 (Attractor Bifurcation, [6]). Assume that the conditions (3.3),
(3.4), (3.8) and (3.9) hold true, and u = 0 is a locally asymptotically stable equilibrium
point of (3.1) at λ = λ0. Then the following assertions hold true.

1. (3.1) bifurcates from (u, λ) = (0, λ0) an attractor Aλ for λ > λ0, with m ≤
dimAλ ≤ m+ 1, which is connected as m > 0;

2. the attractor Aλ is a limit of a sequence of (m+ 1)–dimensional annulus Mk

with Mk+1 ⊂Mk; especially if Aλ is a finite simplicial complex, then Aλ has
the homotopy type of Sm;

3. For any uλ ∈ Aλ, uλ can be expressed as

uλ = vλ + o(‖vλ‖H1), vλ ∈ E0;

4. If G : H1 → H is compact, and the equilibrium points of (3.1) in Aλ are
finite, then we have the index formula

∑
ui∈Aλ

ind [−(Lλ +G), ui] =

{
2 if m = odd,
0 if m = even.

5. If u = 0 is globally stable for (3.1) at λ = λ0, then for any bounded open
set U ⊂ H with 0 ∈ U there is an ε > 0 such that as λ0 < λ < λ0 + ε, the
attractor Aλ bifurcated from (0, λ0) attracts U/Γ in H, where Γ is the stable
manifold of u = 0 with co-dimension m+ 1. In particular, if (3.1) has global
attractor for all λ near λ0, then the ε here can be chosen independently of U .

3.2. Asymptotical stability at critical states. To apply the above dy-
namic bifurcation theorems, it is crucial to verify the asymptotic stability of the crit-
ical states. We establish in this subsection a theorem to verify the needed asymptotic
stability for equations with symmetric linear parts.

Let the linear operator Lλ in (3.1) be symmetric, i.e.

〈Lλu, v〉H = 〈u, Lλv〉H , ∀ u, v ∈ H1.

Then all eigenvalues of Lλ are real numbers. Let the eigenvalues {βk} of Lλ at λ = λ0

satisfy {
βi = 0, 1 ≤ i ≤ m+ 1 (m ≥ 0),
βj < 0, m+ 2 ≤ j <∞.

(3.10)
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Set

E0 = {u ∈ H1 | Lλ0u = 0} ,
E1 = E⊥

0 = {u ∈ H1 | 〈u, v〉H = 0 ∀ v ∈ E0} ,
P1 : H −→ E1 the projection.

By (3.10), dimE0 = m+ 1.

Theorem 3.4. Let Lλ in (3.3) be symmetric with spectrum given by (3.10) hold true,
and Gλ0 : H1 → H satisfies the following orthogonal condition:

〈Gλ0u, u〉H = 0, ∀ u ∈ H1. (3.11)

Then exactly one and only one of the following two assertions holds true:
1. There exists a sequence of invariant sets {Γn} ⊂ E0 of (3.1) at λ = λ0 such

that

0 /∈ Γn, lim
n→∞ dist(Γn, 0) = 0;

2. the trivial steady state solution u = 0 for (3.1) at λ = λ0 is locally asymptot-
ically stable under the H–norm.

Furthermore, if (3.1) has no invariant sets in E0 except the trivial one {0}, then u = 0
is globally asymptotically stable.

Proof. We proceed in the following four steps.

Step 1. It is easy to see that Assertions (1) and (2) in Theorem 3.4 can not be
true at the same time.

Hereafter in this proof, we always work on the case where λ = λ0. In this case,
direct energy estimates imply that that the solutions u of (3.1) satisfy that

d

dt
‖u‖2

H = 2 < Lλ0u, u >=
∞∑

n=m+2

βi|ui|2 ≤ 0, (3.12)

‖u‖2
H ≤ ‖u(0)‖2

H − 2 |βm+2|
∫ t

0

‖v‖2
Hdτ, (3.13)

where

u = w + v ∈ H = E0 ⊕ E⊥
0 ,

v =
∞∑

i=m+2

ui ∈ E⊥
0 ,

w =
m+1∑
i=1

ui ∈ E1 = E0.

It is easy to see that for any ϕ ∈ H1 the solution u(t, ϕ) of (5.1) is non-increasing,
i.e.

‖u(t2, ϕ)‖ ≤ ‖u(t1, ϕ)‖, ∀ t1 < t2 and ϕ ∈ H1. (3.14)

Hence limt→∞ ‖u(t, ϕ)‖ exists.
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Step 2. For any ϕ ∈ H1, we have

lim
t→∞ ‖u(t, ϕ)‖ = lim

t→∞ ‖v(t, ϕ) + w(t, ϕ)‖ = δ ≤ ||ϕ||.

Then the ω-limit set, which is an invariant set, satisfies that

ω(ϕ) ⊂ Sδ = {u ∈ H | ‖u‖ = δ} .
Since ω(ϕ) is an invariant set, for an ψ ∈ ω(ϕ) we have

u(t, ψ) ⊂ ω(ϕ) ⊂ Sδ ∀ t ≥ 0.

Hence if ψ = v̄ + w̄ ∈ E⊥
0 ⊕ E0 with v̄ �= 0, then by (3.12), for any t > 0,

‖u(t, ψ)‖ < ‖ψ‖ = δ,

a contradication. Namely, for any ϕ ∈ H1

ω(ϕ) ⊂ E0. (3.15)

Step 3. If Assertion (2) is false, then there exists un ∈ H1 with un → 0 as
n→ ∞ such that 0 /∈ ω(un) ⊂ E0, and

lim
n→∞dist(ω(un), 0) = 0.

Namely, Assertion (1) holds true.

Step 4. If Assertion (1) is not true, there exist a neighborhood U ⊂ H of 0 such
that for any φ ∈ U ,

lim
t→∞ ‖u(t, ϕ)‖ = 0.

Namely, Assertion (2) holds true. The rest part of the proof is trivial, and the proof
is complete.

4. Attractor bifurcation of the Bénard problem

4.1. Main theorems. The linearized equations of (2.4)-(2.6) are given by⎧⎪⎨⎪⎩
− ∆u+ ∇p−

√
RTk = 0,

− ∆T −
√
Ru3 = 0,

divu = 0,

(4.1)

where R is the Rayleigh number. These equations are supplemented with the same
boundary conditions (2.13) as the nonlinear Boussinesq system. This eigenvalue prob-
lem for the Rayleigh number R is symmetric. Hence, we know that all eigenvalues Rk

with multiplicities mk of (4.1) with (2.13) are real numbers, and

0 < R1 < · · · < Rk < Rk+1 < · · · . (4.2)

The first eigenvalue R1, also denoted by Rc = R1, is called the critical Rayleigh
number. Let the multiplicity of Rc be m1 = m+1 (m ≥ 0), and the first eigenvectors
Ψ1 = (e1(x), T1), · · · ,Ψm+1 = (em+1, Tm+1) of (4.1) be orthonormal:

〈Ψi,Ψj〉H =
∫

Ω

[ei · ej + TiTj]dx = δij .
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For simplicity, let E0 be the first eigenspace of (4.1) with with (2.13)

E0 =

{
m+1∑
k=1

αkΨk | αk ∈ R, 1 ≤ k ≤ m+ 1

}
. (4.3)

The main results in this section are the following theorems.

Theorem 4.1. For the Bénard problem (2.4-2.6) with (2.13), the following assertions
hold true.

1. When the Rayleigh number is less than or equal to the critical Rayleigh num-
ber: R ≤ Rc, the steady state (u, T ) = 0 is a globally asymptotically stable
equilibrium point of the equations.

2. The equations bifurcate from ((u, T ), R) = (0, Rc) an attractor AR for R >
Rc, with m ≤ dimAR ≤ m+ 1, which is connected when m > 0.

3. For any (u, T ) ∈ AR, the velocity field u can be expressed as

u =
m+1∑
k=1

αkek + o

(
m+1∑
k=1

αkek

)
(4.4)

where ek are the velocity fields of the first eigenvectors in E0.
4. The attractor AR has the homotopy type of an m-dimensional sphere Sm

provided AR is a finite simplicial complex.
5. There are an open neighborhood U ⊂ H of (u, T ) = 0 and an ε > 0 such that

as Rc < R < Rc + ε, the attractor AR attracts U/Γ in H, where Γ is the
stable manifold of (u, T ) = 0 with co-dimension m+ 1.

Theorem 4.2. If the first eigenvalue of Lλ0 is simple, i.e. dimE0 = 1, then the
bifurcated attractor AR of the Bénard problem (2.4-2.6) with (2.13) consists of exactly
two points, φ̄1, φ̄2 ∈ H1 = V ∩H2(Ω)4 given by

φ̄1 = αΨ1 + o(|α|), φ̄2 = −αΨ1 + o(|α|),

for some α �= 0, where Ψ1 is the first eigenvector generating E0 in (4.3). Moreover,
for any bounded open set U ∈ H with 0 ∈ U , there is an ε > 0, as Rc < R < Rc + ε,
U can be decomposed into two open sets U1 and U2 such that

1. Ū = Ū1 + Ū2, U1 ∩ U2 = ∅ and 0 ∈ ∂U1 ∩ ∂U2,
2. φ̄i ⊂ Ui (i = 1, 2), and
3. for any φ0 ∈ Ui (i = 1, 2), limt→∞ Sλ(t)φ0 = φ̄i, where Sλ(t)φ0 is the solution

of the Bénard problem (2.4-2.6) with (2.13) with initial data φ0 = (u0, T0).
A few remarks are now in order.

Remark 4.3. As we shall see in next section, (4.4) in Theorem 4.1 is crucial for
studying the topological structure of the Rayleigh-Bénard convection.

Remark 4.4. Theorem 4.2 corresponds to the classical pitchfork bifurcation. The
main advantage of this theorem is that we know the stability of these bifurcated steady
states.

Remark 4.5. Both theorems hold true for Boussinesq equations (2.4-2.6) with dif-
ferent combinations of boundary conditions as described in Section 2.
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4.2. Proof of Theorem 4.1. We shall use the abstract results in Section 3
to prove Theorem 4.1, and proceed in the following steps.

Step 1. First of all, without loss of generality, we assume the Prandtl number

Pr = 1; (4.5)

otherwise, we only have to consider the following form of (2.4)-(2.6), and the proof is
the same. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u

∂t
+ (u · ∇)u + ∇p− Pr∆u−

√
R
√
Prθk = 0,

∂θ

∂t
+ (u · ∇)θ −

√
R
√
Pru3 − ∆θ = 0,

div u = 0,

(4.6)

where θ =
√
PrT .

Now let H be the function space defined by (2.14) and let H1 be the intersection
of H with H2 Sobolev space, i.e.

H1 = H ∩ (H2(Ω))4.

Then let G : H1 → H, and Lλ = −A+Bλ : H1 → H be defined by⎧⎪⎨⎪⎩
G(φ) = (−P [(u · ∇)u],−(u · ∇)T ),
Aφ = (−P (∆u),−∆T ),
Bλφ = λ(P (Tk), u3),

(4.7)

for any φ ∈ H . Here λ =
√
R, and P : L2(Ω)3 → H the Leray projection. Then it is

easy to see that these operators enjoy the following properties:
1. the linear operators A, Bλ and Lλ are all symmetric operators,
2. the nonlinear operator G is orthogonal, i.e.

〈G(φ), φ〉H = 0. (4.8)

3. the conditions (3.3)—(3.6) hold true for these operators defined in (4.7).
Then the Boussinesq equations (2.4) can be rewritten in the following operator

form

dφ

dt
= Lλφ+G(φ), φ = (u, T ). (4.9)

Step 2. Now, we need to check the conditions (3.8) and (3.9). Consider the
engenvalue problem

Lλφ = β(λ)φ, φ = (u, T ) ∈ H1. (4.10)

This eigenvalue problem is equivalent to⎧⎪⎨⎪⎩
− ∆u+ ∇p− λTk + β(λ)u = 0,
− ∆T − λu3 + β(λ)T = 0,
divu = 0.

(4.11)
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It is known that the eigenvalues βk (k = 1, 2, · · · ) of (4.11) are real numbers satisfying{
β1(λ) ≥ β2(λ) ≥ · · · ≥ βk(λ) ≥ · · · ,
lim

k→∞
βk(λ) = −∞,

(4.12)

and the first eigenvalue β1(λ) of (4.11) and the first eigenvalue λ1 =
√
Rc of (4.1)

have the relation:

β1(λ)

{
< 0 as 0 ≤ λ < λ1,

= 0 as λ = λ1.
(4.13)

Step 3. To prove (3.8) and (3.9), by (4.12) and (4.13), it suffices to prove that

β1(λ) > 0 as λ > λ1. (4.14)

We know that the first eigenvalue β1(λ) of (4.11) has the minimal property

−β1(λ) = min
(u,T )∈H1

∫
Ω

[|∇u|2 + |∇T |2 − 2λTu3

]
dx∫

Ω[T 2 + u2]dx
. (4.15)

It is clear that the first eigenvectors (e, ϕ) ∈ H1 satisfy∫
Ω

[|∇e|2 + |∇ϕ|2 − 2λe3ϕ
]
dx =

{
0, λ = λ1

< 0, λ > λ1.
(4.16)

From (4.15) and (4.16) we infer (4.14). Thus the conditions (3.8) and (3.9) are
achieved.

Step 4. Finally, in order to use Theorems 3.3 to prove Theorem 4.1, we need
to show that (u, T ) = 0 is a globally asymptotically stable equilibrium point of (2.4)-
(2.6) at the critical Rayleigh number λ1 =

√
Rc. By Theorem 3.4, it suffices to prove

that the equations (2.4)-(2.6) have no invariant sets except the steady state (u, T ) = 0
in the first eigenspace E0 of (4.1).

We know that the Boussinesq equations (2.4)-(2.6) have a bounded absorbing set
in H ; hence, all invariant sets have the same bound in H as the absorbing set. Assume
(2.4)-(2.6) have an invariant B ⊂ E0 with B �= {0} at λ1 =

√
Rc. Then restricted in

B, which contains eigenfuctions of the linear part corresponding to the eigenvalue 0,
the Boussinesq equations (2.4)-(2.6) can be rewritten as⎧⎪⎨⎪⎩

∂u

∂t
+ (u · ∇)u+ ∇p = 0,

∂T

∂t
+ (u · ∇)T = 0,

(4.17)

It is easy to see that for the solutions (u, T ) ∈ B of (4.17), (ũ, T̃ ) = α(u(αt), T (αt)) ∈
αB ⊂ E0 are also solutions of (4.17). Namely, for any real number α ∈ R, the
set αB ⊂ E0 is an invariant set of (4.18). Thus, we infer that (2.4)-(2.6) have an
unbounded invariant set, which is a contradiction to the existence of absorbing set.
Hence the invariant set B can only consist of (u, T ) = 0. The proof is complete. �
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4.3. Proof of Theorem 4.2. By Theorem 4.1, it suffices to prove that
the stationary equations of (4.1) will bifurcate exactly two singular points in H1 as
R > Rc. We use the Lyapunov–Schmidt method to prove this assertion.

Since the operator Lλ : H1 → H defined by (4.7) is a symmetric completely
continuous field, H1 can be decomposed into

H1 = Eλ
1 ⊕ Eλ

2 ,

Eλ
1 = {αΨ1(λ) | α ∈ R, Ψ1(λ) the first eigenvector of Lλ +G} ,

Eλ
2 = {φ ∈ H1 | 〈φ,Ψ1〉H = 0} .

Furthermore, Eλ
1 and Eλ

2 are invariant subspaces of Lλ +G.
Let P1 : H1 → Eλ

1 be the canonical projection, and

φ = xΨ1 + y, x ∈ R, y ∈ Eλ
2 .

Then the equations Lλφ+G(φ) = 0 can be decomposed into

β(λ)x + 〈G(φ),Ψ1(λ)〉H = 0, (4.18)
Lλy + P1G(u) = 0. (4.19)

By the assumption, the eigenvalues βj(λ) of Lλφ = β(λ)φ satisfy that βj(λ1) �= 0
for j ≥ 2, and λ1 =

√
Rc. Hence the restriction

Lλ |Eλ
2
: Eλ

2 −→ Eλ
2

is invertible. By the implicit function theorem, from (4.19) it follows that y is a
function of x:

y = y(x, λ), (4.20)

which satisfies (4.19). Since G(u) = G(xΨ1 + y) is an analytic function of u, the
function (4.20) is also analytic. Hence, the function

f(x, λ) = 〈G(xΨ1 + y(x, λ)),Ψ1〉H (4.21)

is analytic. Thus, the equation (4.18) has the expansion

β(λ)x + f(x, λ) = β(λ)x + α(λ)xk + o(|x|k) = 0, (4.22)

for some α(λ) ∈ R such that α(λ1) �= 0 and k > 1, where λ1 = Rc is the critical
Rayleigh number. By assumption

β(λ)

⎧⎪⎨⎪⎩
< 0 as λ < λ1,
= 0 as λ = λ1,
> 0 as λ > λ1.

In addition, by Theorem 4.1, as λ ≤ λ1 (i.e. R ≤ Rc) and λ1−λ is small, the equations
(4.18) and (4.19) have no non-zero solutions, which implies that α(λ1) < 0 and k =
odd.

Thus, we derive that the equation (4.22) has exactly two solutions

x± = ±
(
β(λ)
|α|

)1/k

+ o

((
β(λ)
|α|

)1/k
)
,
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for λ > λ1 with λ− λ1 sufficiently small. Namely, we have proved that as λ > λ1, or
R > Rc, with λ−λ1 sufficiently small, the stationary equations of (2.4)-(2.6) bifurcate
from (φ, λ) = (0, λ1) exactly two solutions

φλ = x±Ψ1 + o(|x±|).
Thus, this theorem is proved. �

5. Remarks on topological structure of solutions of the Rayleigh-Bénard
problem

As we mentioned before, the structure of the eigenvectors of the linearized problem
(4.1) plays an important role for studying the onset of the Rayleigh-Bénard convection.
The dimension m+1 of the eigenspace E0 determines the dimension of the bifurcated
attractor AR as well. Hence in this section we examine in detail the first eigenspace
for different geometry of the spatial domain and for different boundary conditions.

5.1. Solutions of the eigenvalue problem. Hereafter, we always consider
the Bénard problem on the rectangular region: Ω = (0, L1)× (0, L2)× (0, 1), and the
boundary condition taken as the free boundary condition

u · n = 0,
∂u · τ
∂n

= 0 on ∂Ω, (5.1)

T = 0 at x3 = 0, 1, (5.2)
∂T

∂n
= 0 at x1 = 0, L1 or x2 = 0, L2. (5.3)

For the eigenvalue equations (4.1) with the boundary condition (5.1)—(5.3), we
take the separation of variables as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

(u1, u2) =
1
a2

(
∂f(x1, x2)

∂x1
,
∂f(x1, x2)

∂x2

)
dH(x3)
dx3

,

u3 = f(x1, x2)H(x3),
T = f(x1, x2)α(x3),

(5.4)

where a2 > 0 is an arbitrary constant.
It follows from (4.1) with (5.1)—(5.3) that the functions f,H, α satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− ∆1f = a2f,

∂f

∂x1
= 0 at x1 = 0, L1,

∂f

∂x2
= 0 at x2 = 0, L2;

(5.5)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
d2

dz2
− a2

)2

H = a2λα,(
d2

dz2
− a2

)
α = −λH,

(5.6)

supplemented with the boundary conditions{
ϕ(0) = ϕ(1) = 0,
H(0) = H(1) = 0, H ′′(0) = H ′′(1) = 0.

(5.7)
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It is clear that the solutions of (5.5) are given by{
f(x1, x2) = cos(a1x1) cos(a2x2),

a2
1 + a2

2 = a2, (a1, a2) = (k1π/L1, k2π/L2) ,
(5.8)

for any k1, k2 = 0, 1 · · · .
Let a2

1 +a2
2 = a2. It is easy to see that for each given a2, the first eigenvalue λ0(a)

and the eigenvectors of (5.6) and (5.7) are given by⎧⎪⎪⎨⎪⎪⎩
λ0(a) =

(π2 + a2)3/2

a
,

(H,α) =
(

sin πx3,
1
a

√
π2 + a2 sinπx3

)
.

(5.9)

It is easy to see that the first eigenvalue λ1 =
√
Rc of (4.1) with (5.1)—(5.3) is

the minimum of λ0(a):

Rc = min
a2=a2

1+a2
2

λ2
0(a) (5.10)

= min
k1,k2∈Z

[
π4

(
1 +

k2
1

L2
1

+
k2
1

L2
2

)3/( k2
1

L2
1

+
k2
2

L2
2

)]
.

Thus the first eigenvectors of (4.1) with (5.1)—(5.3) can be directly derived from
(5.4), (5.8) and (5.9):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1 = −a1π

a2
sin(a1x1) cos(a2x2) cos(πx3),

u2 = −a2π

a2
cos(a1x1) sin(a2x2) cos(πx3),

u3 = cos(a1x1) cos(a2x2) sin(πx3),

T =
1
a

√
π2 + a2 cos(a1x1) cos(a2x2) sin(πx3),

(5.11)

where a2 = a2
1 + a2

2 satisfies (5.10).
By Theorem 4.1, the topological structure of the bifurcated solutions of the

Bénard problem (2.4–2.6) with (5.1)—(5.3) is determined by that of (5.11), and which
depends, by (5.10), on the horizontal length scales L1 and L2. Namely, the pattern
of convection in the Bénard problem depends on the size and form of the containers
of fluid. This will be illustrated in the remaining part of this section.

5.2. Roll structure. By (5.10) and (5.11) we know that when the length
scales L1 and L2 are given, the wave numbers k1 and k2 are derived, and the structure
of the eigenvectors u of (4.1) are determined.

Consider the case where

L1 = L2 = L, and 0 < L2 <
2 − 21/3

21/3 − 1
� 3. (5.12)

We remark here that L = hL/h is the aspect ratio between the horizontal scale and
the vertical scale of the domain. In this case, the wave numbers (k1, k2) are given by

(k1, k2) = (1, 0) and (0, 1),
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and the eigenspace E0 defined by (4.3) for the linearized Bousinesq equation (4.1)
with boundary conditions (5.1-5.3) is two-dimensional and is given by

E0 = {α1Ψ1 + α2Ψ2 | α1, α2 ∈ R},
where

Ψi = (ei, Ti) i = 1, 2,

e1 =
(
−L sin

(πx1

L

)
cos(πx3), 0, cos

(πx1

L

)
sin(πx3)

)
,

e2 =
(
0,−L sin

(πx2

L

)
cos(πx3), cos

(πx2

L

)
sin(πx3)

)
,

T1 =
√
L2 + 1 cos

(πx1

L

)
sin(πx3),

T2 =
√
L2 + 1 cos

(πx2

L

)
sin(πx3).

When α1, α2 �= 0, the structure of φ = α1Ψ1 + α2Ψ2 ∈ E0 is given schematically
by Figure 5.1(a)-(d).

(a)                                                                                           (b)

(c)                                                                                                        (d)

Fig. 5.1. Roll structure: (a) Flow structure on z = 1, (b) flow structure on x = 1 or y = 0, (c)
an elevation of the flow, and (d) flow structure in the interior of the cube.
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The roll structure of φ = α1Ψ1 +α2Ψ2 ∈ E0 has a certain stability, although it is
not the structural stability, i.e. under a perturbation the roll trait remains invariant;
we shall report on this new stability elsewhere.

Furthermore, the critical Rayleigh number is

Rc =
π4(1 + L2)3

L4
. (5.13)

By Theorem 4.1, we have the following results.

1. When the Rayleigh number R ≤ Rc, the trivial solution φ = 0 is globally
asymptotically stable in H ;

2. When the Rayleigh number Rc < R < Rc + ε for some ε > 0, or when the
temperature gradient satisfies

κν

gα

π4(1 + L2)3

(Lh)4
< β =

T0 − T1

h
<
κν

gα

π4(1 + L2)3

(Lh)4
+ ε1, (5.14)

the Bénard problem bifurcates from the trivial state φ = 0 an attractor AR

with 1 ≤ dimAR ≤ 2.
3. All solutions in AR are small perturbations of the eigenvectors in E0, having

the roll structure.
4. As an attractor, AR attractsH−Γ, where Γ ⊂ H is a co-dimension 2 manifold.

Hence, AR is stable in the Lyapunov sense. Consequently, for any initial value
ϕ0 ∈ H − Γ, the solution SR(t)ϕ0 of the Boussinesq equations with (5.1)—
(5.3) converges to AR, which approximates the roll structure.

Remark 5.1. Since the eigenvector eigenspace E0 has dimension two, the bifurcated
attractor AR has the homotopy type of cycle S1. In fact, it is possible that the
bifurcated attractor is S1. Since the spaces E1 = {(u, θ) ∈ H1 | u1 = 0} and
E2 = {(u, θ) ∈ H1 | u2 = 0} is invariant for the equation (4.1), the bifurcated
attractor Σ contains at least four singular points. If Σ = S1, then Σ has exactly four
singular points, and two of which are the minimal attractors; see [6] for details.

Remark 5.2. As dim E0 = 2, both the Krasnselskii-Rabinowitz theory and the Hopf
bifurcation theorem, which requires complex eigenvalues, cannot be applied to this
case for the Rayleigh-Bénard convection.

Remark 5.3. By (5.13), the critical Rayleigh number Rc depends on the aspect
ratio; see also Remark 5.4 below.

5.3. Coupled roll structure. Consider the case

L1 = L2 = L, and
2 − 21/3

21/3 − 1
< L2 < 2 × 2 − 21/3

21/3 − 1
. (5.15)
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In this case, the wave numbers are (k1, k2) = (1, 1), and the eigenvalue is simple:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0 = Span {Ψ1},
Ψ1 = (e1, T1),
e1 = (u1, u2, u3),

u1 = −L
2

sin
πx1

L
cos

πx2

L
cosπx3,

u2 = −L
2

cos
πx1

L
sin

πx2

L
cosπx3,

u3 = cos
πx1

L
cos

πx2

L
sinπx3,

T1 =

√
L2

2
+ 1 cos

πx1

L
cos

πx2

L
sinπx3.

(5.16)

The topological structure of (5.16) is as shown in Figure 5.2(a)-(c)

From the topological viewpoint, the structure of (5.16) consists of two rolls with
the reverse orientation. The axes of both rolls are {(L/2, x2, 1/2) | 0 ≤ x2 ≤ L/2} ∪
{(x1, L/2, 1/2) | 0 ≤ x1 ≤ L/2} and {(x1,

L
2 ,

1
2 ) | 1

2 ≤ x1 ≤ L} ∪ {(L
2 , x2,

1
2 ) | L

2 ≤
x2 ≤ L}, respectively.

The critical Rayleigh number is

Rc = π4(L2 + 2)3/L4. (5.17)

By Theorem 4.2, the following assertions hold true.

1. When the Rayleigh number R ≤ Rc, the trivial solution φ = 0 is globally
asymptotically stable in H ;

2. When the Rayleigh number Rc < R < Rc + ε for some ε > 0, the Bénard
problem bifurcates from the trivial state φ = 0 two attracted regions U1 and
U2, such that the solution SR(t)φ0 has the coupled roll structure as t > 0
sufficiently large, with orientation depending on the initial value φ0 taken in
U1 or U2, respectively.

Remark 5.4. Both cases of (5.12) and (5.15) are consistent with physical experi-
ments. As we boil water in a container, when the rate of the diameter and the height
is smaller than

√
3 (the condition (5.12)), then the convection of heating water takes

the roll pattern, and if the rate is between
√

3 and
√

6 (condition (5.15)), then the
convection takes the coupled roll pattern.
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(a)                                                                  (b)

(c)

Fig. 5.2. Coupled roll structure: (a) Flow structure on x3 = 1, (b) Flow structure on x2 = 0,
and (c) An elevation of flows.

5.4. Honeycomb structure. As in the Bénard experiments, if the horizontal
length scales L1 and L1 are sufficiently large, then it is reasonable to consider the
periodic boundary condition in the (x1, x2)-plane as follows:⎧⎨⎩

(u, T )(x1 + k1L1, x2 + k2L2, x3) = (u, T )(x),

T = 0, u3 = 0,
∂(u1, u2)
∂x3

= 0, at x3 = 0, 1.
(5.18)

In this case, the critical Rayleigh number Rc takes the minimum of λ2
0(a) defined by

(5.9):

Rc = min
a
λ2

0(a) = 657.5, (5.19)

where ac = π√
2

is the critical wave number, representing the size of the cells in the

Bénard convection. Hence, the number r = 23/2πh/ac can be regarded as the radius
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of the cells. Thus the first eigenspace E0 of (4.1) is generated by eigenvectors of the
following type: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ = (e, T ),
e = (u1, u2, u3),

u1 =
π

a2
c

∂f

∂x1
cosπx3,

u2 =
π

a2
c

∂f

∂x2
cosπx3,

u3 = f(x1, x2) sinπx3,

T =

√
π2 + a2

c

ac
f(x1, x2) sinπx3,

(5.20)

where f(x1, x2) is any one of the following functions

cos(
2πk1x1

L1
) cos(

2πk2x2

L2
), cos(

2πk1x1

L1
) sin(

2πk2x2

L2
),

sin(
2πk1x1

L1
) cos(

2πk2x2

L2
), sin(

2πk1x1

L1
) sin(

2πk2x2

L2
),

with the periods L1 and L2 satisfying

4πk2
1x

2
1

L2
1

+
4πk2

2x
2
2

L2
2

= a2
c =

π2

2
, k1, k2 ∈ Z;

namely,

k2
1

L2
1

+
k2
2

L2
2

=
1
8
, k1, k2 ∈ Z. (5.21)

It is clear that the dimension of the first eigenspace E0 is determined by the given
periods L1 and L2 satisfying (5.21), and

dimE0 = even ≥ 4.

Various solutions having the honeycomb structure are found in E0. For conve-
nience, we list two examples as follows.

Square cells. The solution of eigenvalue equation (4.1) given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1 = (e1, T1),
e1 = (u1, u2, u3),

u1 = − 4
L1

sin
2πx1

L1
cos

2πx2

L2
cosπx3,

u2 = − 4
L2

cos
2πx1

L1
sin

2πx2

L2
cosπx3,

u3 = cos
2πx1

L1
cos

2πx2

L2
sinπx3,

T =
√

3 cos
2πx1

L1
cos

2πx2

L2
sinπx3,

1
L2

1

+
1
L2

2

=
1
8
,

(5.22)
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is a rectangular cells with sides of lengths L1 and L2.

Hexagonal cells. A solution in E0 having the hexagonal pattern was found
by Christopherson in 1940, and is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ = (e, T ),
e = (u1, u2, u3),

u1 = − 2√
6

sin
3πx1

2
√

6
cos

πx2

2
√

2
cosπx3,

u2 = − 2
3
√

2

(
cos

3πx1

2
√

6
+ 2 cos

πx2

2
√

2

)
sin

πx2

2
√

2
cosπx3,

u3 =
1
3

(
2 cos

3πx1

2
√

6
cos

πx2

2
√

2
+ cos

πx2√
2

)
sinπx3,

T =
1√
3

(
2 cos

3πx1

2
√

6
cos

πx2

2
√

2
+ cos

πx2√
2

)
sinπx3.

(5.23)

This solution is the case where the periods are taken as L2 =
√

3L1 and L1 = 4
√

6/3,
and the wave numbers are (k1, k2) = (1, 1) and (0, 1).

In summary, for any fixed periods L1 and L2, the first eigenspace E0 of (4.1) has
dimension determined by

dim E0 =

{
6 if L2 =

√
k2 − 1L1, k = 2, 3, · · · ,

4 otherwise.

Therefore, by the attractor bifurcation theorem, Theorems 4.1, we have the fol-
lowing results:

1. When the Rayleigh number R ≤ Rc, the trivial solution φ = 0 is globally
asymptotically stable in H ;

2. When the Rayleigh number Rc < R < Rc+ε for some ε > 0, the Bénard prob-
lem bifurcates from the trivial state φ = 0 an attractor AR with dimension
satisfying

5 ≤ dimAR ≤ 6 if L2 =
√
k2 − 1L1, k = 2, 3, · · · ,

3 ≤ dimAR ≤ 4 otherwise.

3. All solutions in AR are small perturbations of the eigenvectors in E0, having
the honeycomb structure.

4. As an attractor, AR attracts H − Γ, where Γ ⊂ H is the stable manifold of
the trivial solution with co-dimension 6 if L2 =

√
k2 − 1L1, k = 2, 3, · · · , and

with co-dimension 4 otherwise. Hence, AR is stable in the Lyapunov sense.
Consequently, for any initial value ϕ0 ∈ H − Γ, the solution SR(t)ϕ0 of the
Boussinesq equations with (5.18) converges to AR, which approximates the
honeycomb structure.

6. Two-Dimensional Rayleigh-Bénard convection: asymptotic and
structural stabilities of bifurcated solution

The main objective of this section is to study the dynamic bifurcation and the
structural stability of the bifurcated solutions of the 2-D Boussinesq equations related
to the Rayleigh-Bénard convection. It is easy to see that both Theorems 4.1 and
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4.1 hold true for the 2D Boussinesq equations with any combination of boundary
conditions as discussed in Section 2. Hence we focus in this section on structural
stability in the physical space of the bifurcated solutions, justifying the roll pattern
formation in the Rayleigh-Bénard convection.

Technically speaking, we see from (5.10) that as L2/L1 is small, the wave number
k2 = 0. Hence the 3–D Bénard problem is reduced to the two dimensional one.
Furthermore due to the symmetry on the xy–plane of the honeycomb structure of the
Bénard convection, from the viewpoint of a cross section, the 3–D Bénard convection
can be well understood by the two dimensional version.

For consistency, we always assume that the domain Ω = [0, L] × [0, 1] with co-
ordinate system x = (x1, x3). The 2-D Boussinesq equations for the 2-D Bénard
convection take the same form as the 3-D Boussinesq equations (2.4-2.6):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
Pr

[
∂u

∂t
+ (u · ∇)u + ∇p

]
− ∆u−

√
RTk = 0,

∂T

∂t
+ (u · ∇)T −

√
Ru3 − ∆T = 0,

div u = 0,

(6.1)

where the velocity field being replaced by u = (u1, u3), and the operators are the
corresponding 2-D operators in the x = (x1, x3) coordinate system. For simplicity,
we consider here only the free-free boundary conditions as follows:⎧⎪⎪⎨⎪⎪⎩

u · n = 0,
∂uτ

∂n
= 0, on ∂Ω,

T = 0 at x3 = 0, 1,
∂T

∂x1
= 0, at x1 = 0, L.

(6.2)

In this case, the function space H defined by (2.14) is replaced here by

H = {(u, T ) ∈ L2(Ω)3 | divu = 0, u3|x3=0,1 = 0, u1|x1=0,L = 0}.

By (5.10) and (5.11), for the equation (6.1) with the free boundary condition, the
wave number k and the critical Rayleigh number are

k � ac L/π =
L√
2
,

Rc = π4(k2 + L2)3/L4,

and the first eigenspace E0 is one-dimensional, and is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E0 = Span {Ψ1 = (e1, T1)},

e1 =
(
−L
k

sin
kπx1

L
cosπx3, cos

kπx1

L
sinπx3

)
,

T =
1
k

√
L2 + k2 cos

kπx1

L
sinπx3.

(6.3)

The topological structure of e1 in (6.3) consists of k vortices as shown in Figure 6.1(a)
and (b)
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(a)                                                                                          (b)

Fig. 6.1. Rolls with reverse orientations

By Theorem 7.3, the first eigenvectors (6.3) are structurally stable; therefore,
from Theorem 4.2 we immediately obtain the following result.

Theorem 6.1. For any bounded open set U ⊂ H with 0 ∈ U , there is an ε > 0, as
the Rayleigh number Rc < R < Rc + ε, U can be decomposed into two open sets U1

and U2 depending on R such that
1. Ū = Ū1 + Ū2, U1 ∩ U2 = ∅, 0 ∈ ∂U1 ∩ ∂U2;
2. for any initial value φ0 ∈ Ui (i = 1, 2) there exists a time t0 > 0 such that the

solution SR(t)φ0 of (6.1) with (6.2) is topologically equivalent to either the
structure as shown in Figure 6.1(a) or that as shown in (b) for all t > t0.

7. Appendix: Structural Stability for Divergence-Free Vector Fields
Let Cr(Ω,R2) be the space of all Cr (r ≥ 1) vector fields on Ω. We consider a

subspace of Cr(Ω,R2):

Br(Ω,R2) =
{
v ∈ Cr(Ω,R2) | div v = 0, vn =

∂vτ

∂n
= 0 on ∂Ω

}
.

Definition 7.1. Two vector fields u, v ∈ Br(Ω,R2) are called topologically equivalent
if there exists a homeomorphism of ϕ : Ω → Ω, which takes the orbits of u to orbits
of v and preserves their orientation.

Definition 7.2. A vector field v ∈ Br(Ω,R2) is called structurally stable in Br(Ω, R2)
if there exists a neighborhood U ⊂ Br(Ω,R2) of v such that for any u ∈ U , u and v
are topologically equivalent.

We recall next some basic facts and definitions on divergence–free vector fields.
Let v ∈ Br(Ω,R2).

1. A point p ∈ Ω is called a singular point of v if v(p) = 0; a singular point p
of v is called non-degenerate if the Jacobian matrix Dv(p) is invertible; v is
called regular if all singular points of v are non-degenerate.

2. An interior non-degenerate singular point of v can be either a center or a
saddle, and a non-degenerate boundary singularity must be a saddle.

3. Saddles of v must be connected to saddles. An interior saddle p ∈ Ω is called
self–connected if p is connected only to itself, i.e., p occurs in a graph whose
topological form is that of the number 8.
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The following theorem was proved in [7], providing necessary and sufficient con-
ditions for structural stability of a divergence–free vector field.

Theorem 7.3. Let v ∈ Br(Ω,R2) (r ≥ 1). Then v is structurally stable in Br(Ω,R2)
if and only if

1. v is regular;
2. all interior saddles of v are self-connected; and
3. each boundary saddle point is connected to boundary saddle points on the

same connected component of the boundary.
Moreover, the set of all structurally stable vector fields is open and dense in

Br(Ω,R2).

Remark 7.4. The structural stability theorems for the divergence–free vector fields
with the Dirichlet boundary condition and the Hamiltonian vector fields on a torus
T2 have been proved; see [8].
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