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POINTS OF ORDER 13 ON ELLIPTIC CURVES

Sheldon Kamienny, Burton Newman

Abstract: We study elliptically parametrized families of elliptic curves with a point of order
13 that do not arise from rational parametrizations. We also show that no elliptic curve over
Q(ζ13)+ can possess a rational point of order 13.
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1. Introduction

Our modern understanding of torsion points on elliptic curves over number fields
began with a 1973 paper [9] of Mazur and Tate, from which we have borrowed
the title of this note. Spurred on by work of Ogg [12], they carried out a de-
scent in flat cohomology that proved that no elliptic curve over Q could possess
a Q-rational point of order 13. A few years later Mazur gave his first proof of Ogg’s
Conjecture describing the possible rational torsion subgroups of elliptic curves over
Q. Mazur’s second proof [8] of Ogg’s Conjecture lay the groundwork for an attack
on the Strong Uniform Boundedness Conjecture that was eventually proved by
Merel [10]. Merel’s work provided an explicit bound on the size of the torsion
subgroup over a degree d number field, but it left open the problem of explaining
the source of degree d torsion when it does occur. In recent years we have be-
gun to consider more subtle questions about torsion in elliptic curves, both from
a theoretical, and from a computational standpoint. For example, one might ask
for a classification of rationally parametrized families of elliptic curves as in [4], or
study the existence of sporadic torsion points as in [6] and [11].

Here we look for families of elliptically parametrized elliptic curves, andX1(13),
the original subject of [9], provides us with a natural starting point. The modular
curve X1(13), whose non-cuspidal points classify isomorphism classes of elliptic
curves with a rational torsion point of order 13, has genus 2 so there are infinitely
many elliptic curves with a rational point of order 13 defined over quadratic number
fields. Bosman, Bruin, Dujella, and Najman [2] have shown that any such curve
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must be defined over a real quadratic field. Derickx, Kamienny and Mazur [4]
prove that any elliptic curve with a point of order 13 defined over a quadratic
number field is part of a rationally parameterized family of such curves. Unlike
the original work of Mazur and Tate, where the use of an equation for X1(13)
was expressly forbidden, the more recent work cited above has shown the value of
using an equation. We continue this approach here to study elliptic curves with
points of order 13 defined over Q(ζ13)+, and its quadratic extensions.

We show that no elliptic curve defined over K = Q(ζ13)+ can possess a rational
point of order 13. We also find a finite number of elliptic curves with rational
points of order 13 defined over quadratic extensions of K that do not arise as
part of a rationally parameterized family. These curves owe their existence to the
fact that X1(13) becomes bi-elliptic over K, and each of the elliptic curve factors
contains finitely manyK-rational points. In a similar fashion X0(37) is a bi-elliptic
curve that covers an elliptic curve with rank one over Q. This curve gives birth
to an infinite family of elliptically parameterized elliptic curves with 37-isogenies
defined over quadratic number fields, and this family is distinct from the infinite
family that arises from the hyperellipticity of X0(37).

We are indebted to Filip Najman for suggesting to us that an earlier version
of this paper could be strengthened by eliminating the dependency on the weak
Birch and Swinnerton-Dyer conjecture. We would also like to thank Ken Ribet
for clarifying our understanding of modularity over totally real fields.

2. The modular curve X1(13)

The curve X1(13) is a cyclic cover of X0(13) with covering group Γ isomorphic to
(Z/13Z)∗/(±1). The automorphism group of the curveX1(13) is a twisted dihedral
group that is an extension of Z/2Z by the group Γ. Each of the involutions in
the group is a lift of the Atkin-Lehner involution of X0(13), and is defined over
K. Following Mazur and Tate [9] we denote these involutions by τζ , where ζ is
a primitive 13th root of unity, and we identify the involutions associated with ζ
and ζ−1. The quotient of X1(13) by the action of any τζ is an elliptic curve defined
over K.

The curve X1(13) has twelve cusps, six of them are Q-rational, and the remain-
ing 6 are rational over K. The involutions τζ interchange the two sets of cusps.
As is usual, we write J1(13) for the jacobian of X1(13). When we embed X1(13)
in J1(13) the divisor classes supported at the rational cusps generate a Q-rational
subgroup C of order 19. The divisor classes supported at the six K-rational cusps
generate a K-rational subgroup D, also of order 19.

The curve X1(13) has a model of the form y2 = f(x) where

f(x) = x6 + 4x5 + 6x4 + 2x3 + x2 + 2x+ 1

Magma tells us K = Q(a) where a is a root of

x6 − x5 − 5x4 + 4x3 + 6x2 − 3x− 1



Points of order 13 on elliptic curves 123

Because X1(13) is bielliptic, it has a model of the form

y2 = c6x
6 + c4x

4 + c2x
2 + c0

We will now describe how to obtain a model of the above form. Let F =
Q[x, y]/(y2 − f) be the function field of X1(13) and let e0 denote the hyper-
elliptic involution of F . The fixed field of e0 is generated by the image of x
in F . An elliptic involution of G = Aut(F ) is an involution different from e0 [13].
Using Magma to compute Aut(X1(13)) we found an involution e which induces
an automorphism of F where

x 7→ x+ b

cx− 1
,

b = −a5 + 5a3 − 6a,

c = −a5 + 5a3 − 6a− 1.

According to [13], if one can find a a generator X of the fixed field of e0 such that
e(X) = −X then there is a relation of the form

Y 2 = c6X
6 + c4X

4 + c2X
2 + c0

for some Y ∈ F . We found that if X is of the form:

X =
x+ d1
x+ d2

with d1, d2 ∈ Q then a simple calculation shows we will have e(X) = −X if

d1 + d2 = −2/c, d1d2 = −b/c

Solving we obtain:

d1 = −a5 + 2a4 + 3a3 − 6a2 + 1,

d2 = a5 − 2a4 − 5a3 + 8a2 + 6a− 5.

Using Magma to perform Gaussian elimination to find an appropriate linear com-
bination of X6, X4, X2 and 1 we obtain the relation:

Y 2 = c6X
6 + c4X

4 + c2X
2 + c0

where

Y =
y

(x+ d2)3
,

c0 = 1/208(−52a5 + 48a4 + 240a3 − 193a2 − 218a+ 175),

c2 = 1/208(−18a5 + 99a3 + 38a2 − 77a− 25),

c4 = 1/208(40a5 − 238a3 − 9a2 + 296a+ 69),

c6 = 1/208(30a5 − 48a4 − 101a3 + 164a2 − a− 11).
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This model has the genus 1 quotient

E : y2 = c6x
3 + c4x

2 + c2x+ c0

and twisting by a square in K we obtain the model:

E′ : y2 = x3 + bx2 + cx+ d,

where

b = 1/208(40a5 − 238a3 − 9 ∗ a2 + 296a+ 69),

c = 1/3328(−a5 + 11a4 + 38a3 − 19a2 − 73a− 16),

d = 1/692224(180a5 − 4a4 − 939a3 − 30a2 + 1092a+ 252).

Factoring the 19-division polynomial in Magma yields a point P = (x, y) on E′ of
order 19 with

x = 1/208(134a5 − 36a4 − 681a3 + 36a2 + 799a+ 181)

Magma tells us the (analytic) rank of both E′(K) and the other genus 1 quotient
of X1(13) is 0.

3. The rank of J1(13)(K)

The jacobian J1(13) is irreducible over Q. However, the bi-ellipticity of X1(13)
over K induces a splitting (up to isogeny) of J1(13) into the product of two elliptic
curves overK. These two curves are (up to isogeny) the two elliptic curve quotients
of X1(13) over K. The two elliptic curve quotients overK are modular (by [1, 16]),
or as Ribet has pointed out to us, simply because they are quotients of J1(13) over
K. They each have rank 0 over K by [15] (see also [5]). It follows immediately
that J1(13) also has rank zero over K.

4. K-rational points on X1(13)

We now wish to determine X1(13)(K). A search via Magma yields 12 points
(which are in fact, the complete list of cusps on our model of X1(13)). As X1(13)
is genus 2, Magma embeds it in (1,3,1)-weighted projective space, yielding two
points at infinity ∞1 = (1,−1, 0) and ∞2 = (1, 1, 0). The cusps of X1(13) are
∞1,∞2, (0,±1),(−1,±1) and

(−a5 + 4a3 + a2 − 3a− 1,±(−6a5 − 6a4 + 31a3 + 19a2 − 21a− 5)),

(a3 − a2 − 3a+ 2,±(−11a5 + 18a4 + 43a3 − 66a2 − 26a+ 33)),

(a5 − 5a3 + 6a,±(5a5 − 4a4 − 32a3 + 5a2 + 45a+ 12)).
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Now X1(13) embeds into J := J1(13) via the Abel-Jacobi map:

X1(13)→ J1(13)

P 7→ P −∞1

Using the image of the cusps under the Abel-Jacobi map, we can generate 192

torsion points in J(K)[19]. On the other hand, we will argue that J(K) has size
at most 192. The discriminant of our model of X1(13) is 212 · 132 and hence the
curve remains nonsingular modulo primes of OK above 3 and 5, so J has good
reduction at those primes. Magma tells us 3 splits as the product of 2 distinct
primes in OK so 6=efg where g=2, e=1 and hence f = 3. Similarly Magma tells
us 5 splits as the product of 3 distinct primes in OK so g = 3, e = 1 and hence
f = 2. Magma tells us |J(F27)| = 4 · 192 and |J(F25)| = 192.

Since the reduction map J(K)tor → J(F25) (modulo a prime above 5) is injec-
tive on the prime-to-5 part of J(K)tor, we see the prime-to-5 part of J(K)tor has
size at most 192. On the other hand, under reduction mod 3 the 5-part of J(K)tor
injects into J(F27) and so must be trivial.

Now, as X1(13) is genus 2 (hence hyperelliptic), each element of J1(13) has
a unique representative of the form P +Q− (∞1 +∞2) where P and Q are points
on X1(13) and if P and Q are affine then they don’t lie on the same vertical line.
EachK-rational point P onX1(13) gives rise to the following two points on J1(13):

P +∞1 − (∞1 +∞2)

P +∞2 − (∞1 +∞2)

As there are 12 points on X1(13)(K) this yields 23 = 24-1 points on J1(13)(K)
as∞1+∞2−(∞1+∞2) = 0J is counted twice. On the other hand, among the 361
elements of J1(13)(K), Magma tells us the Mumford representation (a(x), b(x), d)
satisfies deg(a(x))< 2 for 23 elements (these are the elements in which P or Q is
a point at infinity ). Hence the 12 points above are all the K-rational points on
X1(13).

Each elliptic curve factor of X1(13)/K has Mordell-Weil group (over K) iso-
morphic to Z/19Z. The inverse image of the 19 K-rational points on E′ gives us
38 points on X1(13)/K defined over quadratic extensions of K. Since X1(13) has
only 12 cusps we have found a collection of 26 = 38 − 12 points of X1(13)/K de-
fined over quadratic extensions of K, but not defined over K. Each of these points
corresponds to an elliptic curve with a point of order 13 defined over a quadratic
extension of K. Moreover, at least 25 of these points must correspond to elliptic
curves that do not arise as part of a rationally parameterized family (since, as De-
rickx has pointed out to us, the image of P1 must map to a point in the jacobian
J1(13)).

5. Quadratic points on X0(37)

The curve X0(37) is of genus 2, and is bi-elliptic over Q. It thus provides us with
another natural place to look for elliptically paramterized familes of elliptic curves.
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Because X0(37) is hyperelliptic it has a model of the form y2 = f(x) with

f(x) = (1/4)x6 + 2x5 − 5x4 + 7x3 − 6x2 + 3x− 1

Because X0(37) is bielliptic, it has a model of the form

y2 = c6x
6 + c4x

4 + c2x
2 + c0

We will now describe how to obtain a model of the above form. Let F =
Q[x, y]/(y2 − f) be the function field of X0(37) and let e0 denote the hyperellip-
tic involution of F . Using Magma we found an involution e which induces the
automorphism of F where

x 7→ x

x− 1
As mentioned before, if one can find a generator X of the fixed field of e0 such
that e(X) = −X then there is a relation of the form

Y 2 = c6X
6 + c4X

4 + c2X
2 + c0

for some Y ∈ F . We found
X =

x− 2

x
satisfies e(X) = −X.Using Magma we obtain the relation:

Y 2 = (−1/64)(X6 + 9X4 + 11X2 − 37)

where
Y =

y

x3

This model has the obvious genus 1 quotient

Y 2 = (−1/64)(X3 + 9X2 + 11X − 37)

This curve is isomorphic over Q to the elliptic curve:

E : y2 + y = x3 − x

and Magma tells us E(Q) is rank 1 with trivial torsion subgroup over Q. Further-
more Magma tells us E(Q) =< (0, 0) >. Using Magma we obtain the quotient
map from Magma’s model of X0(37) to the curve E:

(x, y) 7→ (
−x2 + x− 1

x2
,
−x3 + y

x3
)

The inverse image of the Mordell-Weil group E(Q) under this map gives us an
infinite number of quadratic points on X0(37), and as before, at most one of these
points can come from a rationally parameterized family. Using Magma, we wrote
a program which generates these quadratic points and for each such point finds an
elliptic curve with a 37-isogeny in the corresponding isomorphism class1 (except for
isomorphism classes corresponding to elliptic curves with j = 0 or 1728). Section 5
below lists some examples of quadratic points on X0(37). Some of the curves in
Section 5 already appear in the tables of Cremona [3, 7].

1https://github.com/bdnewman/phd-projects
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6. Appendix: points of order 13 on elliptic curves over Q(ζ13)
+ —

a second approach

Let K = Q(ζ13)+, O its ring of integers, and suppose that x = (E,P ) is
a K-rational point on X1(13). We write J for the Neron model of J1(13) over
S = Spec O. We write p for a prime of K, k(p) for its residue field, and p for the
characteristic of k(p). In the following we work over the base S.

If E has additive reduction at p then the point P (of order 13) must reduce
to (E/k(p))o, since [E : Eo] is bounded by 4. However, (E/k(p))o is an additive
group, and an additive group in characteristic p cannot have a point of order 13
unless p = 13.

If E has (potentially) multiplicative reduction at p then x must reduce (mod
p) to a cusp Q of X1(13). The class of (x−Q) is a K-rational point T on J1(13),
and hence is torsion. The point T generates a finite flat subgroup scheme C of
J . Since J1(13)(K) has no 2-torsion this group scheme must be étale. The point
x reduces (mod p) to the cusp Q, so the group scheme C reduces (mod p) to 0.
Because C is étale it must already be 0 in characteristic 0, i.e. (x − Q) is the
divisor of a function on the genus 2 curve X1(13). This is clearly impossible.

Thus, E has good reduction at all primes of residue characteristic different
from 13, and at the prime above 13 E has good reduction or potentially good
reduction. If E has good reduction at 13 then it cannot exist by [14]. If E has
potentially good reduction then we use Cremona’s algorithm (which we could also
use in the case of good reduction) to find the finite set of possible E, and check
that none of them possess a K-rational point of order 13. Of course, in this case
we already know that none of the curves that we find will possess a K-rational
point of order 13.

The advantage of this method is that it doesn’t depend upon the hyperelliptic-
ity of X1(13), and it will either prove that there are no elliptic curves over K with
a point of order 13, or it will find all such curves if they happened to exist. The
difficulty with this method is that it requires finding all integral points on certain
associated elliptic curves, and this may be computationally (but not theoretically)
prohibitive.
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