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Abstract. This paper is devoted to a detailed study of nonrelativistic particles
and their properties, as described by Galilei invariant wave equations, in order to
obtain a precise distinction between the specifically relativistic properties of ele-
mentary quantum mechanical systems and those which are also shared by non-
relativistic systems. After having emphasized that spin, for instance, is not such a
specifically relativistic effect, we construct wave equations for nonrelativistic
particles with any spin. Our derivation is based upon the theory of representations
of the Galilei group, which define nonrelativistic particles. We particularly study
the spin 1/2 case where we introduce a four-component wave equation, the non-
relativistic analogue of the Dirac equation. It leads to the conclusion that the spin
magnetic moment, with its Lande factor g = 2, is not a relativistic property. More
generally, nonrelativistic particles seem to possess intrinsic moments with the same
values as their relativistic counterparts, but are found to possess no higher electro-
magnetic multipole moments. Studying "galilean electromagnetism" (i.e. the theory
of spin 1 massless particles), we show that only the displacement current is respon-
sible for the breakdown of galilean invariance in Maxwell equations, and we make
some comments about such a "nonrelativistic electromagnetism". Comparing the
connection between wave equations and the invariance group in both the relativistic
and the nonrelativistic case, we are finally led to some vexing questions about the
very concept of wave equations.

Introduction

The subject of this paper1 may well seem doubly obsolete: is it
really worth while investigating wave equations in nonrelativistic
situations, when the battle-front of theoretical physics today runs
through Quantum Field Theory (and/or ^-matrix Theory) in completely
relativistic contexts ?

We think that the main justification to the present work lies in
some of the peculier results which we obtain as a matter of fact, these
results show the necessity of revising certain commonly held ideas on
quantum mechanics (QM). Specifically, it is most important, when one
goes from nonrelativistic quantum mechanics (NQM) to relativistic
quantum mechanics (RQM) to fully appreciate and clearly point out
what are the new features brought into the theory by the change in the
underlying kinematical group, as well as the concepts which are valid
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1 Based on part of the author's "These de Doctorat" [1].
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in both cases. Indeed there appear to be widespread misunderstandings
on these points in the current literature and textbooks, particularly
in what concerns the notion of intrinsic spin and magnetic moment for
elementary systems (particles).

We are here interested in a description of "nonrelativistie elementary
particles" and their properties. The frame of our investigation is furnished
by the classical analysis of invariance in QM, due to WIGNER [2], and
according to which the state space of any quantum mechanical system
is a representation space for the relevant kinematieal group: the Poin-
care group for RQM, the Galilei group for NQM. It is natural to call a
system "elementary" (we will also call such a system a "particle"),
if the corresponding representation is irreducible. We will not discuss
here the shortcomings of such a concept of "elementarity" instead, we
adopt it as a definition, which we strengthen by requiring that the con-
sidered system has no additional structure besides the one associated
Λvith the corresponding irreducible representation. The purpose of this
last proviso is to exclude from our considerations such systems as nuclei,
atoms or molecules in stable states which, though being described by an
irreducible representation of the kinematieal group, possess a complicated
internal structure, not accounted for by this representation.

The purely kinematieal properties of an isolated quantum mechanical
system, i.e. its behaviour under translations, rotations, uniform motions,
are completely described by the associated representation of the kine-
matieal group. At this stage, the notion of wave equation for particles
is to be considered as a particular method, in general not the most con-
venient one, of specifying the representation corresponding to the
particle: the invariance of the wave equation under the group operation
means that its solutions span a representation space for this group. I t
has become increasingly clear that, in kinematieal calculations, it is
much easier to deal directly with the representation of the group in a
convenient form, rather than with the wave equation and its solutions.

But suppose we now wish to study how the particle behaves in
external fields, for instance in order to know its intrinsic electromagnetic
properties. Then we cannot use the representation of the kinematieal
group which only describes the free particle. This is where the notion
of wave equations recovers all of its usefulness. Indeed, wave equations
constitute the only tool we know of, which enables us to describe inter-
actions in ordinary (first quantized) QM, via the trick of gauge in-
variance2 (of the second kind). Let us emphasize here that, throughout
this paper, we will only consider interactions of particles with external
(classical) fields, and not interactions between particles.

2 This is the place to recall that, in NQM, JATJCH [3] has shown the existence
of a relation between Galilean invariance and gauge invariance.
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Let us now precisely state our program: we want to establish wave
equations for nonrelativistic particles, derive from these wave equations
the properties (essentially the electromagnetic ones) of the particles
they describe, and compare the whole theory and its results to the
corresponding relativistic ones.

I. Galilei Group Representations and Nonrelativistic Particles

According to the point of view advocated in the Introduction, the
characterization of nonrelativistic particles is furnished by the theory
of unitary irreducible representations of the Galilei group. Let us briefly
review the results of this theory. The physical representations of the
Galilei group are nontrivial projective (ray) representations [4], the true
(vector) representations being devoid of physical content3 because they
do not permit the existence of any sensible notion of localizability [5].
A physical (unitary irreducible) representation of the Galilei group
(strictly speaking: an equivalence class of such representations) is
characterized by two parameters: a real positive number m and an
integer or half-integer positive number s [6], [7]. The representation
space (we now single out a particular element in the equivalence class)
can be conveniently chosen as the tensor product of a (2 s -f- 1)-dimensio-
nal vector space and the space L2(1R3) of square integrable functions
on the three-dimensional euclidean space. Let ^ ( p ) fp ζ R 3 ;
α = — s, . . ., -\-s] be any element of this representation space. Let
(b, a, v, M) be the generic element of the Galilei group with b a time
translation, a a space translation, v a pure Galilei transformation and
R a rotation. The considered representation of the Galilei group is
explicitly given by:
[U(b,a,v,B)Ψ]x (p)

= exp(i Eb - iy a) X Σ D8

aβ{R) ^ ( ^ ( P - mv)) [ }

P2

where E = -~—-and Ds is the (2s -f- 1)-dimensional representation of
the rotation group. This representation is unitary for the scalar product
corresponding to the following definition of the norm:

ΪΨ\\2= Σ fd3p\Ψa(V)\2 (2)

The physical interpretation is straightforward: ^ ( p ) is the wave
equation in momentum space of a particle with mass m and spin s. The
kinematical properties of this particle are completely described by the
representation (1).

3 Except for a certain class of such representations which have been shown to
describe "massless nonrelativistic particles" [7].
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Let us mention the peculiar role played by the mass. Corresponding
to its appearance as characterizing the protective representations of the
Galilei group, the mass operator generates a superselection rule [4]
(Bargmann's superselection rule), which has important consequences
[7], [8]. But we will not be concerned here with this aspect of galilean
in variance.

The main point we wish to emphasize is the natural appearance of
the concept of spin. It comes out here much in the same way as in RQM
[2]. Accordingly, spin is not due to "relativistie effects", is not a "con-
sequence of Dirac equation". Even in NQM, spin has not to be considered
as an ''extraneous hypothesis", an "independent addition", but on the
contrary, follows at once from the first principles.

Having thus shown that spin is not a characteristic feature of RQM,
one may well wonder what are these features ? In order to answer this
question, we clearly have to construct a theory of nonrelativistic particles
and their properties which could be compared to the relativistic theory.
We will therefore attempt to derive wave equations for nonrelativistic
particles of any spin. We open this program by investigating the Galilean
invariance of the standard nonrelativistic equation, the Schrόdinger
equation, in order to understand its connection with the theory of
representations of the Galilei group.

II. Galilean Invariance of the Schrδdinger Equation

The motivation for the present considerations on the Schrόdinger
equation is twofold: first, its Galilean invariance is overlooked in most
textbooks (at best, one finds it relegated to the minor rank of an exercise),
though it is no less interesting and much easier to study than the
thoroughly studied Lorentz invariance of the Dirac equation; secondly,
we may hope to get some hint about the derivation of other non-
relativistic wave equations.

The Schrόdinger equation for a particle with mass m writes (we put
S = 1):

The wave functions Φ are complex valued functions of the time t and the
spatial coordinates x, with respect to which they are square integrable:

| |Φ||2 - / \Φ(x, t)\2 d3x < + oo . (4)

By virtue of the equation (3), the norm ||Φ|| is actually time independent.
Let the particle be subjected to a general Galilei transformation

(b, a, v, B). Galilean invariance demands the behaviour of the particle
to be governed by the same equation (3) after the transformation. More-
over, if such a transformation is not to modify the physical properties
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of the particle, the localization probability density of the particle at a
given point before the transformation must be equal to the localization
probability density of the particle at the transformed point after the
transformation. In other terms:

|Φ'(x',ί ')! 2=|Φ(x,ί)! 2 (5)

where Φ and Φ' are the wave functions of the particle respectively
before and after the transformation and the points (x, t) and (x', tf) are
related by the considered galilean transformation :

ίx' = Rx + \t + a
(6)t' = t+b .

The two wave functions thus differ by a phase factor:

Φ'(x/,ί/) = e ΐ / ( X f ί )Φ(x,ί) (7)

and it must be possible to find a phase function / such that Φ' obeys
the Schrodinger equation (3) as soon as Φ does. This is indeed the case.
One finds after a simple calculation:

f(x,t) =~mγ2t + m\Έx+C . (8)

where the constant C could depend on the considered Galilei trans-
formation.

We have thus shown that the Schrodinger equation is Galilean in-
variant and, moreover, we have obtained the explicit transformation law
of the wave functions under a Galilean transformation. The correspond-
ence (7) Φ -> Φ' is a unitary ray representation of the Galilei group.
Since the Schrodinger equation describes spinless particles with mass m,
this representation is necessarily equivalent to the corresponding
momentum space representation (1) (with s = 0). This equivalence is
readily demonstrated by means of a simple Fourier transform. Indeed,
there is a one-to-one correspondence between the space of square inte-
grable functions in momentum space and the space of square integrable
solutions of the Schrodinger equation (3) (completed with respect to the
scalar product associated with the norm (4)) according to:

Φ (x, t) = / e~iEt + *P x ^(p) dz<p (9)

P2

where E = -~— . The transformation law (1) then agrees with (7), (8)
for C = 0.

It is now clear that the kinematical descriptions of a free non-
relativistic spinless particle by the associated irreducible representation
of the Galilei group, or by the Schrodinger equation, are completely
equivalent. As pointed out in the Introduction, if we prefer the group
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representation for describing the free particle, the unchallenged merit
of the Schrδdinger equation is to allow for the description of the particle
interacting with an external field, via the gauge in variance trick of
replacing:

\-iVx by - i F β

{Y\*J&) being the 4-potential of the field. Remark that one should question
the internal consistency of such a scheme where one introduces electro-
magnetic fields (obeying typically relativistic equations) in nonrelativistic
situations. We shall discuss this problem in VI.

III. A Nonrelativistic Dirac Equation

a) Wave Equations for Nonzero Spin?

We will noλv try to obtain wave equations for nonrelativistic particles
of any spin, taking the opposite way to the one we just followed, i.e.
we start from the irreducible representation of the Galilei group to reach
a related wave equation which, though equivalent to the considered
representation in the free particle case, can be used in the presence of
interaction.

We have first to go from the momentum space representation (1) to
some configuration space representation. Indeed, only in configuration
space does the idea of wave equation as a partial derivative equation
make sense moreover, when interaction is present, it is only in configura-
tion space that such notions as forces, potentials, are physically defined.
Using the approach of NEWTON and WIGNER to localizability problems
[9], it can be shown that a particle described by a representation (1)
is localizable for any value of the spin, if it has a nonzero mass. The
position operator corresponding to this notion of localizability is simply
given, in momentum space, by:

X=iF, (11)

this being valid independently of the spin of the particle. That means
that we obtain an a priori acceptable configuration space representation
equivalent to (1), by performing a Fourier transformation in a way
completely analogous to the spinless case. It suffices to use eq. (9) for
the (2s + 1)-component momentum space wave function, thus getting
(2s + l)-component wave functions Φα(x, ί) defined in configuration
space. The Galilei group representation now takes the form:

Φi(x', 0 = eUW Σ Ds

aβ(B) Φβ(x, t) (12)
β

with the same phase function / (8) as in the spinless case (7). This repre-
sentation is unitary for the scalar product corresponding to the definition
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of the norm:

= Σ f\ΦJ*t)\2d3x. (13)Σ
α = — s

This expression is time independent, due to (12). The law (12) is a
satisfying transformation law in that it is local, the value of the new
function Φf at the transformed point depending only on the value of the
function Φ at the initial point. Things are simpler here than in the
relativistic case where the dependence of the little group operators on
the momentum p [2] requires a generalized Foldy-Wouthuysen trans-
formation to be made on Wigner's representation before a local confi-
guration space wave-function may be obtained by Fourier transforma-
tion.

We now search for an invariant wave equation associated with the
transformation law (12). What we mean is: does there exist a partial
derivative equation such that it is automatically obeyed by Φ', if it
is obeyed by Φ, Φ and Φ' being related by (12) ? In other words, we

are looking for a Galilei invariant operator formed from -~τ- , Vx and the

spin operators in the (2s -f 1)-dimensional space. A tedious but straight-
forward calculation yields that the only solutions to this problem are
the functions of the Schrόdinger operator :

The spin operators do not appear if we pose the problem in this way.
It should be remarked that the situation is the same in the case of the
Poincare group. Wave equations which couple the different spin states
are possible only if one allows for wave equations with more than (2 s -h 1)
components.

b) Linearization of the Schrodinger Equation

We shall now derive such a wave equation, which will turn out to
describe spin 1/2 particles, using the heuristic idea that DIRAC applied
so successfully in RQ.M [10] we require the equation to be of first-order
in all the space-time derivatives. Thus, we search a wave equation in
the form:

ΘΦ d^(AE + B p + C)Φ = 0 , (15)

A, B, G being linear operators to be determined, operating in a vector
space whose dimension we still ignore but which we will assume to be
finite.

For the solutions of (15) to obey the Schrόdinger equation:

SΦ = 0 (16)

there must exist some operator 0' = AΈ -f- B' p + C", such that
multiplying (15) by 6' we recover the Schrόdinger equation. In other
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words we must have

(17)

the arbitrary numerical coefficient 2 m providing a convenient normali-
zation. By identifying the various monomials in E and p, we obtain the
following set of conditions:

'Bi+ B\A - 0
IB^Γ B-B^ -2δis ( a , / - 1 , 2 , 3 ) (18)

G'C [
Defining the new operators:

1 1
B6 = A-^-C B'δ = A'~ ~-C

the conditions (18) can be rewritten as:

B'μB, + B'vBμ = - 2δμv • (μ, v = 1 to 5) (20)

All the representations of such an algebra can be obtained from those
of a Clifford algebra with dimension 4:

V«γβ + γβγ« = Zδ«β ( α , / J = l t o 4 ) (21)

according to the correspondence:

BΛ=--Bγx B'a=-γ,β-i ( α = l t o 4 )

where β is an arbitrary nonsingular matrix. Since we are only interested
in the irreducible representations, we may use the standard results for
the Dirac algebra (21). All the irreducible representations then have
dimension 4 and are equivalent. We choose the following realization,
standard for the Dirac equation, where the σ/s are the Pauli matrices:

So that, after (19):

The wave function Φ is thus a 4-component object, which we write as

φ = y\ f ψ and χ each being a 2-component function. Our wave equation

finally reads:

B (°l) B
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By direct substitution, one finds that both φ and χ satisfy the Schrό-
dinger equation. Since the A matrix in (15) is singular (see (24)), the
wave equation (25) considered as an eigenvalue equation for the energy

p2

has only two identical eigenvalues, E = -~— precisely. The corresponding

\
eigenvectors are of the form Φ = I 1 , N I . In that sense, these

4-components might seem to contain an useless redundancy. However,
this is not the case, as will be seen when we introduce the effect of an
external electromagnetic field by the usual substitution (10).

c) Galilean Invariance and the Interpretation of the Wave Equation

Before definitively accepting the wave equation and using it, it is

necessary to prove its galilean invariance in order to justify our previous

heuristic derivation. Calling Φ' — 1,1 the wave function transformed

from Φ — I I by the general galilean transformation (b, a, v, R) which

takes (x, t) into (x', ί') (6), one finds that the wave equation (25) is
invariant under the substitution:

Ψ(x,t)\
(26)

where the phase function / is the same as in the Schrόdinger case (8), and
D1/2 is the two-dimensional ray representation of the rotation group.
The φ component transforms very simply, without mixing with the χ-
component. In its transformation law

φ' (x', 0 - eif W)DV2 (R) φ (x, t) (27)

we recogmze the particular case s = 1/2 of the general expression (12)
of the Galilei group irreducible representations. Since the function φ
suffices to describe all the physical properties of a free system, the wave
equation (25) describes a nonrelativistic particle ivith mass m and spin 1/2.

Returning to the transformation properties (26) of the complete

wave function, we find out a remarkable fact: the 4 x 4 matrices

make up a faithful representation of the "homogeneous Galilei group",
i.e. obey the multiplication law:

AV2(Y', R') Z1V2(V, R) = ^ ^ ( y ' + RΎ, R'R) (29)
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which is readily verified, using the standard relation:

DV2 (22-1) σ ^1/2 (22) = jβ <r (30)

The wave function Φ = ί I thus appears to take its values in a finite

dimensional representation space of the homogeneous Galilei group.

d) The Particle in an External Field and its Magnetic Moment
I t is time to draw more explicit conclusions from our wave equation

(25). Let us consider the effect of an electromagnetic field on the particle.
Here also, it might be questioned if the introduction of such a field,
typically relativistic since obeying Maxwell equations, is not to destroy
the internal consistency of a Galilean theory; we will show (VI) that, at
least in the case of static fields, this is not so. Using gauge invariance of
the second kind to introduce the fields {Ψ*, *j&) (via the replacement (10)),
the wave equation for a nonrelativistic particle with mass m, spin 1/2
and charge q reads:

2mχ = 0 (31)

We eliminate the auxiliary components χ, thereby obtaining the following
physical wave equation for φ:

where Jή? = rot <j& is the magnetic field. Obviously, what makes this
equation interesting is the last term which proves the existence of an
intrinsic magnetic moment for the particle, given by:

μ = ^~σ (33)

Since the spin of the particle is S = -^ σ, its gyromagnetic ratio is

γ = — , i.e. twice the value of the orbital ratio, so that the spin Lande

factor reads gs — 2.
A complete nonrelativistic theory predicts the correct^ value for the

intrinsic magnetic moment of a spin 1/2 particle.
This phenomenon, which caused so much trouble to physicists in the

twenties and which Dirac first explained by means of his equation, is
thus shown not to be a specific consequence of relativistic invariance.
The ''extraordinary" value of the spin gyromagnetic ratio, like the very

4 As emphasized in the Introduction, the particles here considered are supposed
to be completely described by their wave equation, i.e. there are no strong inter-
actions, neither radiative corrections to modify the derived value of the magnetic
moment.
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existence of the spin, is nothing of a "relativistic effect" as is plainly
or tacitly stated in many textbooks 5.

Of course, our final equation (32) is nothing but the usual Pauli
equation [11]. The novelty of our approach lies in the fact that:

i) the spin degrees of freedom do not have to be introduced "ad hoc",
but are contained in the theory from its starting point, equation (25).

ϋ) the correct value of the magnetic moment results from the theory
and does not need to be taken out from experimental results. Our
derivation, moreover, automatically implies the Galilean invariance of
the Pauli equation.

It must be added that eq. (32) shows no evidence for spin-orbit
interaction or the Darwin term. These are truly relativistic effects, only
predicted by the Dirac equation and whose practical importance is a
sufficiently striking success of this equation.

GALINDO and SANCHEZ DEL RIO (12], had already announced such a
result on the nonrelativistic nature of the extraordinary spin magnetic
moment. However, we do not think their derivation to be quite satis-
fying : they linearize the Schrodinger equation in such a way as to intro-
duce the square root of the energy operator. And worse, their equation
is not invariant under the whole Galilei group but only under its sub-
group which they call "static" and which does not include the pure
Galilei transformations. Let us also mention that EBERLEIISΓ [13] obtained
the correct magnetic moment in the Pauli equation from very different
considerations, of a formal mathematical nature.

e) Probability Density and Current

In order to apply the wave equation (25) to the analysis of physical
problems, we have to know some sesquilinear form in the wave function
Φ, which can be used as a probability density. This form may be deter-
mined by the condition that the associated norm of Φ be time-inde-
pendent by virtue of the wave equation. Let us write the wave equation
in the form:

f ΐ — ' * - ,34,
[— iσ - V'ψ + 2rnχ = 0.

The norm of Φ must be defined by:

\\φ\\2 = f Ψ+φd3x ( 3 5 )

5 It might be that these unfounded assertions result in part from the use of a

unit system in which the Bohr magneton writes μB = -x I instead of -^— here I,

the presence of the constant c giving a "relativistic look" to such a formula. In this
connection we will see later that dimensional arguments, when carefully handled,
give interesting results (IV.c).
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in order to be time-independent according to (34). We then define the
probability density:

ρ = φ+φ . (36)

This sesquilinear form, in spite of its appearance, is nondegenerate
indeed, ρ = 0 demands φ = 0, which, in turn, implies χ = 0 after (34),
so that finally Φ = 0; from the galilean transformation law (27), it is
seen that the probability density ρ is a galilean scalar, in accordance
with its physical meaning, as in Schrόdinger case.

To the conserved norm (35), there corresponds a continuity equation

4f+divj = 0 (37)

where j is a probability density current. After the wave equation (34)
and its adjoint, we may write:

σ)φ (38)

= div(φ+σχ + χ+aφ) .

The simplest choice for the current, that is

] = -(φ+σχ + χ+σφ), (39)

is the only one compatible with the minimal electromagnetic coupling
discussed above. Indeed, a more transparent expression for this current
j is obtained by eliminating the auxiliary components χ with the help of
equation (34). Expressed in term of φ only, we obtain, after manipulating
some Pauli matrices:

The first term on the right-hand side is completely analogous to the
usual expression for the probability density current of the Schrόdinger
equation. The second term is a spin current, which gives rise to the
correct value (33) of the spin magnetic moment when the current (40)
is inserted in the standard electromagnetic interaction Lagrangian:

Lι = qf(Qrr-\'^ί)d?x. (41)

In fact, the spin part of this Lagrangian may be cast in the form:

(42)

One recognizes the existence of an intrinsic magnetic moment μ= -^—a.

21 Commun. math. Phys., Vol. 6
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f) Connection ivith the Dirac Equation

Let us write the Dirac equation in the following way:

where df is the total energy (mass + kinetic) and φ, χ two 2-component
spinors (usually termed big and small component respectively of the
Dirac wave function). In the nonrelativistic limit where (o — m + E,
E <; m, it is natural to write equation (43) in the approximate form (25),
thus recovering in almost a trivial way our wave equation, which appears
very simply as the nonrelativistic limit of the Dirac equation. As a
matter of fact, some authors have written down this equation when
studying the Dirac equation and its nonrelativistic limit. However, they
usually jump over to the Schrόdinger equation which results from this,
losing in the process many interesting features. On the contrary, it is
most rewarding to pause a while at this stage, in order to exhibit the
Galilean invariance of this nonrelativistic equation. While the usual
way of identifying the magnetic moment of a Dirac particle consists in
introducing the electromagnetic fields in the Dirac equation and then
going to the nonrelativistic limit, we have shown that it is sufficient to
introduce the electromagnetic fields, after taking the nonrelativistic limit.

IY. Nonrelatiyistie Wave Equations for any Spin

a) General Remarks

In RQM, the relation between irreducible representations of the
Poincare group and wave equations by no means is a simple one. While
a particle with spin s is described, in WIG^ER'S standard form of the
irreducible representations, by a (2 s + l)-component wave function [2],
non-trivial wave equations can only be written for wave functions with
a larger number of components6. The wave equation then may be viewed
as simultaneously expressing constraints on the "redundant" com-
ponents and equations of motion for the "physical" ones. But the
separation is not a covariant one. In fact, it turns out that the usual wave
equations are characterized by a representation of the homogeneous
Lorentz group according to which the components of the wave function
transform. The appearance of the Lorentz group, instead of the rotation
group (little group) in WIGNER'S theory, is rather mysterious.

The same mystery is present in NQM. Although we do not under-
stand at present its physical meaning, we nevertheless adopt the same
guideline as in the relativistic case on our way from the irreducible
representation of the invariance group to a wave equation. Specifically,

6 For a recent comprehensive article on relativistic wave equations, containing
numerous references to original papers, see ref. [14].
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we will require the components of the wave function to transform
according to some finite-dimensional representation Δ of the homogeneous
Galilei group:

Φf (x', V) - βif <x> *> A (v, B) Φ (x, t) (44)

where / is the standard phase function. It is such a transformation law
which we already met in the spin 1/2 case (26). Since any wave equation
can be re-expressed as a first order equation, we could look for the more
general invariant equation of the form (15). This is the method used by
GEL'ΓAND and YAGLOM in RQM7. I t leads to a simultaneous determina-
tion of the representation A and the operators (A, B, C). Unfortunately,
the homogeneous Galilei group (isomorphic to the three-dimensional
euclidean group) is not semi-simple and its finite dimensional represen-
tations are rather complicated to classify [16]. In particular, if faithful,
they are necessarily nilpotent and thus cannot be irreducible, but at
most undecomposable (such is the case for the representation (28)).
It is not easier to construct them by contracting [17] finite-dimensional
representation of the Lorentz group, since it does not suffice to consider
the well-known irreducible finite-dimensional representations Q)iΛ' \ for
instance, the undecomposable representation (28) derives by contraction
from the reducible Dirac representation ^°>1/2 $ IF1/2*0 of the Lorentz
group.

b) The Bargmann- Wigner Method

We thus try another approach which will prove more rewarding,
using Bargmann-Wigner method [18] in our Galilean situation. Consider
the complex valued functions in the coordinates [x,t) and in N discrete
four-valued variables λt {)H — 1, 2, 3, 4; i = 1, . . ., JV).We require these
functions Φ(x, I λlf . . ., λx) to be symmetrical in the N variables λ,
which already reduces the number of independent components from 4tN

to —WΠΓΓ~ * ^ o r e a c n v a R 1 Θ oί i = 1, . . ., N, one defines an operator θi

(see IILb), which acts trivially on the indices λ, except the ^ th on which

it operates according to the definition:

«.-(.!, v:), t«)
The function Φ is now required to obey the following set of equations:

θtΦ^O ό = l , . . . , # (46)
in complete analogy to the relativistic Bargmann-Wigner wave equations.
Let us define the norm of the state represented by the wave function
Φ b y :

\\2-Σ'- Σ f \ Φ ( x > t ' > λ i > . - > h * ) \ 2 d * z (47)

7 Their work is reviewed and the references to the original papers (in Russian)
are given in ref. [15], part II, chap. II.
21*
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It is non-degenerate and time-independent by virtue of the wave equa-
tions (46) (compare the corresponding discussion in IlI.e). This definition
of the norm endows the space of wave functions with a Hubert space
structure; in this Hubert space operates an unitary representation of
the Galilei group given by:

Φ' (x', Π = eif <x *> # Λ Ί (v, R) Φ (x, t) (48)

where / is the usual phase function (8), (x', V) depends on (x, t) according
to (6) and δ W is the completely symmetrized tensor product of N

def

representations δ^ = Zl1/2 (defined by eq. (40)) of the homogeneous
Galilei group. The operators δ [Λ^ of these representations are linear
operators acting on the indices λ of the wave function. The invariance
of the wave equation (46) under the representation (48) of the Galilei
group is easily proved, as in the spin 1/2 case (see III.c).

We are left with the problem of the physical interpretation of these
Λvave equations. What kind of particles do they represent 1 This should
be answered by reducing the representation (48) into a sum of irreducible
components. But we may proceed more rapidily. As a matter of fact,
in this reduction will appear various irreducible representations corre-
sponding to the redundant components of the wave function in which
we are not interested, since they do not carry direct information on the
particle described by the wave equations (46). Instead, it suffices to
consider the independent components of the wave function. Exactly as
in the spin 1/2 case, we use the wave equations themselves to eliminate
all the components Φ (x, t\ λ) where one index λ at least takes the values
Xi = 3, 4; by expressing such components in terms of the components
Φ(x, t\ λ) where each index λ only takes the values λt = 1, 2, we are
left with a priori 2N components. But the symmetry of Φ in the variables
λ reduces the number of independent components to (N + 1) (this is the
number of ways of distributing the values 1 and 2 between the N indices
λ without taking their order into account). Due to the definition of the
representation δ fχT| , this (N + l)-component object ψ transforms ac-
cording to the following representation of the Galilei group:

<p' (x', 0 - eif <x'<> #*Π (v, R) ψ (x, t) (49)

where cft^ is the (N + 1)-dimensional representation of the Galilei group
obtained by restricting the matrices of the representation δ lN^ to the
(invariant) subspace defined by the values λι = 1, 2 of the indices λ.
According to the expression (40) of the matrices /I1/2 whose symmetrized
tensor product defines δ^-N\ cfiN] is but the symmetrized tensor product
of N irreducible representations D1/2 (= d^) of the rotation group, so that

d^(\,R) = DN/2(R) (50)

Λvhere DNI2 is the irreducible (N -f 1)-dimensional representation of the
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rotation group. The independent components of the wave equations thus
transform according to:

φ'{xf, t') = e^x^DNf2{R) φ{x, t) (51)

in which one recognizes an irreducible representation of the G alilei group:
see equation (12). Therefore:

The equations "ά la Bargmann-W igner" (46) describe a nonreίativistic
particle with spinN/2 and mass m.
(the mass m appears through the phase function / (8)).

Of course, these wave equations are much more complicated than
the representation (51), but they will enable us to study nonrelativistic
particles interacting with external fields. However, for that purpose, the
equations (46) as they stand, are not yet very suitable, because of the
great number of redundant components, so that it is useful to cast them
in a somewhat more tractable form. We will illustrate this process and
the subsequent use of the resulting equations in the case of a spinl
particle. A further specialization to the zero mass case will yield the
equations of "galilean electromagnetism".

c) Electromagnetic Properties of Elementary Systems

As already emphasized, the main advantage of wave equations is
to permit the study of the electromagnetic interactions of elementary
systems8. It may be said here that the intrinsic magnetic moment for
a particle of spin 5 Φ 0 , charge q and mass m is found to be, in RQM,

μ — -X— for all spin values where it has been computed, i.e. any half-

odd-integer value [19] and s = 1 [20], 2 [21]. In NQM, we computed
the magnetic moment of a spin 1/2 particle and will soon do the same
for a spinl particle. We find the same value of the magnetic moment
and except to obtain it also for any other value of s. I t is most dis-
concerting that this simple result needs rather involved computations.
A simple argument would be desirable in both RQM and NQM.

Concerning the higher multipole moments, it is easy to see from
elementary dimensional analysis that they must vanish in NQM. A mass
m and spins particle is said to possess an electric (resp. magnetic)
multipole moment in order I, or 2ί-polar moment, if the expression for
the energy of the particle in an electrostatic (resp. magnetostatic) field
linearly depends on the spatial derivatives of order I of the electric
(resp. magnetic) potentials. In other words, there exists interaction

8 We recall that, throughout this paper, by "elementary system", we mean a
system strictly obeying the ordinary wave equations, i.e. we do not consider
radiative corrections neither, a fortiori, strong interaction effects.
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terms such as:

( 5 2 )

where {i^, <j&) are the electromagnetic potentials and Dι some differential
operator of order I in the spatial coordinates. The coefficients εW and
μ(ι>} suitably normalized, give the value of the electric and magnetic
multipole moments of order I. Recall that a spins particle cannot possess
multipole moments beyond the order 2s, and that elementary consider-
ations about parity (when it is conserved, which we admit) show that
the electric (resp. magnetic) multipole moments of odd (resp. even)
order identically vanish.

We may derive dimensional equations for the multipole moments
by recognizing the quantities (52) to have the dimensions of an energy.
Let us choose a unit system with fundamental quantities: length (dimen-
sion L), mass (M), time (T) and charge (Q). We obtain immediately:

[ε<*>] = QLι

-1 ( 5 3 )

In a relativistic theory of an elementary system, the only quantities
which we may use are the mass m and charge q of the particle along with
the universal constants % (Planck's constant) and c (light velocity).
These define unambiguously a certain unit system, so that one has
necessarily:

(54)

where α ι ? βk are real numbers.

Let us now remark that in a nonrelativistic theory, the velocity of
light is irrelevant and does not enter the equations. As a result, in such
a theory, only the quantities (54) which do not depend on c, may be
obtained. The only possibility thus left to a galilean particle is to possess
electromagnetic moments:

I of course α0 = 1 by definition and we mentioned that β1= —\ .

A nonrelativistic particle cannot possess intrinsic electromagnetic
properties besides an electric charge and a magnetic dipole moment.

So that the quadrupole electric moments, etc., for elementary systems
are specifically relativistic effects.
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Such a result obviously is wrong if the particle is not "elementary",
i.e. if it possesses an internal structure characterized by some supple-
mentary parameters, binding energy, mean radius, etc. Such is the case
for the deuteron for instance, so that its nonvanishing quadrupole
moment does not contradict our result.

V. Galilean Particles with Spin 1 and Nonzero Mass

a) The Representation of the Homogeneous Galilei Group
We shall first derive the representation of the Galilei group corre-

sponding to the transformation properties of the wave function describ-
ing a spinl galilean particle. The equations (46) "a la Bargmann-
Wigner" with N = 2 constitute our starting point. The representation
which we are looking for is given by the general formula (48) it remains
to obtain a somewhat more explicit characterization of the representa-
tion δ^ of the homogeneous Galilei group. This is the symmetrized

tensor product of two representations Zl1/2. Let if J denote a standard

basis in the representation space of zl1/2 (see III. c). We construct a basis
in the representation space of δ^ by taking a complete set of independent
linear combinations of symmetrical tensor products of two such standard

basis I I and ( I . Defining "adjoint" basis (φγ) according to:
\Xi/ \7ΛI *

ψ = φτ<*2 % = xT°2 (56)

where (φτ χτ) is the transpose of I j , we choose the following basis in

the ten-dimensional representation space of δ^:

ϋ = φ1σφ2

= χ1ψ2 - φ1χ2

We now use the explicit form (28) of the representation δ^ — Δ1^ of

the homogeneous Galilei group under which ( I and ( I transform,
\Xl/ \%2/

to obtain the transformation properties of the wave-function defined
in (57). Using the identity (30), we find:

W = W+v R\J

L' = i2L + v x 22M + m [vϊF + v(v EV) - ~ (v2) 22ϋ]

M' = JRM + m[v X 22ϋ] .
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It can be checked by a direct and instructive computation that this is
a faithful ten-dimensional representation of the homogeneous Galilei
group. This representation is reducible but undecomposable (not com-
pletely reducible), although it may be obtained by contraction [17] from
the completely reducible representation ί̂ 1/2'1/2 ® ^0,1/2 φ ̂ 1/2,0 of ̂ ] i e

Lorentz group which is used in the description of a relativistic spinl
particle. The components (U, W) correspond to the four-vector of the
relativistic case which transforms under &}1!2*1!2 and the components
(L, M) to the antisymmetric tensor of rank two which transforms under
00,1/2

b) The Wave Equation

From now on, we use the components (U, W; L, M) with the trans-
formation properties (58) to describe the wave function of our spinl
particle. These are in fact functions of space-time variables whose com-
plete galilean transformation law is given by (48), with (58) giving the
explicit form of the representation δ^ of the homogeneous Galilei group.
The three independent components are given by the vector-valued wave
function U which transforms according to (51) (with N = 2), thereby
illustrating the general theory of IV. b.

We now want to rewrite the Bargmann-Wigner equations with these
components (U, W; L, M). We use, for that purpose, the definitions (57)

and the Dirac-like equations (25) obeyed by I I and I 1 . One obtains
\ Xi/ \ X21

the following system:

x M = m L - mE\3 .

From these ten equations for the ten components, one may deduce

supplementary relations:

fp X L = -EM
( p . M = 0 » Ϊ F - P U = O (60)

One checks that all these equations remain unchanged when (TJ, W L, M)

are subjected to the transformations (58), along with (E, p) being trans-

formed according to the standard law:

p' = jβp + mv

This proves the Galilean in variance of our equations. Moreover, it
follows from these equations that each one of the components
(U, W; L, M) separately obeys the Schrόdinger equation. In other words,
the equations (59) viewed as an eigenvalue problem for the energy gives

P2

the expected Galilean value E = -^— .
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In the same way as our equations (25) for spin 1/2 appear as a non-
relativistic limit of the Dirac equation, the equations (59) may be
derived by a suitable limit process from the Proca equations [20] which
describe relativistic spinl particles.

c) Electromagnetic properties

The essential advantage of the wave equations (59) over the standard
Galilei group representation for a spin s = 1, is to permitthe study of
the particle behaviour in external fields. We introduce electromagnetic
fields in the wave equation (59) by the minimal coupling recipe (10).
The game consists in eliminating the auxiliary components (W\ L, M)
to obtain an equation for the essential components XL This equation will
give the energy of the particle in presence of the fields. It is somewhat
disappointing that this computation is a very tricky one, rather more
involved than the corresponding elimination process in the relativistic
case, where a covariant formulation is of a great help. We will not re-
produce here these manipulations. Let us simply state the final results:

the particle is endowed with a magnetic moment: μ = -~— S, where S is

its spin (i.e. the matrices {Sk)aβ = iεk;xβ). As in the spinl/2 case, this
intrinsic magnetic moment is the same as the one obtained in RQM. But
contrarily to the relativistic situation, our particle has no electric
quadrupole moment. That this is a general property of galilean particles
has been demonstrated in IV. c. Finally, there appear some derivative
couplings between the electromagnetic field and the wave function (but
such complicated terms also exist in the relativistic case).

VI. Galilean Έlectromagnetism

a) The Wave Equations

The relativistic wave equations for a spinl massless particle are the
Maxwell equations in vacuo:

ίp x S = -
(62)

the fields {$,&?) deriving from the potentials {ts4, Ψ~):

Gauge transformations of the second kind:

->*sί + p/1

-T -> r + EΛ ( 6 4 )
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where Λ is some arbitrary scalar function, do not modify the fields.
What is now the situation in the Galilean case % Starting from our

wave equations (59) and (60), setting m = 0, and changing the notation
(U, W;L3Wj to the more conventional one ^i

/V\€^) as above, we
obtain a similar system:

p ef = 0 (p x <? =• _E#e

I „ (65)
The definitions (63) of fields in terms of potentials remain valid as

well as the form (64) of gauge transformations. Another way to derive
the galilean wave-equation is to write Maxwell equations in the form:

where we have introduced the constant c (the velocity of light), impli-
citely taken as unity in the preceding formulas. In the nonrelativistic
c -> oo, one obviously obtains the same equations (65), although such a
limit method in general may be misleading. Since Maxwell equations
may be obtained from Proca equations by setting m = 0, one may
exchange the limits m -> 0 and c —> oo, which checks the coherence of
our results.

It is easily seen that the equations (65) imply:

Δ & = 0 ΔW = 0 . (67)

These equations also result directly from the relativistic equations

\ ^ 0 (68)

when taking the limit c —> oo.
A natural Galilei-invariant gauge is fixed by the transcription to the

present case, m = 0, of the last of equations (60):

d i v ^ - 0 (69)

(which is but the nonrelativistic limit of the Lorentz gauge condition).
The potentials then also obey the equations:

Zl-T=0 zW=0. (70)

The fields (tjtf^ S',^) describing a galilean spinl massless particle
transform according to a representation of the Galilei group of the ge-
neral form (44) with the peculiarity that the phase function / now van-
ishes (see (8)). This corresponds to the fact that galilean particles with
zero mass belong to true (vector) representations of the Galilei group [7]
contrarily to nonzero mass particles which correspond to nontrivial ray
representations. We still have to exhibit the representation of the homo-
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geneous Galilei group. It is given by formulas (58) where one sets m = 0.
The representation now decomposes, the potentials (o&, *V) on the one
hand, the fields {S,^P) on the other separately transforming according to:

(71)

It suffices to evaluate the left hand sides at the point (x', t') transformed
from the argument (x, t) of the right hand side by the considered Galilei
transformation, to obtain the complete relevant representation of the
Galilei group. Equations (65) and (63) are invariant when the wave
function components are subjected to the transformation (71), while the
energy momentum operators (E, p) transform according to:

i2p
(72)

' = E + γ By l ;

since we consider a zero mass case (compare (61)).

b) Physical Discussion

When comparing Maxwell equations (62) with their nonrelativistic
counterparts, eq. (65), we see that only the equations labelled (*) differ.
The curl of the magnetic field, vanishing in the nonrelativistic approxi-
mation, in fact is given by the famous "displacement current" introduced
by Maxwell and which gives all their importance to his equations. The
absence of this term in the galilean case means that the Maxwell equa-
tions introduce relativity (under the Poincare group) in a quite literal
sense. In physical situations where the displacement current is of
negligible importance, the predictions of the theory are in perfect
agreement with galilean relativity. The whole of pre-Maxwellian electro-
magnetism (laws of Faraday, Ampere, Biot-Savart etc. . . .) is simul-
taneously exact and consistent with the old Newtonian conception of
space-time. But as soon as one takes into consideration the essentially
Maxwellian equation (62), one obtains specifically relativistic phenomena
such as the propagation of electromagnetic waves with constant velocity
etc. This is the one equation which definitely ruins the old Galilean
relativity, introducing the Einsteinian one. For an important class of
phenomena, however, equations (62) and (65) coincide: such is the case
if one is interested in static, time independent, electromagnetic fields9,

9 More generally one could consider magnetic fields with a linear time dependence
and time independent electric fields. But this case does not present any practical
interest.
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for which the displacement current obviously vanishes. This proves
that we do not risk any internal contradiction when introducing static
electromagnetic fields in a nonrelativistic theory, the galilean invariance
of the theory being unaffected. These considerations also provide a
justification for the use of gauge invariance of the second kind (we have
shown the expressions (65) of gauge invariance to be consistent with
galilean invariance) in nonrelativistic wave equations, provided we only
consider static fields. This is a very important case in practice since it
suffices for studying Coulomb interactions as well as the electric and
magnetic multipole moments of a system. Of course, there is also a wide
class of phenomena where the nonrelativistic equations remain approxi-
mately valid, even with time dependent electromagnetic fields (low
frequency phenomena, etc. . . .).

The only monochromatic plane-wave solutions of eq. (65) are of the
following two rather trivial types :

S = <f0 = Cte ί £ = S>

oe~iωt

( 7 3 )

so that there is no propagation, although one might interpret b) as an
electric field propagating with infinite velocity, which is consistent
with the intuitive meaning of a nonrelativistic limit as corresponding to
c -> oo. Case b) also corresponds to the so-called "dipole approximation"
in semi-classical radiation theory, thus shown to be compatible with
galilean invariance10.

Equations (65) can be used to discuss galilean electromagnetic fields,
not only free ones, but also in presence of sources. It suffices to add
charge and current densities in the right-hand side of the first pair of
eq. (65), as in the Maxwellian case. However, the field equations no
longer imply local conservation of the electric charge. After all, such a
local conservation law, insured by the displacement current in Maxwell
equations, certainly is a specific relativistic requirement, as shown by
the standard Einstein argument based on the relativity of simultaneity.

Considering now a classical (non-quantum, nonrelativistic) particle
in a galilean electromagnetic field which obeys the equations (66), it is
seen that the usual Hamiltonian:

H = -^^-q^? + qr (74)

leads to the equation of motion:

mϊ = q(&+ r x #?) (75)
10 A concrete application [22] of these ideas is a consistent nonrelativistic

description of the behaviour of electrons in intense electromagnetic waves (laser
beams) which exhibits in a very simple way some of the peculiar features usually
derived from involved relativistic considerations [23].
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so that the well-known expression of the Lorentz force retains its validity
in nonrelativistie situations. This is an old result, implicitly used in
many places, but whose internal consistency it is perhaps useful to
emphasize here.

As to the energy carried by the electromagnetic field itself, con-
siderations similar to those of the relativistic case, when applied to
eq. (65), show that the energy density of the field must be defined by:

which is quite in keeping with the relativistic expression W

= -g— i-J^2jr — $2), in the limit c-> oo. The Poynting vector giving

the flux density of the field energy retains its expression:

8 = -^δx3ίf. (77)

One might be somewhat puzzled by the fact that, in this galilean electro-
magnetism, an electric field does not carry any energy according to (76).
But this completely agrees with the absence of the displacement current
in (65). As a matter of fact, it is the displacement current which makes
possible the existence of electric currents in circuits that are not com-
plete loops, in other words the transport of energy by means of electric
fields. The working of capacitors in a.c. circuits for instance, results from
the specifically relativistic features of electromagnetism.

It is commonly stated that electric fields and magnetic fields are
two separate entities in nonrelativistie theory, mixing only under the
effect of Lorentz transformations, which make them to appear as two
aspects of a same fundamental quantity, the electromagnetic field. The
galilean transformation properties (71) show the necessity of revising
this opinion: if a "pure" electric field may be defined in an absolute
manner, independent of the frame of reference, this is not the case for
the magnetic field. A magnetic field which is pure in a certain frame,
gives rise to a certain electric field component in another frame, uni-
formly moving with respect to the first one11. Indeed this is the standard
effect accounting for the appearance of an electromotive force in a con-
ductor moving through a magnetic field, the expression for which could
be easily deduced from the relevant equation (71). This effect, on which
is founded most of our electrical technology, is thus shown not to be
specifically relativistic.

A last remark about these galilean transformation properties of
"nonrelativistie electromagnetic fields" may be in order: there is a close
connection between the fact that a pure electric field remains such in

11 This has also been noted by HAVAS in ref. [24], footnote 29.



310 J.-M. LEVY-LEBLOKD :

any galilean frame on one hand and the absence of spin-orbit coupling
in nonrelativistie wave equations (see the case of spin 1/2, IH.d) on the
other hand. In RQM, spin-orbit coupling, which appears for instance in
the Dirac equation for an electron in the nuclear electric field, may be
viewed as resulting from two simultaneous effects: i) a magnetic field
is generated in the rest system of the electron by its motion through the
nuclear Coulomb field, and ϋ) one must take into account the so-called
Thomas precession of the spin. This second effect is well-known to be a
purely relativistic one; what we wish to emphasize is that the same is
true of the first effect, so that it is not consistent to consider them
separately or to talk of the Thomas precession as a "relativistic cor-
rection".

Summary and Conclusions

In this paper we have considered the description of nonrelativistic
particles, in order to compure their properties to those of the corre-
sponding relativistic particles, thus obtaining a clear cut distinction
between the specifically relativistic features of the theory and those
which equally follow from a consistent nonrelativistic treatment.

Nonrelativistie particles, defined through the theory of unitary
irreducible representations of the Galilei group (invariance group of
nonrelativistic physics), are characterized, exactly as in the nonrelativ-
istic case, by their mass and spin-spin in particular is thus seen neither
to "result" from some relativistic wave equation, nor to be a purely
relativistic effect. The relevant Galilei group representation gives com-
plete information on the free particle behaviour, describing all of its
kinematical properties.

In order to study the dynamical properties of the particle, however,
it is necessary to describe it by means of a wave equation which enables
us to discuss the effect of external fields on the system. We have been
able to construct a theory of nonrelativistic wave equations for any spin,
based on the theory of representations of the Galilei group.

Our scheme is founded upon the properties of a new nonrelativistic
wave equation for a spin 1/2 particle which we derived as did DIRAC in
the relativistic case. This equation implies the Pauli equation with the
correct value of the electron gyromagnetic ratio, so that one does not
either deal here with a relativistic effect.

However, using very simple dimensional arguments, it has been
shown that nonrelativistic elementary particles could not possess higher
order multipole moments besides an electric charge and a magnetic
dipole moment, in contradistinction to the relativistic case.

We also studied in detail "galilean electromagnetism", thereby
demonstrating which feature of the Maxwell equations requires Galilean
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relativity to be replaced by the Einsteinian one: it is precisely the

presence of the very ''displacement current" introduced by Maxwell.

Interesting conclusions may be drawn from the Galilean transformation

law of the electromagnetic field.

Finally, let us emphasize that some puzzling questions occur when

we compare the connection between representations of the kinematical

group and associated wave equations in RQM and NQM. There seem

to be open problems about the notion of wave equation (necessity to

introduce redundant components for the wave functions, intervening

of the homogeneous Lorentz — or Galilei — group, etc. . . .). We have

suggested [1] that a detailed analysis of gauge invariance of the second

kind and its relations with the relativity group could perhaps clarify the

situation. I t might also hopefully give an easier and quickier way to

study the electromagnetic properties of particles.
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