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A NOTE ON A CONJECTURE OF GONEK
MicaH B. MILINOVICH, NATHAN NG

Abstract: We derive a lower bound for a second moment of the reciprocal of the derivative of
the Riemann zeta-function over the zeros of {(s) that is half the size of the conjectured value.
Our result is conditional upon the assumption of the Riemann Hypothesis and the conjecture
that the zeros of the zeta-function are simple.
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1. Introduction

Let ((s) denote the Riemann zeta-function. Using a heuristic method similar
to Montgomery’s study [13] of the pair-correlation of the imaginary parts of the
non-trivial zeros of ((s), Gonek has made the following conjecture [7, 8].

Conjecture. Assume the Riemann Hypothesis and that the zeros of ((s) are sim-

ple. Then, as T — oo,
1 3
E —~ ;T (1.1)

2
022 1)
where the sum runs over the non-trivial zeros p = %Jri’y of (s).

The assumption of the simplicity of the zeros of the zeta-function in the above
conjecture is so that the sum over zeros on the right-hand side of (1.1) is well
defined. While the details of Gonek’s method have never been published, he
announced his conjecture in [5]. More recently, a different heuristic method of
Hughes, Keating, and O’Connell [10] based upon modeling the Riemann zeta-
function and its derivative using the characteristic polynomials of random matrices
has led to the same conjecture. Through the work of Ingham [11], Titchmarsh
(Chapter 14 of [21]), Odlyzko and te Riele [17], Gonek (unpublished), and Ng [15],
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it is known that the behavior of this and related sums are intimately connected to
the distribution of the summatory function

M(z) = 3 un)

n<x

where 1(-), the Mobius function, is defined by u(1) = 1, u(n) = (=1)* if n is
divisible by k distinct primes, and p(n) = 0 if n > 1 is not square-free. See also
[9] and [20] for connections between similar sums and other arithmetic problems.

In support of his conjecture, Gonek [5] has shown, assuming the Riemann
Hypothesis and the simplicity of the zeros of {(s), that

1
—— > CT (1.2)
MZQ <o)

for some constant C' > 0 and T sufficiently large. In this note, we show that the
inequality in (1.2) holds for any constant C' < %

Theorem. Assume the Riemann Hypothesis and that the zeros of ((s) are simple.
Then, for any fized € > 0,

> LI (2371'3 - g> T (1.3)

2 =
022 100
for T sufficiently large.

While our result differs from the conjectural lower bound by a factor of 2,
any improvements in the strength of this lower bound have, thus far, eluded us.
It would be interesting to investigate whether for k£ > 0 there is a constant Cy > 0
such that )

Y ———5 > CkT(log T) "1 (1.4)
0<y<T |C (p)‘
for T sufficiently large. However, a lower bound of this form is probably not of
the correct order of magnitude for all k. This is because it is expected that for
each £ > 0 there are infinitely many zeros p = 1 +iv of ((s) satisfying |¢'(p)| ™! >
|y|'/3=¢. If such a sequence of zeros were to exist, it would then follow that

1 2k/3—
Z ; T = Q (T / E)
0<y<T |C (p)|
and the lower bound in (1.4) would be significantly weaker than this Q-result when
k> 3.
2. Proof of Theorem

The method we use to prove our theorem is based on a recent idea of Rudnick and
Soundararajan [18]. Let
E=1" (2.1)
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where 0 < ¥ < 1 is fixed and define the Dirichlet polynomial

Me(s) =" plnjn™

n<g

where p is the Mobius function. Assuming the Riemann Hypothesis, for any non-
trivial zero p = 1 + iy of ((s), we see that M¢(p) = Me(1—p). From this
observation and Cauchy’s inequality it follows that

1 M, |?
SN 1 (2.2)
0@27’ |</(p)|2 Mo

where

My= Y ﬁ/\/{g(l—p) and  My= > IMe(p)|.

0<y<T 0<y<T
Our Theorem is a consequence of the following proposition.
Proposition. Assume the Riemann Hypothesis and let 0 < ¥ < 1 be fired. Then

My = % (9 +9?) Tlog” T + O(T log T). (2.3)

If we further assume that the zeros of ((s) are all simple, then there exists a
sequence T = {1, }5% 4 such that n < 7, < n+1 and for T € T we have

My = 2 r10gT 1 O(T), (2.4)
™

We now deduce our theorem from the above proposition.

Proof of Theorem. Let T > 4 and choose 7, to satisfy T — 1 < 7, < T. Com-
bining (2.2), (2.4), and (2.3) we see that

1 1 92 3
Z > Z IC/(/))‘Q>(§+192)ﬁm+o(m)

2
02 KT 0 520,
< 1 3
T (149

(2.5)
T+ o(T)

under the assumption of the Riemann Hypothesis and the simplicity of the zeros
of ¢(s). From (2.5), our theorem follows by letting ¥ — 1. [ |

We could have just as easily estimated the sums M; and Ms using a Dirichlet
polynomial ané ap,n~° for a large class of coefficients a,, in place of M¢(s). In
the special case where

an = p(n) P(SE5E")
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for polynomials P, we can show that the choice P = 1 is optimal in the sense that
it leads to largest lower bound in (1.3).

We prove the above proposition in the next two sections; the sum M; is esti-
mated in section 3 and the sum M, is estimated in section 4. The evaluation of
sums like M; dates back to Ingham’s [11] important work on M (z) in which he
considered sums of the form

S (T =) ()

0<y<T

for k € R. The sum M, is of the form

Z |A(p)|? where A(s) = Zann_s (2.6)

0<y<T n<e

is a Dirichlet polynomial with £ < T'. Such sums have played an important role in
various applications. For instance, results concerning the distribution of consecu-
tive zeros of ((s) and discrete mean values of the zeta-function and its derivatives
are proven in [1, 2, 3, 6, 12, 13, 16, 19]. In each of these articles, the evaluation of
the discrete mean (2.6) either makes use of the Guinand-Weil explicit formula or
of Gonek’s uniform version [6] of Landau’s formula

) T
> 2P = - A@) + B2, T) (2.7)
0<y<T g
¢(B+iv)=0

for ,T > 1 where E(x,T) is an explicit error function uniform in z and 7. A
novel aspect of our approach is that it does not require the use of the Guinand-Weil
explicit formula or of the Landau-Gonek explicit formula (2.7). Instead we eval-
uate My using the residue theorem and a version of Montgomery and Vaughan’s
mean value theorem for Dirichlet polynomials [14]. Our approach is simpler and
it is likely that it can be extended to evaluate the discrete mean (2.6) for a large
class of coefficients a,, when £ <T.

3. The estimation of M;

To estimate M7, we require the following version of Montgomery and Vaughan’s
mean value theorem for Dirichlet polynomials.

Lemma. Let {a,} and {b,} be two sequences of complex numbers. For any real
number T > 0, we have

T 00 0
/ < Z annit> ( Z bnnit> dt
0 n=1 n=1

_ Tianbn + O((in|an|2)é(§:n|bn|2>é>.

n=1 n=1 n=1
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Proof. Thisis Lemma 1 of Tsang [22]. The special case where b,, = @, is originally
due to Montgomery and Vaughan [14]. It turns out, as shown by Tsang, that this
special case is equivalent to the more general case stated in the lemma. |

Let T > 4 and set ¢ = 1 + (logT)~t. Tt is well known (see Theorem 14.16 of
Titchmarsh [21]) that assuming the Riemann Hypothesis there exists a sequence
T ={m}23, n<7, <n+1, and a fixed constant A > 0 such that

. -1 Alog,
n — 3.2
K(U—HT )| < exp <loglog7n) (3.2)
uniformly for s < 0 < 2. We now prove the estlmate (2.4) assuming that 7' € T.

Recall that |7| >1 for every non-trivial zero p = 5 + ¢y of {(s). Thus, assuming
that all the zeros of {(s) are simple, the residue theorem implies that

c+iT 1—c+iT l1—c+1 c+1 1
—|—/ ——M¢(1—s) ds
M= 2mi / /+zT ~/1—c+1',T 1—eti) C(s) 3 )

=5+ 1+ I3+ 1y,
say. Here we are using the fact that the residue of the function 1/{(s) at s = p
equals 1/{'(p) if p is a simple zero of ((s).
The main contribution to M7 comes from the integral I7; the remainder of the
integrals contribute an error term. Observe that

271-/ Z metit Z nl c— zt

n<

By (3.1) with a,, = u(m)m~¢ and b, = p(n)n=1+¢ it follows that

SRR o (S (Sror))

n<g

Since

3 ) _ %bg& +0(1), (3.3)

n
n<g

I = %Tlogg + O(fx/logT—I- T)

for our choice of ¢. Here we have used the fact that

we conclude that

e 2
Zgn_)l <C(2c—1) < logT.

n=1

To estimate the contribution from the integral Is, we recall the functional
equation for the Riemann zeta-function which says that

((s) = x(s)¢(1—3) (3.4)
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where s
x(s) = 2°7* 7T (1—s) sin (7)

Stirling’s asymptotic formula for the Gamma-function can be used to show that

x(o+it)| = (%)1/2_0(1 +0(t)) (3.5)

uniformly for —1 < ¢ < 2 and |¢| > 1. Combining this estimate and (3.2), it
follows that, for T € T,

=1 o AlogT
T Tmm(a 1/2),0) ( )
K(U T )| < P loglogT
uniformly for —1 < ¢ < 2. In addition, we have the trivial bound
|Me (o +it)| < €77, (3.6)

Thus, estimating the integral I trivially, we find that

AlogT ¢ . AlogT
I, < exp (i) / Tmm(afl/Q)yO)gng_ < Eexp (i)
loglog '/ J; loglog T

—C

To bound the contribution from the integral I3, we notice that the functional
equation for {(s) combined with the estimate in (3.5) implies that, for 1 < |[¢t| < T,

[C(—ctit)| 7" < 12| ¢(e—it) | < [H27¢(e) < [t og T

It therefore follows that

T
Iz < logT(Z \,u(n)|>/ t712 dt < VT(logT)logé.

nec 1
n<g

Finally, since 1/¢(s) and M¢(1—s) are bounded on the interval [1 —c+1, c+1],
we find that I, < 1. Hence, our combined estimates for Iy, Is, I3, and I imply
that

M, = %Tlogf—f—O(éexp (lfgll%:;J —|—T).

From this and (2.1), the estimate in (2.4) follows.

4. The estimation of M,

We now turn our attention to estimating the sum Ms. As before, let T > 4 and
c=1+ (logT)~!. Assuming the Riemann Hypothesis, we notice that

My = Y Me(p)Me(1-p).

0<y<T
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Therefore, by the residue theorem, we see that

1 c+1iT 1—c+iT l1—c+1 c+1i C—/
Mmoo ([ [ [ [ ) M- 9 s) ds
2mi c+i c+iT 1—c+iT 1—c+i ¢

=J1+ Jo+ J3 + Jy,

say. In order to evaluate the integrals over the horizontal part of the contour
we shall impose some extra conditions on 7. Without loss of generality, we may
assume that T satisfies

1
[y =T > —— for all ordinates y and
logT (1)

!

E(oJriT) < (logT)? uniformly for all 1 —c¢ <o < c.
In each interval of length one such a T exists. This well known argument may be
found in [4], page 108. Applying (3.6) we find that

Y IMe(p)Me(1—p)| < £(log T).

T<y<T+1

Here we have used the standard estimate that there are O(logT) zeros of {(s) with
ordinates in the interval [T, T+ 1]. Therefore our choice of T determines Ms up to
an error term O(&logT). First we estimate the horizontal portions of the contour.
By (3.6) and (4.1), we have

1 1—c !

Ja 5(0+it)M5(1—a—it)%(a+it) do < &(log T)2.

=5 i
Similarly, it may be shown that J; < . Next we relate J3 to J;. We have

!

1 !
Js = %/T Mg(l—c—i—it)Mdc—it)%(l—c—i—it) dt

!’

T
o [ Me—eminerin (—c—it) d

By differentiating (3.4), the functional equation, we find that

—g(l—c—it) = —9;/(1—0—#) + g(c—Fit)

and hence that

e '
J3 = —%/1 Mg(l—c—it)Mg(c—i-it)X;(l—c—it) dt

!

1 T
* %/1 Mf(l*cfit)Ms(CJrit)%(c+z‘t) dt.
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By (3.4) and Stirling’s formula it can be shown that
X 2l 1
(—cit) =log () (14 04| ™)

uniformly for 1 < [¢t| < T. By (3.6), the term O(|t|~!) contributes to J3 an amount
which is O(€logT) and, hence, it follows that

J3 =K +J1+0(£(logT))
where
K= / log Mg(c—Ht)Mg(l c—it) dt.
Collecting estimates, we deduce that
My = K +2RJ; 4+ O(£(log T)?). (4.2)
To complete our estimation of Ms, it remains to evaluate K and then J;. Inte-

grating by parts, it follows that

T T
K="l 7) Me(c+it)Me(1—c—it) dt
3108 (52) | Meleritypre(1—c=i)
L
2

t Me(c+iu)Me(1—c—iu)du ﬂ
(), )

By (3.1), we have

log T')

/1 Me(etiu) Me(1—c—iu) du = (t-1) ’“‘(Z)

n<é

= %tlogf—&-O@ logT +1t)

for ¢t > 1. Substituting this estimate into the above expression for K, we see that

3 T
K = ;Tlog <2—) logé& + O(TlogT) + O(Tlog &)

3

(4.3)
= —Tlog ( ) log€ 4+ O(TlogT).

We finish by evaluating the integral J; which is similar to the evaluation of the
integral I; in the previous section. By another application of (3.1), we find that

(n) ~(T'-1) ¢ anp(n)
Z nc-‘rzt nl c—it dt 2 Z n

n<g n<x

ro( (5 5)

=1 n<g

Nl=
—
3)—‘ E\

113
|
(e} [V
~—

Nl=

~—
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where the coeflicients «,, are defined by
=2 A
£<g

Observe that trivially |on,| < 3°,, Alu) < logn Tt follows that the error term in
the above expression for J; is < ¢"(2¢c — 1)2¢& < €(logT)2. Finally, we note that

T anpi(n Z p(l Z Z s Z p pjf))jlogp
n<z (<x k<2 £<¢ pigEe
p prime, 520

*ZM Z p(pt) logp+0(log£)

<t ¥ op<gpe P
)2 1 1
SRR ol )
<€ p<E/L <€ ple

since pu(pl) = —p(l) if (p,¢) =1 and pu(pf) = 0 = O(1) if p|¢. The sum in the error

term is ) 1 )
Z Zogp T C;ng) 5 < loge

é<£ pl¢ p<T o<t

Hence, by the elementary result Zp<£ = log& + O(1), (3.3), and partial

summation, we deduce that p
anpi(n p(1)?log($) 3
3o ) _ 5~ POZOBG)  Oftog ) = - S (105)? + Oo)
n<e <€ &
Therefore, combining formulae, we have
3
Ji = —=—=T(log€&)*> + O(TlogT). (4.4)

273
Finally (4.2), (4.3), and (4.4) imply that
3 3 )
My = —TlogTlogé + —T(log&)” + O(T'logT)
v ™

and, thus, by (2.1) we deduce (2.3).
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