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Abstract. Letk denote the algebraic closure of the finite fieRy,, let O denote the
Witt vectors ofk and letK denote the fraction field of this ring. In the first part of this paper
we construct an algebraic theory of ind-schemes that allows us to represenkfisiieemes
as infinite dimensional-schemes and we apply this to semisimple groups. In the second part
we construct spaces of lattices of fixed discriminant in the vector siidceVe determine
the structure of these schemes. We devote particular attention to lattices of fixed discriminant
in the lattice, p~"O", computing the Zariski tangent space to a lattice in this scheme and
determining the singular points.

1. Introduction. In the late 80’s and early 90's conjectural variants of the Verlinde
formulae and the emergent arithmetic theory of loop groups inspired a great deal of work (See
[BLS], [F], [KNRY]). The ingredients of that work are by now well-known. They include the
moduli of vector bundles of fixed determinant on a pointed Riemann surface, infinite Grass-
man varieties, spaces of generalized theta functions, weight spaces of certain representations
of affine Kac-Moody algebras and the Picard group of a certain generalized Schubert cell in
an infinite Grassmannian. As a practitioner of geometry over fields of positive characteristic
certain questions naturally occurred to me in response to this work. This program has been
generalized to arbitrary fields with notablecsess by Mathieu [Ma] and Tits [T1]. In Mathieu
the emphasis was positive characteristic and Frobenius splitting methods and their application
to the characteristic zero case. My attention has been drawn by the possibility of treating the
group of points of a split semisimple group in an unramified extension of the complete
adics as a pro-ind-variety over the residue class field. In place of vector bundles, the residue
extension and theta functions, one encounters Galois representations, the norm residue sym-
bol and the central extensions studied by Moore [Mo] and Steinberg [St] among others, and
Kloosterman and other exponential sums. One finds oneself confronting class field theory
and the Langlands program. These are not matters of small importance and so pursuing this
analogy is a matter of some mathematical seriousness.

Certain difficulties immediately appear. For one, to be able to define the product structure
on the fraction fields of Witt vectors and hence on matrix groups over them, one must pass
to function rings closed under takingth roots. These rings have no derivations and so
tangent spaces and Lie algebras are non-exigtanthe other hand, all integral extensions are
separable. In order to define these group scheme like objects, one must construct a theory of
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localized Greenberg functors (see [MJG1], [&2]). These notions are canonically imposed
on the researcher by the problem. This is the substance of part | of this paper.

Furthermore, | chose to approach these objects in terms of topological algebraic geome-
try. Thatis, one considers rings with a linear topology and the space of open primes under the
topological Zariski topology. A topological scheme is a local ringed space locally isomorphic
to such spaces. Classical formal schemes are subsumed as non-reduced objects. This has the
advantage that objects are defined in a fashion that makes them independent of their particular
representation as inductive limits.

Spaces of sublattices of vector spaces over certain complete valued fields can be con-
structed. Remarkably they can be constructed in the category of inductive limits of finite
projective schemes. One need not pass to a category of perfect schemes in which functions
have infinitep’th roots, but this comes at a price in at least two different ways. First of all, the
action even of the maximal bounded subgroup is not always defined directly, and one must
make use of relatively intricate strategies involving Frobenius covers to study orbit structure
etc. Secondly, the spaces are constructedgutie Hilbert scheme rather than an infinite
Grassman variety and so computations can bt agunwieldy. There are alternative ways of
describing the schemes of which one takes an inductive limit. The description | have used
results in very natural inclusions in the inductive limit. The construction which permits the
most natural description of the orbit structure, however, requires a rather intricate system of
maps in the limit construction. These conflicting demands have been the peculiar difficulty of
this work. Nonetheless, the outlines of a theory do emerge.

These spaces of lattices which are constructed here are of course sp&dighid ).

The homogeneous spaces corresponding to odmeisemple groups remain to be constructed.

In the last section | give an indication of hawhope to approach the general case. After
slightly rephrasing certain well-known results of Bruhat and Tits, | expect to represent these
spaces as orbits in the lattice varieties constructed in this paper.

The paper is constructed as follows. Lebe a prime fixed once and throughout and let
k be the algebraic closure &%,. Let O denote the ring of Witt vectors dfand letK be the
fraction field of O. Let F be a freeD-sub-module oK” of rankn. A specialz-lattice in K"
is one which is an image af under the action of an element 81.(n, K). Then one may
view SL(n, K) as operating pointwise on the set of special latticek'in

The first problem solved in this paper is the extension of the notion of Greenberg functor
from schemes of finite type over a discrete valuation ring to schemes of finite type over a
complete valued field. This involves the difficulties alluded to above, but it is the only con-
struction | could think of which gives a unique sense to the objects under discussion in this
paper. Apart from the necessity of this notion to defining certain objects in this paper it does
not find wide use here.

The second problem studied in this paper is the construction of schemes of lattices of
various types. The basic construction on which all other constructions are based is the con-
struction of a scheme parametrizing special lattices ingideF’. These schemes are shown
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to be reduced and irreducible. Their tangent spaces are computed and it is shown that their
singular loci are of codimension two.

In a planned sequel to this paper | will discuss the actio§ofrz, K) on the space of
special lattices in some detail. | will consider the Picard group of the lattice scheme and the
Mumford groups (see [BLS] for a definition) of certain line bundles. They will be related to
the norm residue symbol and the central extensions studied by Moore [Mo], Steinberg [St]
and Matsumoto [Mt]. | will also show that &se spaces can be modified to produce spaces of
Galois representations split by an Abelian extension unramifigd at

It is appropriate to mention sources of inspiration and some missed references for much
in this paper. The idea of viewing infininite dimensional varieties as topological schemes
already appears in some form in Shafarevich [Sh]. The idea of a topological Hopf algebra
appears again in Abe and Takeuchi [AT]. In addition, Takeuchi has written of topological
Hopfalgebras in [MT]. In any case these writers have observed a number of phenomena which
motivated this work. | very recently found that Serre has discussed “quasi-algebraic” groups,
that is, algebraic objects with a multiplication defined only up to inseparable extension. |
would conjecture that his interest was drawn by the same groups that have interested me in
this paper. This is to be found in [S2]. | alsecently rediscovered the classical work of
Barsotti whose papers written in the 60’s ([IB1], [IB2], [IB3]) contain a related theory. In any
case the necessity of working with topological schemes is, | believe, clear to many, but the
necessity of constructing foundations has been a serious deterrent. It is quite clear that this
work must be done if one is to bring techniques from conformal field theory and the theory of
moduli of principle bundles to class field theory, the Langlands program, the study of Galois
representations and the theory of automorphic forms and it is equally clear that this is the only
way to approach central issues in these areas.

Finally 1 would like to thank Tadao Oda for a number of very helpful suggestions. He
read an earlier version of this paper and made a number of valuable observations.

2. Topological algebraic geometry.

2.1. Topological rings; formal spectra: The field,is fixed throughout. We assume
that it is of characteristigy. If p > 0 andr > 0 and if X is ak-scheme X" denotes the’th
Frobenius coverX " — X.

DEFINITION 1. LetV be a vector space ovér A linear topology onV is a topology
on V for which there exists a basis of neighboods of 0 consisting of vector subspaces of
V. If R is ak-algebra andV is an R-module, a linear topology oM is one for which there
is a basis of neighborhoods of 0 consistingReéubmodules oM. This applies taR itself as
well. A k-algebra with a linear topology will be called a topologi¢adlgebra or sometimes
just a topological ring. IfR is a topologicak-algebra, anR-module endowed with a linear
topology will be called a topologicak-module if for each open submodul®,, the ideal,
(N:M)={xeR:xM C N}isopen.
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If R is atopological ring and is a closed ideal, theR/I is canonically endowed with
a linear topology for which the surjection is a topological quotient morphism. The same is so
for modules.

For any proper open idedl, the topology onR/I is the discrete topology. There is
always a canonical mafR — lim jopenR/1. ThenR is separated if this map is injective;
complete if it is surjective. The same is true for modules or indeed for topological vector
spaces. The Iimit&mopem/l, is the completion oR. The same discussion and terminology
apply to modules and vector spaces.

If R is a topological ring, its topological nil-radical is the set of elementsuch that
the sequencey”, converges to 0. It is an ideal amtlis called topologically reduced if its
topological nil-radical i90). If R is a topological ring and is a multiplicatively closed set,
then the localizationRg, is canonically a topological ring. Just declafe— Ry to be open
if its inverse image inR is. The complete localization @k at S is the completion ofRs.

We shall write itRsy. Notice that the kernel of the natural map fratno Rs is the ideal
ns = {r : 0 e rS}. Here,rS is the set{rs : s € S}, and the bar denotes closure. It should be
noted thatR (s, = (0) whenS N n # 0.

With these notions, we may constt a certain local ringed space, $pj, for each
topological ring,R. This is the formal spectrum as in [EGA] or as it is presented in [Ha] but
we shall write it out for good measure. Bothkalgebra and its completion yield the same
result and so we will henceforth assume tRais complete and sepatied. The underlying
topological space of SpR) is the set of open prime ideals. The closed subsets qr3re
sets of the formV (1) = {p : p € Spf(R), p 2 I} for I some closed ideal ak. In particular,
the sets,D(f) = {p : f ¢ p}, are a subbase for the topology of &pf. One may define a
sheaf by giving it on a subbase. @k(D(f)) equal toR sy where this denotes the complete
localization at the set of powers ¢t It must be shown that this depends only on the open set,
D(f), and not onf. The complete localization is the projective limit of the rin@s./I R ¢
over all open/ such thatf ¢ I. Suppose thab(f) = D(g). Then for all opery such that
f &1, Rs/IRy = Ry/IR,, and so the inverse limit of these rings which is the complete
localization, depends only on the set of open priniegf). Let O be the sheaf associated
to this presheaf. Notice that this is a sheaf of topological rings. The pair consisting of the
topological space just constructed together with the sheaf given here is the local ringed space,
Spf(R). Note that when the topology aRis discrete, SafR) is just SpecR).

Notice that if/ is any ideal then since every open ideal is closed, any open prime con-
taining 7 also containd and soV(1) = V(I). Hence); V(I;) = V(3_; I;). This means that
Spf(R) need not be quasi-compact since it may be fiat; = R even when)_, I; # R.

It is also worth observing that S@) = Il_)m ropenSPEER/I) where this last limit is in the
category of ringed spaces and is hence an itideitimit on spaces and a projective limit on
sheaves.

DEFINITION 2. LetR be a complete separatéenlgebra with a linear topology. Then
the formal spectrum oR, written SpfR), is the set of open primes iR endowed with the
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topology and the sheaf of topological rings described above. A topological scheme is a local
ringed spacgX, Ox) such thatX admits a covering by open sefs, such thatU, Ox|U)

is the formal spectrum of some topological ring. A morphism of topological schefnes,

(f, f°), is a morphism of ringed spaceg,: X — Y such that for each open s&tc Y the
morphism,f;; : Oy (U) — Ox(f~1(U)) is continuous.

Since SpfR) is just Spe¢R) when the topology orR is discrete, the category @f
schemes is a full subcategory of the category of topological schemest ovEne formal
dimension of a formal scheme will be one less than the maximal length of a chain of open
primes. Thus the formal dimension of a scheme with the discrete topology on its sheaf of
rings is just its dimension as a scheme, while the formal dimension of the formal spectrum of
a complete local ring is zero.

If R andS are topologicak-algebras, thelR ®; S is as well (with open ideal$ ®x
S + R ® J for I andJ open). LetR®; S denote the complete tensor product. It is readily
seen to be the coproduct &fand.S in the category of topologicél-algebras. Whe®R — S
is a continuous morphism of topologidalalgebras, we shall call a topologicalR-algebra.

If $ andT are topologicalR-algebras, then one may construct the relative cofibre coproduct,
S®RrT. Since it is a relative coproduct, it is clear that §fgbz 7) is the relative fiber product,
Y xx Z,for X = Spf(R), Y = Spf(S) andZ = Spf(T).

The existence of relative fiber products of affine topological schemes over an affine base,
that is, of formal spectra over a formal spectrum, allows us to apply any of the standard
arguments for the existence of relative fibeogucts of schemes to deduce that relative fibre
products of topological schemes exist. The seven steps in the proof of 3.3 on pages 87 and 88
of [Ha], for example, apply without a word of change and so the following holds:

PrROPOSITION 1. Let f : X — Sandg : Y — S be two topological morphisms
of topological k-schemes. Then, the relative fiber product, X xs Y existsin the category of
topological schemes.

One may now speak of separated topological morphisms. Nanfely,X — Y is
separated if and only if the diagonal : X — X xy X is a closed embedding. Most of
the standard notions of algebraic geometry generalize to the category of topological schemes.
Except when an alteration or a comment is necessary, they will be used as needed.

A discrete subscheme &f will always mean a closed topological subschemes X
such that the topology of?y (U) is the discrete topology for all open subséfsC Y.

DEFINITION 3. The topological schemg will be called pro-Noetherian if it can be
written as an inductive limitX = Il_)m ie1Yi, of closed discrete Noetherian subschenigs,

Notice that it is possible to define topological group schemes$veamelyf : G — S
together with the morphismg,: G xs G — G,s : G — G ande : S — G, is a topological
group scheme if the data satisfy the usual mmgo One must always, however, require that
the set ofG-points, G(Y) = Homg(Y, G) be the set of morphisms in the topological cate-
gory. With that understanding, a topological group scheme is just a group in the category of
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topological schemes. Then, as is generally true in a category with products, it may also be
characterized as a topological scheme whose functor of points is equipped with a structure as
a functor to the category of groups.

2.2. Perfect algebraic geometry: Many of the algebraic objects considered in this pa-
per are not just topological, they are also spectra of perfect rings. Assumeithatperfect
field of characteristi;pp > 0. Let R be ak-algebra. TherR will be called perfect if it is
reduced and the Frobenius morphisth; R — R, F(a) = a?, is surjective. An ideal],
in a perfect ring will be called perfect if it is radical and equal to its own image under the
Frobenius morphism. IR is perfect and is any derivation ofR in an R-module, M, then
8 = 0 because every element Bfis a p’th power.

If R is a commutativec-algebra, form an inductive system by settiRg = R,n €
Z* and taking the map fronR, to R, to be F*~" for m > n. This is a direct system of
commutative rings whose limit we writR. It is the perfect closure ak. It can be thought
of as the ring of equivalence classes of symbal§,, n > 0, with the operationga],,+[b], =
[a + bl,, [al.[b]l, = [ab], and subject to the equivalence relati{ml,”]nH = [a],. Notice
that the perfect closure is always reduced.

Write k[x;; i € I]s for the perfect closure of the ring of polynomials in the variables
{xi}ier. It consists of sums of monomials in thie with exponents in the positive elements
of the ringZ[1/ p], the localization ofZ at p. This ring of polynomials may be viewed as the
corresponding monoid algebra. We shall call this ring the ring of perfect polynomials in the
X;.

It is of some interest to note what the homomorphisms fkdmi~, the perfect polyno-
mials in one variable, to the-algebra,A, are. If A hasp-nilpotents, they correspond to the
sequences; };c7 such thaty; = al.”+l. Under coordinate wise multiplication and addition
these sequences form a ring. Notice that it is always reducetlhHs nop-nilpotents, they
correspond to elements with arbitrgsy’th roots, that is, to the maximal perfect subring. We
will write Ag for this ring of sequences. For convenience, in characteristic zero, the two sym-
bols, A, and Ag, will both be taken to bed itself. We shall refer taAg as the the ring of
perfect valuesin A. We shall call the map which sends the sequefigé;cz, toap simply the
canonical map.

We begin with an example of a perfect scheme. Since the topology on its functions is
the discrete topology it is in fact a perfect group scheme. It will appear frequently in what
follows. For example i) is a complete discrete valuation ring of characteristic O with residue
class fieldk, and fraction field K, the maximak-torus of a group of the forn;(K) where
G is linear algebraic is of this type. We include it to point out some of the problems involved
with perfect schemes and also to show that they can nonetheless be rather manageable.

DEFINITION 4. LetI" be aZ[1/p]-module. Then the perfect multiplicative group as-
sociated td" is the group of multiplicative type associatedfamverk in the sense of [SGAD,
I1]. That s, itis the spectrum of the group algebrarofvith co-multiplication,u(y) = y ® v,
co-unite(y) = 1 and antipode(y) = y 1.
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Thus the perfect multiplicative group associatedtis an unremarkable group scheme
of multiplicative type in the sense of [SGAD, II] except that when it is not finite it is not
Noetherian and moreover, since its coordinate ring is perfect, it has Lie al¢@brdt is
possible to compute its ring of invariant differential operators. We shall indicate how to do
it for I" of the formZ[1/p]®". It is important to observe that an affine action of the perfect
multiplicative group associated 10 is just alI"-graded ring. In what follows affine actions of
the group associated %1/ p] will play a crucial role.

Observe thatif}) is the binomial coefficient, it satisfies the identffyj = (/") mod p.

By abuse of language view binomial coefficients as functions with values in the fielgpwith
elements. For andv € Z[1/p] with r > 0, define the value of?) as(;;i:) for s large enough

to clear denominators. By the identity observed above, this is independemsbdbng ass
clears denominators. Write the element&Zgt/ p]®" asn-tuples(vy, ..., v,). Then for any
n-tuple,v, and non-negative-tuple,r, let (7) = [Ti_; ()

Now for anyn-tuple,v € Z[1/p]®" = I" write t¥ for that element viewed as an element
of the group algebrak[I"]. Define a symbol,('f) for r a non-negative element daf as
follows. The symbol(';'), is an element of the linear dualKifI"] defined by the linear pairing,
("), 7") = (?). Then(!!) is a distribution on the perfect multiplicative group associated to
I" and its convolution action is given t()'{') x1” = (7)t’. The ring of invariant differential
operators on Spék[I']) is a completion ofD, the linear span of these symbols. Namely,
let Iy be theZ-lattice Z®" < I' and, for eachy € Z, let I, be the ideal of elements ik
which vanish onp? I'h. Regard these ideals as a basis of neighborhood3) @nd complete
D accordingly and callte ring obtained . To see that this is the appropriate ring, just note
that thek[I'] is an inductive limit and thaD, the completion just described is just the dual
projective limit.

It is of some interest to note that the notion of a perfect closure is geometricX bet
any scheme of finite type over the field,Now for anyk-algebra,R, let RY/?" the R-algebra
whose underlying set i but which is anR-algebra by means of theg''th power morphism.
Define a sheaf(?if/”", by the equationOi/”n(U) = Ox(U)Y?". Then the spaceX, with
the shealDy/”" is a scheme and a purely inseparable coveX oBet0? ~ = lim ZOY7"

The space X, with the sheaf,O)l(/”n, restricts to a true scheme on closed sets defined by
open ideals. It is hence natural to consider thace with the sheaf associated to the presheaf
of completions on open sets. It is a topolai scheme with the same space. Since the
corresponding sheaf is the one most natural to our discussion, we write this sheaf associated

to the completions Y7 ™" but more briefly a3°.

DEFINITION 5. LetX., denote the space;, together with the shead”, . It will be
referred to as the complete perfect coveXxoflLet Xgo denote the same space with the sheaf

O?w. This will be called the incomplete perfect coverof
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This distinction between the complete and incomplete perfect covers is crucial. The
infinite polynomials defining multiplication on the fraction field of the Witt vectors, for ex-
ample, are in the complete perfect cover but not the incomplete perfect cover. On the other
hand, the incomplete perfect cover will play an important role in the definition of the localized
Greenberg functor.

2.3. Some important topological schemes: In this section, we shall consider two dis-
tinct types of infinite dimensional affine spaagisich will play a speciatole in what follows.

Write R[x;];c7 to denote the ring of polynomials ove&rin a set of indeterminates indexed by
the integers. We define two sequences of ideglendL,, v > 0 each of which is a basis of
neighborhoods of 0. Firsk, is the ideal inR[x;];c7 generated byx; : i < v}. The idealL,

is the ideal generated by the set; : i < —v} U {x; : i > v}. We assume thaR is discrete.

DEFINITION 6. LetR be a discrete ring. TheR™ (X7) will denote the completion of
the ring,R[x;];c7 in the topology in whicH J, },c7 is a basis of neighborhoods of 0. We shall
write RY (X7) for the completion ofR[x;];c7 in the topology in which the ideal$L,}v>o,
are a basis of neighborhoods of 0.

We wish to give very explicit descriptions of these rings. FiRst(X7) may be thought
of as a ring of infinite polynomialsy, described as follows. The elements an infinite
linear combination of monomials subject to the requirement that for any integie set of
monomials exclusively in the indeterminates, for i > n and having a non-zero coefficient
in u is finite in number.

The ringR% (X7) is also a ring of infinite polynomials,, but the condition is different.

In this casex is an infinite linear combination of monomials subject to the requirement that
for any non-negative integet, the set of monomials exclusively in the indeterminates;
—n < i < n}, and having non-zero coefficientsiiris finite in number.

One may easily verify that in either of these rings of infinite polynomials the multipli-
cation is perfectly well defined in the most trivial sense. Moreover the elements of these
rings define functions on certain easily understood spaces. For any diReadebra,B, let
AJ,Q(B) denote the set of sequendes}, b; € B for i in Z such that for some, b; = 0 for
alli <nand IetAﬁ,(B) denote the set of sequendgés} such that there is am > 0 such that
b; = 0 for all i such thaii| > n. Then, examining the elements Bf (X7) andRL (X7),
one easily sees that by substituting thdor the x;, the elements Q&J,g(B) andA,Le(B) define
homomorphisms fronR* (X7) and RL (X7) to B, respectively. Finally bear in mind that,
for B discrete, SpfB) = Spe¢B).

DEFINITION 7. We shall refer taR™ (X7) as thering of infinite Laurent coefficients
over R and toR” (X7) as thering of finite Laurent coefficients over R.

PROPOSITION 2. Let B beadiscrete R-algebra. Then,
(1) Theset of continuous homomorphismsfrom R+ (X7) to B isin bijective correspon-
dencewith A% (B).
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(2) The set of continuous homomor phismsfrom RL (X7) to B isin bijective correspon-
dencewith AL (B).
That is A;(B) is the set of Spf(B)-valued points of Spf(R™ (X7)) and Afe(B) is the set of
Spf(B)-valued points of Spf(RL (X7)).

PROOF. Let ¢, respectivelyy, denote a continuous homomorphism frarr (Xz),
respectivelyR” (X7), to B. Thus¢ andy must each vanish on an open ideal. Hegce
must vanish on an ideal of the form,, generated by the set of for n < v, while ¥ must
vanish on some/,,v > 0 generated by the set af, such thats < —v orn > v. But
RT (X7) /I, = R[xy, xy41, ...1andRE (Xz) /J, = R[x—y, X_y41, . .., x,]. Consequently,
¢ is determined by the values,, it assigns to the;, i > v which may be chosen arbitrarily
and v is determined by the valuds it assigns to the finite sek_,, x_,+1, ..., x, which
may be chosen arbitrarily. O

Because of this proposition, we writg} = Spf(R* (X7)) andAL = Spf(RE (X7)).
This is also an appropriate time to introduce some conventions. Wigan index set for a
sety; of indeterminates, we shall writg; for the set and, when the meaning is clear, write
such expressions & Y;]. Further, when there is no ambiguity concerning the index set, we
may write merelyy andR[Y] for Y; andR[Y/].

It is of some interest to consider the perfect completion. We will give an element in the

perfect completion ok™ (X7) which is not in its perfect closure. Just consider_ xl.”l.

As the elements of the ordinary (algebraic) perfect closure would paenominators in

their exponents bounded from below, this element is not in the perfect closure. For all of
these constructions, we shall indicate the corresponding perfect completion by placing the
subscript,co, on the ring of coefficients. The pedt completion will be indicated by the
addition of the subscripto. Thus we will writek®, (Xz), kgo (X7), X and so on. The
formal spectrum of the perfect completion of a topological algebra is the complete perfect
cover of the formal spectrum of that algebra.

2.4. The projective space assateid to a topological vector space: Wfis a vector
space ovek with a linear topology, the symmetric algebsa(V), carries a natural topology
determined by that of¥. Namely, an ideal inS¢(V) is open if and only if it contains an
open subspace df. We shall call this the topology oS (V) induced by that orV. This
topology, in turn, induces a topology on each of the vector spﬁ,(‘b(elé). A vector subspace,

M C SZ(V) is open if and only ifM contains a set of the formm N S,f(V) for some open
ideal,l. Clearly, the closure oS’,‘j(V) in the completion of (V) is its closure in this induced
topology.

DEFINITION 8. LetV be ak-vector space with a linear topology. The complete sym-
metric algebra oV, written Se(V), will signify the completion ofS; (V) in the topology on
Sk (V) induced by that orV. The complete;'th symmetric power ofV, written SZ(V), will
refer to the closure of the image ﬁj (V)in Sx(V). The complete graded symmetric algebra
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onV will mean the sub-algebra], ..o S{ (V), of 5, (V). We shall write itSF (V). The formal
spectrum ofS; (V) will be written V. It will be called the associated affine spacé/of

Notice that the set of-points of V is exactly the continuous dual of and that the
Spf(R)-valued points are just the continuous homomorphisms ffoto R. This is simple
enough, but the analogue of a projective space is somewhat more problematic.

DEFINITION 9. A topological graded algebra is a graded algebra, | [, S, such that
each of the homogeneous paiss, is endowed with a linear topology and so that multipli-
cation, S, x S, — S,44 is jointly continuous for all, g. We shall callS separated if each
of the S, is, and complete if each of th% is. An ideal is graded if it is the direct sum of its
intersections with each of the homogeneous summapdd he irrelevant ideal is the sum,
[1,~087. Anideal is open if and only if its intersection witfy is for eachy.

This last condition specifies a topology Snnamely the coproduct topology. Notice that
each open ideal contains an open subsét @nd hence the ideal generated by it.

We construct a topological space associated to the topological graded algelts,
points are the graded open prim&s,in S which do not contain the irrelevant ideal. Afis
any graded ideal, l8?* (1) denote the set of non-irrelevant open graded primes contalning
ThenV*t(InJ) =VH()UVt)andvt (Y .z i) = ez VT (i) and so the setd) ™ (1),
may be taken as the closed sets in a topology on the set of graded primes.DW¢itg for
the complement o™ (1). Also write VT (f) and DT (f) for V*(fS) and its complement,
respectively. We shall write FPr@j) for this topological space. dtopen sets are the sets,
DT (D).

There are at least two different ways of constructing a sheaf on @&Projhe first is
to observe that, as a topological space, FBhojs the direct limit of the closed subspaces
Proj(S/I) asI ranges over the partially ordered set of open ideals. Corresponding to an
inclusion of open ideals] c J, there is a closed embedding of schemes, (Byof) C
Proj(S/I) c FProfsS). Hence one may consider the projective limit of the structure sheaves
of the schemes Pr@j /7). This projective limit is the structure sheaf of FRI).

Alternatively, let f be a homogeneous element £if Then the localizationSy is a
graded topological algebra. In particular, the set of elements of degres QOisnan algebra
with a linear topology. Denote ﬁ(f).. Then Sp(S‘}) is a topological scheme and its underlying
space is evidently equal tD+(fj. Then the structure sheaf on FR®)j restricts to a sheaf
isomorphic to the structure sheaf of Sﬁﬁ) on DV (f). We leave to the reader the problem
of showing that this characterization giveg teme sheaf as that of the previous paragraph.

DEFINITION 10. LetS be a topological graded algebra. Then, ftimal projective
scheme associated t@, written FProfS) is the local ringed space whose underlying topolog-
ical space is the set of open homogeneous primes endowed with the graded Zariski topology.
Its structure sheaf is the she@fpojs) whose restriction td* (f) is the structure sheaf of
Spf(S?) for each homogeneouys
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Finally, we construct the formal projective schem&(¥), whenevelV is a topological
vector space with associated affine spaceThen FP(V) is just FProfS; (V).

2.5. The Witt fractions: Fok a perfect field of characteristije > 0 let20(k) = Wy
denote the ring of Witt vectors df. By the Witt fractions of the fieldk, we shall mean the
fraction field of its ring of Witt vectors. Henceforth we shall always writ& itWe shall con-
struct this field as the-points of a topological scheme. A particular difficulty enters into their
construction. As a scheme of points with no algebraic structures, or even as an additive group,
the construction presents no problems. To construct a polynomial multiplication, however, we
must pass to the complete perfect closure. To fix notation, fokang let£ € W denote its
multiplicative representative. Forkapolynomial, f, let f denote the function whose value
onx is the multiplicative representative ¢f(x). The infinite vector(&o, ..., &, ...) will de-
note the vector corresponding to the element , §i”ﬂ p'. Let®d; and¥; be the polynomials
defined by the equations, -

(2.1) YE P AY A P =) dio.... &m0, )" P
i>0 i>0 i>0

and

(22) <Z§ip pl)(zﬁ[p pi>:le}i(éOs"'véi;n07"°7ni)p_’pi‘
i>0 i>0 i>0

Having defined these polynomials in this fashion, we observe the following restriction
formulae which result from restricting th# to p” W x p” W and they; to p" W x p*W. The
two formulae are just the polynomial equations resulting from the stateméntsi p"b =
p'(a+b)andp'u - p*v = p"*+uv. To deduce these formulae, first restrict then note that
since the coefficients ab; and¥; are in the prime field they satisfy the functional equation

FOts - xa)? = F( . xh). They are:

(2.3) qﬁi(O,...,O,x,,...,xi;O,...,O,yr,...,yi)=<P,~_r(xr,...,xi;yr,...,yi),

24 lI’,’(O,...,O,xr,...,xi;o,...,o,ys,...,y,')
( . ) :lpi—r—s(xfs’~-~’xipjs;y_spr’~-~ay,:l’:r)~
In these equations, it is understood that the polynomilsand¥;, do not exist when
i < 0. Further, they must be regarded as polynomials over the prime field of characteristic,
p > 0, even though the polynomials themselves are definedZveecause we must use the
functional equations noted above.

We now consider the;,i € Z and they;,i € Z to be elements in the ring of perfect
polynomials in those variables. For non-positive integers, define polynomialsgbi(’) and
¥/ by the equations:

(2.9) q),»(r)(xr,---,xi; Vroweos Vi) = Piyp (Xry oo Xi3 Yro s i) s

(26) q/ir!s(-xrv sy Xiess )’s: cce )’ifr) = q/ifrfs(x;? 9 7-xl'p_s; ys‘? 9 ety y,fy_,) .
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Then by the restriction formulae, 2.3 and 2.4, for integgra such thaty > r and
m > s, @i(r) | pIW x piW = 451.((]) andy” | pIW x pm"W = w"™. Then these two
systems of polynomials may be used to construct a topological ring scheme taking values in
any perfectk-algebra. The polynomialszbl.(r), do not involve p'th roots. Consequently, a
non-perfect topological additive group scheme may be defined. The ring structure requires
passage to the perfect completion. Proceed as follows.

Let X7 be a set of polynomial variables indexed by the integers Afetlenotek* (X7)
and letA} denote its perfect completion. Then, for fixedhe sequences of polynomials,
qbl.(’)(x, ®1L....x®15L1®x,...,1® x,) is a convergent sequence of polynomials in
ATQAT while ¥ (x, ®1,...,xi—s ® 1 1Q®x,, ..., 1® xi—,) is a convergent sequence in
AT ®AL. Let @; and¥; denote their limits in the corresponding complete tensor products.
Then the mappingy (x;) = @; givesA™ the structure of the coordinate ring of a commutative
topological group scheme ancandu(x;) = ¥; are maps givingt I, the structure of a formal
ring scheme.

DEFINITION 11. Thescheme of additive Wtt fractions of k is the formalk-scheme,
Spf(A™) with the binary operation defined lay. The scheme of Wtt fractions is SpiA.)
with the binary operations defined by the mapand . as, respectively, co-addition and co-
multiplication. We shall writeQ W,j for the scheme of additive Witt fractions am@W; for
the scheme of Witt fractions.

It is of some significance to note thatlif; denotes the Witt vectors, a multiplication
of sorts can be defined op” W, where this latter is an additive subgroup @Wk*. The
notation is self-explanatory.

PrROPOSITION 3. For r,s > 0 there is an algebraic bilinear map of group schemes,
frs : p W s pS W — p" S Wy, (Recall that the exponents in parentheses specify
Frobenius covers.)

In view of the restriction formula, (2.4), no proof is required.

We include one more definition of an arithmetic nature. We recall the endomorphisms
andF of Serre [S1]. We must, for notational consistency rename them. Define two endomor-
phisms of algebras, both denotedon k™ (X7) andkZ; (Xz), by the equationy (x;) = x/.

We then extend this to the complete perfedscire of either ring where it becomes an auto-
morphism. Each of the polynomial®; and¥; has coefficients in the integers, i.e. Jip, and
hence®; (x[, ..., x/) = ®i(xo, ..., x;)? and the same fo¥;. Written otherwise, this says
that®; andy; satisfy the conditionf (o (xo), ..., o0 (x;)) = o(f(xo, ..., x;)) foralli. This
however means that behaves properly with respect to co-addition and co-multiplication on
the scheme of Witt fractions, additive or othése;, and so extends even to an automorphism
of topological ring schemes on the complete Witt fractions and an automorphism of commuta-
tive group schemes in the additive case. Considethe effect of the contravariant morphism

of Witt fractions, if o* is the contravariant morphisna,* (3 ()P~ p') = 2(51.”71)”_ p.

That is to sayc*is the classical Frobenius substitution of number theory, the topological

i
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generator of the Galois group of the Witt vectors. This is the morphism corresponding to
in Serre [S1]. Notice however that it is an automorphism of the Witt fractions but only an
endomorphism of the additive Witt fractions.

We also define a morphism, corresponding te(x;) = x;_1. This is “vershiebung” and
it is merely an additive morphism on either of the two schemes. Observe the well known fact
that the composition o v corresponds to multiplication by.

DEFINITION 12. The Frobenius substitution @Ww; andQWkJr is the endomorphism
induced by the endomorphism of coordinate ringéy;) = xlf’. The automorphism of the
field or ring of points is writterv*. It is an automorphism on the topological sche@w
but an endomorphism with non-reduced punctual fiberQ(ﬂnj.

This definition can be extended, though netassarily canonically, to other schemes
derived from the Witt fractions such as the Vector space of dimemsower the Witt fractions
or the matrices over them. We shall always asando* to represent these endomorphisms
when no ambiguity will result.

Another remark is in order. One might wonder whether one must indeed pass to the
perfect completion to define the Witt fractions. To verify that it is necessary just note that
the result of multiplying the Witt vector whose only non-zero componefy is degree zero
with the one whose only non-zero component,isn degreer is the vector with the single
non-zero componer@é’r n, in degreer. In negative degree this requires arbitrafyth roots.

Now QW; is a ring object in the category of topological schemes whose set of
k-points is K, the fraction field of W;. Hence, for any topological schem&,

Hom(Z, QW;) is aring. LetZ denote the:-fold product ofQ Wy and letX; denote projection

on thei'th factor. AnyC € K is ak-point of Q Wy, that is, a continuous homomorphism from

the coordinate ring oD Wy to k. The composition of this map with the algebra inclusion of

k in the coordinate ring o® Wy, is contravariant to the map fro@ W, to Q Wy which sends

every point to the constant valu& We call this the constant map associated tddentify

C € K with the associated constant map,: QW — QW;. One may then take arbitrary
polynomials in theX; and these are maps fro@W;' to QW in the category of topological
schemes. Since relative fiber products and hence fibers of morphisms exist in the category of
topological schemes, it follows that any affine scheme of finite type OW&¢ may be viewed

as an affine topological scheme over(Affine because the fibre product of affines is affine.)

Itis also clear that a morphism of affine schemes of finite type Q& is a morphism in the
category of topological schemes. From this one can conclude that any scheme of finite type
over Q W;, affine or not admits a structure as a topological schemekoueis not immediately

clear that these procedures are functorial oegdithat they give a uniquely defined structure

in the appropriate category. This ambiguity is a consequence of the fact that these schemes, as
we have defined them, do not have a precise definition as something like Greenberg functors
or limits of Greenberg functors.
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2.6. Localized Greenberg functors: We begin this section with an observation. Sup-
pose thalX is ak-scheme and thak is ak-algebra. Then one may construct a presheaton
by settingB(U) = Hony (B, Ox (U)) for any open set/ in X.

LEMMA 1. For any k-scheme X and k-algebra, B, BB isa sheaf of sets.

PROOF. Supposd/ = | J; M; is an open covering and let 8 € B(U) be two sections
such thate|M; = B|M; for eachi. This means thak(b)|M; = B(b)|M; for eachi and hence
a(b) = B(b) foreachb € B. Thatis,a = B.

Similarly suppose that; € B(M;) is a family of sections such that|(M; N M;) =
a;|(M; N M;) for eachi, j. This means that for any € B, o; (b)|(M; N M;) = aj(b)|(M; N
M;). Hence there is a sectian(b) € Ox (U) restricting to the sectiong (b). (Said otherwise,
Hom(Byx, Ox) is a sheaf wher®@x denotes the constant sheaf.) |

We recall the classic results of Greenberg. 28tbe a ring scheme ovérwhich is an
inverse limit of finite ring schemes each isomhic as a scheme to an affine space and let
W = 20(k). For ak-schemey, define a ringed space by taking the underlying spaceé of
as its topological space. Construct a presheaf by lettihglU) = 23(Oy (U)). By Lemma
1, this is a sheaf. The underlying space&rofvith the sheaf)Vy will be denoted23(Y). The
Greenberg functorgy associated t@% is the right adjoint o213, that is, for each Spel¢
schemeZ, andk-schemeX, the equation, Hom(GoZ, X) = Homspeaw (Z, 23(X)) holds
functorially in Z and X. It exists and is defined on the category of schemes of finite type
over W and in fact in a somewhat more general context which is of no relevance to us here
(IMJG1], [MJIG2]). Our purpose here is to show that a localized version of the Greenberg
functor exists. That is, there is an analogue of the Greenberg functor defined on schemes of
finite type over the fraction field oi¥’. It is a topological scheme ovérand it does not have
all the properties of the classical Greenberg functor.

To facilitate our discussion | would like to introduce certain assumptions. A ring scheme
203 on the category ok-schemes for some perfect fielld, will be called aw-scheme if it
satisfies the following list of conditions which essentially codify some common properties of
formal power series and Witt vectors:

HYPOTHESES 1. Aw-schemeover k isaring scheme assumed to satisfy the following:

(1) Theset of SpecA-valued points of 213 isisomorphic to the sequences, (ao, a1, .. .)
indexed by the positive integers and multiplication and addition are given by sequences of
polynomialsin these entries.

(2) Themapn(a) = (a,0,0,...) ismultiplicative and the map ¢ (ao, a1, ...) = ag is
a homomorphism of rings. For a perfect ring, A, the kernel of ¢ is principal with generator
(0,1,0,0,...) = z. For any A the zero of 23(A) isthe zero sequence, (0,0, .. .).

(3) For any k-algebra, A, and elementsa;, b; € A, the product

(0.0.....0,a;,a;31....)(0,0,...0,bj.bj1....)
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isan A point of 283 whose first non-vanishing entry iSaf’" bfl inthe (i + j)'th place, where p
is the characteristic exponent of k (i.e., onein characteristic 0). Moreover, for anyc € A and
anya = (ao, a1, ...) € 20(A), n(c)a= (cao, cPay, ..., cla;, .. ).

(4) For each integer, n, the assignment, I,(A) = {(ao, a1, ...) € W(A) : ap = a1 =

- = a,—1 = 0}, defines a scheme of ideals and the quotient 23(A)/1,(A) = 25,(A) isa

finite ring-scheme with functor of pointsisomorphic as a set to the sequences (ay, . . ., a,—1).
The map from 2B3(A) given by simple truncation is the quotient homomor phism.

(5) Thereisan endomorphism of the identity functor on the category of k-algebras, o,
and an additive map, v : 2B8(A) — 2B(A) given by v(ag, a1,...) = (0, ap,a1,...) (the
shift), so that V o 23 (o) isthe same as multiplication by .

These hypotheses have certain immediate consequences; beetin ideal in thek-
algebra,A. Then the natural morphismy — A/q by functoriality induces a morphism
W(A) — 2W(A/q). Write 203(q) for the kernel of this latter homomorphism. It is self-
evidently the set of sequencésg, a1, . ..) such that for each, a; € q. Finally, I,(A), the
sequences whose firstcoordinates are O is an ideal¥5(A) for eachn > 1 and2B3(A) is a
complete topological algebra with these ideals as neighborhoods of @.3Fdr, by the third
hypothesis/, (A) consists of topological nilpotents.

1. For anydomain, A, 23(A) isadomain.

To see this led andb be elements 0253 (A). If they are both non-zero let andb; in
thei’th and j'th places be their initial non-vanishing coordinates. By Hypotheses 1, (2), the

initial term of ab is a{’]bfl which must also be non-zero.
2. For any k-algebra, A, and any primeq € A, 283(q) isprimein 28(A).
This follows immediately from 1.

3. For any k-algebra, A, and any a = (ao, a1, ...) € 23(A), the complete localiza-
tion, 2B(A) a isisomorphic to 28(A,).

The proof of this is not entirely trivial. First we prove thatif = 1(ao) then2B(A) @ =
A(A) s,y To see this, note that — ag is topologically nilpotent in both rings. Hence, in
A3 (A)zg, &5l(a —do) = u is as well. Hence % u and so alsdig(1 + u) = a are both
units. Consequently there is a natural map frali(A)a to 23(A);, which composes with
the natural injection oR5(A) into 2B(A), to give the natural injection int@3(A)z,. In
2 (A)a the element — ap is topologically nilpotent and sa—1(a — ap) is. One deduces
thatao is invertible in this ring and so there is a natural M8(A) ;) — 25(A)a) Which is
compatible with the natural injections. Thus the two are isomorphic.

Now we can prove tha®3(A) g, is isomorphic to23(A,,). There is a natural map
from 23(A) into 2B(A,,) and this map clearly carrigg to an invertible element. Hence
there is a unique map fro(A) ;. extending the natural map. Next notice that for any
finite sequenceh = (bo/ad’, bi/ad', ..., by/ad",0,0,...) there is a finite integeny, so
thatp' N > ¢; foralli < n. By 23iii), it follows thatal'b is in the image of23(A) and
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sob is in the image oRB(A) ;.. The finite elements are evidently dense and so the map is
surjective. For injectivity, notice that if ae 203(A) is taken to zero, then there is a sequence
N; so thata)'c € I;(A). But this says that 0 is in the closure of the set of elemeijlss.
Hence the image afin 23(A) 4, is already null which proves what we wished to prove.
Without proof, we include the following whose proof is very close in spirit to the last
part of the proof above. Both proofs amount to the observation that the functors involved
(tensor product, localization) are in pripte preserved by the finite schemes of whit¥i is
the inverse limit and then passing to the limit.

4. W(A @ B) = W(A)QwA(B).

Consider the functa?23, defined in the first paragraph of this section, from the category
of k-schemes to the category of local ringed spaces Belts value on the schemg,, has
the same underlying spabet its sheaf, which we writ®Vy is the sheat/ — 23(Ox (U)).
This ringed space 83(X).

PROPOSITION 4. Let X = SpecA) where A isak-algebra. Then2B3(X) = SpfB(A).
Moreover 23(X) is a topological 20 (k)-scheme for each k-scheme X.

PROOF. The open primes o5 (A) are just those containingj (A). Hence they are
exactly the primes oR3(A)/I1(A) = A. The topology is clearly the same. Hence the
underlying space of SE3(A)) is exactly the underlying space of Spag. The sheaf is
determined by its values on a subbase for the topology, hence fobsats By 3, D(a) =
D(ao) and the value of the structure sheaf Do) is just28(A,,). Hence the underlying
spaces of the two ringed spaces coincide andtheture sheaves coincide as well. Wike
as a union of affines, Spet;). It follows that283(X) = |, Spf(2B(A))). O

Thus using the notion of a topological scheme as we have defined it, the fu2ior,
which naturally occurs in the definition of a Greenberg functor actually carries schemes to
topological schemes. Before proceeding we dexglarticular universal mapping property of
local ringed spaces. Recall that given a local ringed spéce (M, Oy) then for any map,

#°, from a commutative ringg, to I'(M, Oy) there is an induced map,: M — SpecR).

At the point,x, the map is determined by composipwith the natural map frond™ (M, Q)

to the germsQy, ., and using the resulting composition to take the inverse image of the max-
imal ideal atx. There is such a map fa = I"(M, Oy), from M to Spe¢I" (M, Oy)) and

this map is universal in that every map frovhto an affine scheme factors uniquely through
this map via the natural map contravariant to the map of global sectiors, I'(M, Oy).

Said otherwise, the functor, Speitom the category of commutative rings with unit to the
category of local ringed spaces and local mospts, is a contravariant right adjoint to the
functor global sections in the structure sheaf. The statement just for schemes rather than local
ringed spaces is exercise 2.4 of [Ha] but it trivially extends to local ringed spaces. Itis proven
for local ringed spaces in [EGA, I, p. 310, Proposition 1.6.3].
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For a ring, A, let A? "~ denote the incomplete perfect cover 4f that is, the limit,
lim,A?™". (See the fourth paragraph of Subsection 2.2). This ring is the ring of regular
functions on the incomplete perfect cover of Spec

DEFINITION 13. Assume tha2Q3 is w-scheme, i.e., that it satisfies the hypotheses,
23. The localized w-functor associated2D is the functor,253,;, which associates to each
commutativek-algebra A, the value o3 on A”” " localized at the uniformizing parameter,
7. Thatis, 28, (A) = (2B(A? 7)).. The functor,25,, from the category ok-schemes
to the category oK -ringed spaces assigns to eagebcheme X, the ringed spaces,; (X),
which has the same underlying topological spaceXaslts sheaf is that associated to the
presheaf,

2, (Ox)(U) = (W (Ox(U)) .

LEMMA 2. For any k-scheme, X, 28, (Oyx) isa sheaf.

PROOF. First observe thad?‘)"{oc is a sheaf. It follows tha&ﬁ(@f{w) is also a sheaf,

since it is simply a product of a countable number of copie@f)_foc.
Now we show tha233; (Ox) is a sheaf. LetU;};c; be a covering indexed by the ordered

set/ andfori < jletU; ; = U;NU;. Letjy, jo: []; QH(OQK(U,»))—> ]'[l.<j QB((’)?OO(U,-,]-))

be the maps defined by ({s:};) = {si|Ui j}i<j, jeUsi}i) = {silUj.i}j<i- Thatﬁn((’)f(_oo) is
a sheaf is equivalent to the exactness of:

(2.7) 0— [, 28O W) 22 1,204 " Wi )

for each covering{U;};c;. For any openM, 25, (Ox)(M) = QH((’);_OO(M)),T and conse-
guently one may localize the exact sequence (2.7) to obtain an exact sequence:
(2.8) 0= [1, W (Ox)U) =5 [1;-; W (Ox)(U; ) .

The exactness of (2.8) for any covering is exactly the statemerai0y) is a sheaf.
It also should be noted that the stalksXf, (Ox) are local. To see this one need only apply
the functor23; to the evaluation mag)x (U) — Ox x/my. O

DEFINITION 14. LetX be aK-scheme. Thenlacalized Greenberg schemeassociated
to X is a topologicak-scheme@ X, satisfying the functorial equation Hgni25, (Y), X) =
Homy (Y, GX) for all k-schemesy.

Clearly, since the functor whicGX represents is determined, if a topological scheme
representing it exists, it is unique up to a unique isomorphism. We shall prove that it exists
for all schemes of finite type ovet and thatG behaves well with respect to relative fiber
products. Once existence is established for schemes of finite typ&oveiollows thatg is
in fact a covariant functor from schemes of finite type oketo topological schemes ovér
The universal mapping property of Speg X, Ox)) alluded to above plays a crucial role.

REMARK 1. Itis naturalto attempt to construct these objects without passing to perfect
closures. However even the simplest polynomials of positive degree suéroas y involve
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arbitrarily largep’th roots when they are expressedkicoordinates. It follows that one must
use a perfect completion to adequately describe the coordinate ring egekioﬂ'he use of
a perfect coordinate ring then forces the use of the perfect closure in the defini®n of

LEMMA 3. Let X, Y and Z be affine K-schemesand f : X — Zandg: Y — Z be
K morphisms. Let M be alocal ringed space over K. Then

Homg (M, X xz Y) = Homg (M, X) XHomgm,z) HOMg (M, Y) .
PROOF. This is simply so because for any affikescheme7,
Homg (M, T) = Homg (SpecI” (M, On), T) .
Taking 7T equal to the desired product yields the result. ]

LEMMA 4. Let X and Y be two topological schemes over k. Then if there is an iso-
morphism of functors, Hom,( , X) ~ Hony( ,Y), on the category of ordinary, affine
k-schemesthen X and Y are canonically isomorphic.

PROOF. Any topological k scheme,Z, can be represented as an inductive limit,
zZ = Ii_r)n,»eIZi where theZ; are closed discrete subschemes. Hence HZmX) =
I(imiel Hom,(Z;, X) and the same fo¥. Consequently the isomorphism of functors ex-
tends to the full category of topological schemes auelrhus one must only verify that the
two functors are isomorphic on the categoryeschemes. Since every scheme can be repre-
sented as the coequalizer of two morphisms from one disjoint union of affines to another, if
the two functors are isomorphic on the category of affirsechemes, they are isomorphic on
the category of alk-schemes. Hence the result follows at once by Yoneda’s Lemma. O

We slightly extend the notation of Definition 6. L&' denote the index set of pairs,
(i, j) wherei, j € Z,1 < i < n. Thenk™ (Xz.) denotes the completion of the ring of
polynomials in a set of indeterminates indexedZ4¥y The topology is determined by taking
the ideals/,, as a subbase whefgis the ideal generated by all ; with j < r. A subscript
oo on the right bracket indicates perfect completion and whenl we use a single subscript
inZ.

LEMMA 5. Let X belocally closedin A% . That is, X is an open subset of a K -closed
subset of A% . Let j : U — X be an open embedding. Then there are localized Greenberg
functors, GX and GU and moreover themap GU — GX induced by j is an open embedding
of topological perfect schemes.

PROOF. Let Al = kT (Xzn)o and letA}, = k* (X7).. We prove thagA), =
Spf(Ajljoo). Then HOrm(SpecR, Spf(A, «+)) is the set of continuous algebra homomor-
phisms fromA;f  to R. By Proposition 2 and the remarks in Subsection 2.2, these homo-
morphisms correspond to thetuples of sequences;; ;) jcz.i = 1,...,n with x; ; € Ro
andx; ; = O for all sufficiently smallj. This set is, by Definition 13 and Proposition

2, in bijective correspondence with the setmefuples of elements o3, (R). Thesen-

tuples are the3; (R) points of A% . This establishes that HqtBpecR), SpfA,jjoo) =
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Homg (23 (SpegR)), A ) for all k-algebras. By Lemma 4, this shows thatspjtoo) =
GA,.

Now think of Spf A7) as the topological ring scheme of Witt fractions. The projections
of Spf(A,jj o) On thei'th factor, which we writeX;, are points of the Witt fractions with values
in GA% . Under the correspondence of the previpasagraph, this mapping corresponds to
the i’th coordinate function. Since these greints in a ring scheme, any polynomialsrin
variables overk can be evaluated on them. Under the functorial correspondence of points
F(X1, ..., X,) will correspond exactly to the polynomiak;, regarded as a map from
space to the line. Furthef, is by its very definition an ind-algebraic map from Sp{)oo) =
GA to SpfAL, = QA}C Consequently, given any two sets of polynomials imariables,
F1,..., F. andHy, ..., Hy, the complement of the zeros of t& in the common zeros
of the F; can be realized as a locally closed topological subschem@Agf, namely, as
MNica Flfl(O) NNia Hfl(gA}( \ {0}). This constructs a localized Greenberg functorXor
To prove the statement about the open embedting X just note that to defin& we need
only add a finite number of polynomials to ti#&. O

LEMMA 6. Letg : X — Zandy : Y — Z betwo open embeddings of K schemes.
Assume that a localized Greenberg functor for each of these three schemes exists and denote
theseGX, GY and GZ, respectively. Thentherelativefiber product, X x z Y admitsalocalized
Greenberg functor and GX xgz GY = G(X xz Y).

PROOF Let T be a k-scheme. By the definition of relative fiber products,
Hom (T, GX xgz GY) = Hom(T, GX) XHom,(r,Gz) HOM (T, GY). By hypothesis this
is equal to Homy (25 (T), X) XHomy (28, (1), z) HOMg (W (T), Y). This fiber product con-
sists of the pairs of local ringed space morphisif)s,g), such thatp o f = ¥ o g. AS
these are open embeddings, this says that the ima@eusfder either of the morphisms is
in the intersection of the two open subschemes and that the valyésuad g on any point
coincide. Hence the last fiber product of Hom’s is equal to RO2B ;. (T), ¢ (X) N Y (Y)).
This last intersection however is none other thanx; Y. That is, we have shown that
Hom(T, GX xgz GY) = Homg (2B (T), X xz Y). O

THEOREM 1. Let X be a scheme of finite type over K. Then a localized Greenberg
scheme, G X, exists in the category of topological schemes over k.

PROOF. Represenk as a unionX = [ J;.; U; for an ordered set]. Fori < j write
U NU; = U;; and definel; ;. similarly fori < j < r. Then there are three maps
qgi,j ]_[r’s,, Urs.t — ]_[r’s Usi,j=123,i < j. Thengz s mapsU, s to U, g1.3 maps
itto U,; andgy 2 maps it toU, ;. Define mapsy; : [ [, U,s — [[U;. Letx! = LI, Ur and
let X2 =], , Uys. ThenX is the co-equalizer of the two mapg,: X* — X2 and it may be
constructed as a topological space and a ringed space whenever the following compatibility
condition holds. To describe it we consider the following three diagrams:
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q1,3 q1,2 91,3

Urst —> Uy Urs,y —> Uy Ursiy —> Ups
ql,ZI l]ll q2,3l lqz lq2,3 qu
Ur,s — U, Usy — U Us,s > U

q1 q1 q2

Then the necessary compatibility catmoh is just that, for any tripler, s, ¢, these three
squares are Cartesian which in the case of open embeddings just meadis ;thas the
intersection of the sets on the upper right and the lower left in the set at the lower right. Each
of these schemes is locally closedAfy for somen and so admits a local Greenberg functor.
Hence one may apply the functay, to each of the schemes and morphisms in the three
rectangles of the diagram above and by Lemma 6 each square remains Cartesian. Further
by Lemma 5 each of the maps involved is an open embedding. It follows that one may glue
the topological schemegU;, along the subschemesl; ;, to obtain a topological scheme
X. What must be shown is that is a localized Greenberg scheme for We may write
X =J; GU;, GU; N GU; = GU; ;. We must show that Hop(T', X) = Homg (28, (T), X).

First suppose thaf : 283, (T) :— X is a morphism of local ringed spaces. Then by the
Hypotheses 1 and Proposition A, X(U;) is open inT and this set together with the sheaf,
W (O1)| -1, 1S just283,, (f~1(U;)) and the same fol/; ;. Hencef restricts to give a
family of maps, f; : 28, (f~1(U;)) — U; which agree on the intersections which are the
spacesﬂﬁ,,f*l(U,»,j). Let 7; andT; ; be open subschemes Bfcorresponding to the sets
£~y and f*l(Ui,j). Then, since the schemds; and U; ; admit localized Greenberg
schemes, the map$ and f; ; correspond to a compatible family of maps: T, — GU,.

These determine a map frofto X which is after all the scheme obtained by glueing the
GU; along thd/[,',j.

Conversely, letp : T — X be a morphism of topological-schemes. Lefl; =
¢~Y(GU;). Restrictingy to T; gives a unique maps which correspond, by adjointness, to
amap,f; : 20, (T;) — U;, for eachi, and functoriality forces these to be a compatible fam-
ily which hence piece together to a map; 25, (T) — X. This shows thaX is a localized
Greenberg scheme fof. ]

THEOREM 2. Let X, Y and Z bethree schemes of finitetypeover K andlet¢ : X — Z
andy : Y — Z betwo K-morphisms. Then thereisa canonical isomorphism, G(X xz Y) =~
Q’X XGz Q’Y

PROOF. Write Z as a union of affinesz;, and write¢p~1(Z;) andy~1(Z;) as unions
of affines,X; , andY; ;. ThenX xz Y is the union of aﬁ‘inetjiﬂ.)s Xir xz Yis and hence
G(X xz Y) is, by the argument of the previous proof, equal to the union of the open sets
G(Xir xz; Yis). ByLemma3G(X;, xz Yis) = GXi, xgz, GYis. Write M, ;s for this
topological scheme.

By the argument in the last part of the proof of Theorem 1, the schej&s, x z, ¥; ;)
can be pieced together along their intersections to gié x z Y). On the other hand, the
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shcemes X; ,, GZ; andGY; ; piece together to givé X, GZ andGY, respectively, and so
their products over th€Z; piece together to givgX xgz GY. Consequently by the local
equalities noted just abovg(X xz Y) andGX xgz GY are isomorphic. O

Notice thatX x g Y is abbreviated notation fot' xspeqx) Y. In the following, we give
the basic properties of the Greenberg functor including those properties which show that it is
the appropriate object for our consideration.

PROPOSITION 5. Let X bea K-scheme of finite type. Then the following hold.
(1) G(Speck)) = Speck).

(2) 28, (Speck)) = SpecK.

(3) Hom(SpegK), X) = Hom(Speck), GX).

PROOF. To prove (1), we apply the definition of a localized Greenberg functor,
Definition 14. LetY be anyk-scheme. We must show that HE%, (Y), Spec¢K)) =
Hom(Y, Speck)). But this follows from the fact that Spék’) and Spe¢k) are final objects
in the categories respectively of local ringed spaces &vand those ovek. Item (2) is sim-
ply a straightforward application of the definition of the funaforAs for item (3), just write
Hom(203,, (Speck)), X) = Hom(Speck), GX) and apply (2). O

THEOREM 3. Let X be a group scheme of finite type over K. Then GX isagroup in
the category of topological schemes over k.

PROOF. The structure data foY consistof mapsy : X xg X — X, e : Spec¢K) — X
and the inverse map,: X — X. Simply apply the functog to each of these maps. Since,
by Theorem 2G(X xx X) = GX x; GX these data yield a set of data endowing with
the structure of a group in the category of topological schemes. O

3. Spacesof lattices.

3.1. Lattices of fixed discriminant and height: Lebe the algebraic closure &f,,
let O = (k) = W be the ring of Witt vectors of and letK be the fraction field ofD.
Write K" for the n-dimensionalK -vector space viewed as the space of column vectors of
lengthn. Let F C K" denote the free rank O-module spanned by the standard basis. A
lattice in K" is a free ranke O-submodule ofk™”; it is called special with respect 1 if its
n'th exterior power is equal to theth exterior power ofF. If A" L = p? \" F thenL is of
discriminantp? with respect taF. We simplify by saying that it is ofndex ¢. Though index is
defined only with respect t& we shall rarely refer td". A further point must be emphasized.
In this section we shall be working for the most part with the additive Witt fractiQ‘lzI;’,jr .
There are a few points which require passage to the perfect complétiwp, but for the
most part we are working with projective schemes and separable limits of them. When we
must pass to perfect completions, we shall inform the reader clearly. That these constructions
yield separable limits of prective schemes seems to me to be of great importance, though
| have not found any particular use for itn this and in subsequent sections we will write
K for QW' = A%. This conflicts with previous practice. The ambiguity of this notation is
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not a problem so long as we work with topologiéaschemes wher& can have little other
meaning.
A lattice M in K™ will be said to be oheight at most » if p™ F 2 M.

DEFINITION 15. The set of lattices itk” of index ¢ and height at most will be
written Laf" "¢ (K). We shall call it the space of lattices of indgxand height at most.
Lattices of index 0 will be called thgpecial |attices. We writeLLat’ (K) for ]Lali”o(K) and, in
argument, where there is no ambiguity, we shall wiigd""? andLat’ for these spaces.

In this section we shall show that this space is a projective schemé ;dweconstruction
it will be reduced. It will be shown to be irreducible.

Let L be any lattice of height less than A lattice admits a basis and we may write
this as a set of column vector@y 1, ..., u,1)7, ..., (U1, ..., us,)T. The superscriptl,
denotes transpose. We may permute these to assume; thég of lowest value among the
u1,j, then use elementary column operations over the valuation ring to make the other entries
in the first row null. Repeat this procedure on the— 1) x (n — 1)-matrix with upper left
entry,up 2 and so on. One can obtain a lower triangular matix;) whose columns span the
lattice and such that the produgt, 1u2 2, . . ., u,_,, iS Of valueg. Further elementary column
operations over the valuation ring can be applied to insure that the element < i is either
0 or has value greater than or equaHe but less than the value af ;. Since multiplying
a basis vector by a unit does not change the lattice we may further assume that the diagonal
entries are just powers gf. The vector whose entries are tpeexponents of the diagonal
entries of this matrix will be called thigpe of the lattice. IfL is of type(r1,r2, ..., 1)
then the index of. is > ri = ¢. We shall think of the lattice as the span of these columns,
that is as the span of the columns of a lower triangular matrix. For any large erptigh
elementary divisors of./p’ F are the integerg*~"i without multiplicity. By the structure
theorem for modules over a PID they and tHediquencies are uniquely determined subject to
the choice of the standard latticE, and their order is determined by a choice of an ordered
basis inF. Hence the type of a lattice is uniquely determined. We do not assert this type is
orbit type under the Iwahori or the maximal bounded subgroup or that the lower triangular
matrix described above is uniquely determined.

Consider the diagonal matrix with entries,; and suppose that it spans a lattice of
index, q. If r; is the value ofu; ;, thenr; > —r and the assumption on index implies that
>, ri = q. These two conditions imply that < ¢ + r(n — 1). This means that iL is of
indexqg andL C p~" F thenL > p9t" =D F_For eachyj, the diagonal matrix with entries,
wii=p i # jouj; = p?t"=D meets all the requirements. The intersection of these
lattices of index; is exactly(p?+=br)F and so no smallep-multiple of F is contained in
all the lattices of height at mostand indexg. That is, the lattices of indey,, and height at
mostr are those lattices of index,q, such thapp ™" F > L > p?t=brp,

DEFINITION 16. LetL be a lattice of indey. Then a basis of, consisting of vectors
Ui, ..., Uy, SO thatu; = (u1;,...,u,;)’ and the matrix,(x; ;) is lower triangular with
powers ofp on the diagonal will be called siandard basis of L.
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LEMMA 7. Thegroup p~" F/p?+t=D" F is a unipotent algebraic group of dimension
ng + rn? and the lattices of rank n, height at most » and index ¢ are in bijective corre-
spondence with its k*-stable connected subgroups of dimension (n — 1)(¢g + nr). Here k* is
assumed to act through the multiplicative representative morphism, & : k* — O*,

PROOF. It is clear thatp~" F/p?t" =D F is a finite dimensional commutative unipo-
tent linear algebraic group ovéradmitting in addition arQ-structure. Then by means &f
the multiplicative group acts op~” F/p?*t" =D F and a subvariety of it is aé?-submodule
if and only if it is a subgroup and hence stable under multiplication land alsok*-stable.
This is so because it then stable under sumy,; £(1;)P” p' and so under all of. Finally,
notice thatM is a lattice of height at mostand indexg if and only if the length ofp™ F/M
is ¢ + nr and that this length is the same as its dimension as an algebraic group. Since the
codimension ofVf in p~" F is nr + ¢, the dimension oM/ p9t" "D Fis (n — 1)(q + nr),
that is,n(g + nr), the dimension op~" F/pt=Dr F |ess the codimension aff in p~" F.
Further, for any non-zero element pf” F/p?+=D7 Fthe closure of it&*-orbit contains
0. Thus the set of lattices of indexand height at most is in bijective correspondence
with the set ofk*-stable connected algebraic subgroupgof F/p?* =D F of dimension
(n — 1)(q + nr). O

We introduce a notion which is of great utility in the following discussion. Kebe a
k-scheme and lef : U — X be anX-scheme with a sectioa,: X — U. Then we shall say
thatU isflat over X off e if U \ e(X) is flat overX.

LEMMA 8. Let X be a k-scheme and let N be a connected reduced linear algebraic
group over k. Let U € X xx N,¢ : U — X be a family of closed subschemes of N
containing the image of the identity section, e : X — N and with fibers stable under taking
inverses. Assumethat N isfaithfully flat off e. Then thereisa unique maximal closed reduced
subscheme of X, denoted Y, sothatif g : Z — X isany map suchthat Z xx U isa Z-
subgroup scheme of Z x; N then g(Z)eq C Y.

PROOFR LetU’' = U \ e(X). Letm : U xxy U — X x; N be the restriction of the
group multiplication. Then7 = (X xx N) \ U is open and thus so alsois (7). But
¢|U’ is flat and hence open and hengen —1(T)) is open. Take' = X \ ¢(m~X(T)), the
complement of (;m~1(T)). Itis closed and by definition it consists of the set of pointso
that if ug, up € ¢~1(x) = U, thenm'(u1,uz) € U. LetUy = ¢~ 1(Y), Uy = Uy \ e(Y).
It follows thatm'(Uy, xy Uy) S Uy and since the latter is closed abg xy Uy is in the
closure ofUy, xy Uy, multiplication carries it intay. By hypothesis the fibers dfy are
stable under taking inverses and it adndts identity section.Examination showsg” to be
exactly the set of points witly fibers which are subgroups. O

PROPOSITION 6. Letg, mand N bethreeintegerssuchthatg < mand N < n(m—gq).
Then there is a k-scheme IL(¢, m; N) which is projective and of finite type over k and a flat
commutative group scheme, U(g, m; N) C p?F/p™F x; LL(g, m; N) which is a universal
family of flat subschemes of p? F/p™ F of dimension, N, parametrized by IL.(q, m; N). That
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is, for any k-scheme, Y, and any flat Y -group scheme, M C p?F/p™ F x; Y, whosefibersare
O-submodules of p? F/p™ F of dimension N, thereisauniquemap, f : Y — IL(g, m; N) SO
that M =Y X1L(g,m;N) U(g, m; N).

PROOF. We must considep? F/p™ F as ak*-variety. An element of this group can be
thought of as a column vector with entries, . .., u, wherey; is an element op? O/ p™ O.
Hence we may write; as a sumy; = Z?:’qlé(xi,j)f’pf. Now by (2.2).£(¢)u; hasi, j co-
ordinatetl”x,»,j. This has the following consequence. et p? F/p™ F and letL’ = L\ 0.
ThenL’/k* is the weighted projective space Ridjx1,q, . . ., x,,»—1]) Where the polynomial
ring is graded by taking; ; of degreep’ (even wheny is negative). We shall call this space
PLI"™. Notice that thet*-stable closed subschemeslobf dimensionN are functorially in
bijective correspondence with closad— 1 dimensional subschemesliE,"" which is pro-
jective and of finite type ovet. Notice that the projective coordinate ring®iL; " is graded
by p17".

Let H# denote the Hilbert scheme of closed subschem@LAf" of dimensionN — 1 .
LetZ/ in PL}"" x H denote the universal family. L&t denote the inverse imagel@fin L' x
H. LetY{” denote the closure &’ in L, x; H and letey : H — U" denote the 0-section.
This is a family of subschemes éf of dimension faithfully flat off e;. We note that this
is exactly the family of closed*-stable subschemes afof dimensionN. The graded ring,
klx1g4, ..., xn,m—-1]is graded by strictly positive degrees. This means that in its spectrum, 0
is the unique fixed point and it is in the closure of evigryorbit. Hence, since the fibers&af’
arek*-stable and closed, they are connected. The hypotheses of Lemma 8 exactly &fiply to
as a subscheme @ x; L,. Hence there is a closed reduced subscheni¢ whose points
are exactly those whog¢’ fibers are closed*-stable subgroups gfY F/p™ F = L. Denote
this subschemé, write U/ for the restriction oi/” to Z and writee; for the restriction of
the zero section t&. Itis a group subscheme af x; p? F/p™ F faithfully flat off ez.

Considei/z. If a is a non-null pointin thé{; fiber overz, there is an fpgc neighborhood
of z, T and a section : T — Uz xz T = Ur whose value on points overis a and which
is nowhere zero off'. Translation by is an automorphism dffy carrying the zero section
to s and sinceldy is flat off ey it is flat ats. Since a neighborhood &fis, by translation,
isomorphic to a neighborhood ef, it is flat at the zero section as well. Herigg is flat over
T. It follows that oncomponents wher# is not null, it is flat.

Now suppose’ is ak-scheme and thatt C p?F/p™F x; Y is a flat family of O-
submodules of dimensioN. Then one may take the complement of the null sectioivin
and take its quotient to obtain a flat family &f— 1 subschemes &L/ . This determines
amap,f : Y — H. SinceM is a family of O-modules,f (Y) € Z andM is the pull back of
Uz. Thatis,Z is the schemdl.(¢, m; N) and the universal family{; can be taken to be the

group scheméJ(q, m; N). m]
PROPOSITION 7. Letus, ..., U, beaset of columnswhichisa standard basis of height
at most r, index ¢ and type (r1, ..., r,). Let e; denote the i’th standard basis vector. Then,

we have the following:
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(1) Supposer; > ri+1. Thereisaflat family of lattices of height at most » and index ¢
parametrized byA,% oftype (r1, ..., ri—1, Fi+1, 14, . . ., 1) for all values of r except O whereit
isthelattice spanned by uy, ..., Uy,.

(2) Ifforsomei < n,u; = plie; andr; > —r, thereisa flat family of lattices of height
at most r and index ¢ parametrized by A,} which consists of lattices of type (r1,...,r; —
1,...,r, + 1) exceptat Owhereitisthespanof ug, ..., u,.

PROOF. LetY be ak-scheme and suppose that. ¥ — p™" F,i = 1,...,nis aset
of maps so that for each closed pointe Y, the values; (y) are a basis of a lattice of height
at mostr and indexg. LetL = L(—r,g +r(n —1),ng +rn(n —1) — 3 ;r;) and letN =
ng+rn(n—1)—>r;. Then for each, s; xid is a map from’ x; L to p~" F/p"~Dr+4 F 5, IL
and(s; x id)~2(Y x U(—r,q +r(n — 1), N)) = T; is closed inY x; L and its closed points
are pairqy, L) whereL is a lattice containing;(y). LetI" = 71N ---N T,. Then the closed
points of this set are the paifs, L) such thafs1(y), ..., s,(y)} € L. Since the vectors (y)
constitute a basid, is uniquely determined. That i, Ny x L is a single point. Hencé' is
the graph of a morphisni : ¥ — L. Itis clear thatf ~X(U(—r, g + r(n — 1), N)) is a flat
family whose fiber ap is the span of1(y), ..., s, (¥).

Let £ denote the multiplicative representative map. To establish (1);{ef = u;
foreachj # i + 1. Lets;41(f) = u;41 + &(¢) pli+te;. At O this gives the specified lat-
tice. Att = ¢ # 0 the specified base is not standard. Howewer. .., u;_1, si+1(c), si —
pliTivig(c s 41(c), . . . u, is standard and is of the required type.

To establish (2) let; (t) = u;, j # n and lets, (1) = p™e, + £(t)p"i~Le;. The values
of these maps give a basis for a lattice of indefor all + and so they give a flat family
by the procedure of the first paragraph. Whegt 0 the base is not standard. However
si—E( YHps, = ™1 pritL. Permute this vector witk, and the result is a base in standard
form and of the right type. O

THEOREM 4. For eachq > —nr, thereisareduced and irreducible k-scheme projec-
tive and of finite type over k, denoted Lat."?, and a universal family of flat group subschemes
of Laf'? x(p~" F/p""~D+a F) parametrized by Lat"? . We denote it U}"? (K) or, when
thereisnoambiguity, U;?. If Y isany reduced k-schemeand M C Y xx(p~" F/p" "~ D+a F)
isany flat group subscheme of lattices of index ¢ and height at most », then thereis a unique
morphism f : ¥ — Lat"? sothat M ~ Y xq e U7

PROOF. Let F, denote the lattice with basigy"e1, ..., p~e,—1, p?T"~Vre,. Let
Z = L(—=r,(n — Dr + q; (n — 1)(¢ + nr)), the scheme given by Proposition 7, and let
Uz = U(=r, (n — Dr + q; (n — 1)(¢g + nr)). Now Z is a disjoint union of components, and
on each the Hilbert polynomial of its*-quotient is constant. Since the degree of a Hilbert
polynomial corresponds to the dimension of the subscheme, the poitzofresponding
to k*-stable subgroup schemes of dimensirare a union of connected components. Now
consider the component of this scheme containing the point correspondipgpy Y+ F.
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We wish to prove that this component posesses all the properties clainieatfdr. Call this
componentX and writel/ for the restriction ot/ to X.

First we must show that i#/ is any lattice of index; and height at most, it is in the
same connected component/&gs Suppose thag; is thei’'th vector in the standard basis and
let p'tes, ..., p'me, Span a lattice of indey and height at most. Suppose that; = rp =

-=r_1 = —r, r; > —r. Then we may construct a degeneration of the type specified by
(2) of Proposition 7. The proposition implies that the given lattice is in the closure of the set
of lattices of type—r, ..., —r,r; — 1, ..., r, +1). The existence of this degeneration implies
that the two types are in the same component of the Hilbert scheme we are considering.
We may repeat this construction repeatedly until we have demonstrated that every lattice of
indexq and height at most is connected by a sequence of degenerations to a lattice of type
(=r,...,—r,(n — L)r + q). Moreover Proposition 7 implies that each lattice of ingeand
height at most is in the closure of the set of lattices of typer, ..., —r, (n — D)r + q).
Similarly F;, is in the same component by definition. This means that all lattices of ipdex
and height at most are in the same component of thdd#rt scheme and that this must be
X.

Now observe that the grou = SL(n, O/p""90) operates orX. Up to a Frobenius
twist, this is an algebraic action. The orbit of the lattice of type, ..., —r, m — L)r +q) is
stable under these automorphisms and so its closure, which we willXgiie as well. Hence
this closure contains all th& translates of any elementin it. NaWis a quotient of a maximal
bounded subgroup &fL (n, K), and so it contains the image of an Iwahori subgroup. Denote
this imageB. The schemeX, is stable under the action 8f.(n, O) and hence of its lwahori
subgroups and the kernel of the natural surjectiofifofn, ©O) acts trivially onX. Hence the
G- andB-orbits inX are actually the orbits of, respectively, a maximal bounded subgroup and
an Iwahori subgroup. By the lwahori decomposition (actually the Birkhoff decomposition,
see Subsection 3.4 below) it is a unionB®orbits of elementsy = exp,(r1, ..., m). Here,
exp,(r1, ...r,) denotes the lattice spanned by the columns of a diagonal matrixithth
diagonal entryp’i. (See Subsection 3.4 below.) Since this closure contains elements of any
type of indexg and height at most by the remarks above, it contains all lattices of ingex
and height at most. That s, all the lattices of index and height less thanare contained in
the closure of a reduced and irreducible open subset. This establishes the irreducilility of

Let U, be the fiber oft/ overx € X. Itis a unipotent group subscheme pf”" F/
p~Vr+a F of dimensionnr. Consequently the connected component of its reduced sub-
scheme is likewise. Hence this reduced connected subgroup of dimerisienl)r, which
we denotelp, is a lattice of index; and height at most and so corresponds to a point of
X. Hence its Hilbert polynomial is the Hilbert polynomial &5 /p"~Y"+4 F and so also of
U. But the Hilbert polynomial ot/ cannot be equal to the Hilbert polynomial G unless
U = Up. ThusU = Up. That is the fibers off are connected, non-singular akitdstable.
That is, they are lattices, special and of height at most

Suppose thal is ak-scheme and tha” C Y x; L, is a flat family of special sublattices.
Then itisk*-stable. FurtheN'\ e(Y) is flat andk*-stable whence the quotierity \ e(Y))/k*
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is also. This determines a map imband Lemma 8 assures that its image lieZ iand hence,
by the connectedness argument aboveXinlt is of no great depth to ascertain thit is
isomorphic td/ xx Y. Thatis,X = Lat"'? andi/ is its universal family[U; 7 (K). ]

REMARK 2. We shall always writd.at!(K) for }Lali”o(K). One may construct mor-
phisms of lattice varieties corresponding to multiplicationyr by arbitrary elements of
SL(n, K). They cannot be constructed by simply applying the action as this requires passing
to complete perfect topological schemes. They can be constructed by other strategies. This
problem is related to the question of representing the Steinberg group as a topological scheme
and it is the topic of a work in preparation. Using these morphisms lattice schemes of arbitrary
index can be shown to be isomorphic to subschemes of scHeate 0 < g < n.

COROLLARY 1. Let X,, = Laf"/(K). Let M < U;}Y(K) be a closed k*-stable

reduced group subscheme of U”(K) and let ¢ : M — X, ,, be the structure morphism. Let
Xg(M) = {x : dim(¢1(x)) > s}. Then for each s, X;(M) isa closed subset of X,,,.

PROOF. FirstreplaceM by the reduced subscheme of one of its irreducible components.
If the assertion is true for each of these components, thgi) is the union of the sets
corresponding to each of the reduced subsetsrefliucible components and so if they are
closed the finite union is also. Hence we may assume khas reduced and irreducible.
HenceM is integral and sd/; = {x € M : dim(¢ (¢ (x))) > s} is a closed subset aff
by upper semicontinuity of fiber dimension. Moreows is a union of fibers ofy and so
k*-stable.

Let Z be the zero section it (K). Itis evident that; N (U, (K) \ Z) is a closed*-
stable subset of the cone oVL;,. That s it is the cone over a closed subsePbf, x; X, ..
By properness, it follows that its image k)., is closed. This image is exactly,(M). O

By constructionLat? is a finite dimensional scheme. Observe that the subgroup of
SL(n, ©) consisting of those matrices congruent to one mtid¢ acts trivially onLat.?.
Hence the quotient group, which is finite dimensional, operates on this space and it does so,
by the argument in the proof above, with a finite number of orbits.

There is a natural inclusion/, : Lat?(K) — Lat?(K). This sequences of varieties
and inclusions is a direct system. Consequently, the Iim)it,]limi”q(K) is a topological
scheme.

DEFINITION 17. The direct Iimit,LmLaﬂ,’"’(K) is called the space of lattices of rank
n and indexg in K. Itis writtenLat¢ (K ). We writet{;’? for the universal family of lattices
of index,¢. We shall writeLat"? (K) andZ/}y? for the corresponding perfect completions.
Forqg = 0 we writeLat’(K) and refer to it as the space ofespal lattices and the same for
the universal family mutatis mutandis.

We conclude this section with some remarks on the actionSafn, K) on
Lat'(K) and its perfect completion.
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DEFINITION 18. LetX be atopological scheme ovier We shall callX pseudohomo-
geneous if there is a group of automorphisms transitive on the closed poikitsIbfG is a
group andG acts transitively on closed points, we shall say thiat pseudohomogeneous
overG.

It can be proven that the closed pointsSdf(n, K) operate of.af’ (K) transitively (see
Remark 2). However there is no algebraic actiorsafn, K) on Ifét"(K). If the action of
SL(n, K) were somehow algebraic its restriction to the maximal torus would be as well. Let
A(ay, ..., a,) denote a diagonal matrix with diagonal entriesand letl” = {A(aq, ..., ay) :

[1i @i = 1} be a maximal torus. Then theap which sends an element Bf A(az, ..., a,)

to the lattice spanned by the vectais; is the orbit map for the action @ on the standard
lattice, F. The image ofl" however is a discrete set. Hence this action under vxdﬁiﬁﬁ([()

is pseudohomogeneous is not algebraic. On the other Kae O) acts onF and so on

its multiples, p~" F and p®~1" F, and so on their quotient and on the setkbfstable sub-
groups of fixed codimension. That iSL(n, O), up to a suitable Frobenius twist, operates
algebraically orLat! (K). The subgroug; = {y € SL(n,0) : y =id mod p""} op-
erates trivially and so the finite dimensional groSp,(n, ©)" /T, = SL(n, ©/p™ ©)") acts
onlLat'(K). (Recall the uppegr) signifies a Frobenius cover.) Moreover these actions, up to
the Frobenius twist, are coherent.

3.2. General lattices: We have not consted a space of ordinary bounded lattices.
In this section we do so. First, we introduce the conventign; L = (A" F : N" L) \" F
where(N : M) = {x € O : xM C N}. Our construction is based on the following observa-
tion. If L € K" is a general lattice, anfl C K" is a standard lattice, theh @ A\ ™" L is a
special lattice iRk & /\" K" with respect to the distinguished lattice,® /" F.

Write M for the (n + 1)-dimensional vector spac&” & /A" (K™) and F for the lattice
F @ /\" Fin M. Alattice L in M will be said to beA-decomposable if L = (L N K") &
(LN A" K"). Lete; be the projection off onto K" and lete, be the projection o on
/\"(K™). Theney ande; are orthogonal idempotents and, sirge= id —¢;, the latticeL is
A-decomposable if and only & L < L for either one of the twe;. LetF,, = p™" F &
p~% N\ F. Itis nearly tautological to note that any of the lattic€s,, are A-decomposable,
that is to say;-stable for each, s. In particulare; ande, induce corresponding projections,
eionF, /F,pforanya <r, b <s.

Let L € K" be a lattice. We shall always writefor L @ A ™" L. ThenL is of index at
mosts and height at most if and only if p™" Fy C LC F.s. If L is of index at most and
height at most thenp™+SF C L C F,,. Thendim(L/p" ™ F) = (n + 1)(nr + s).

PROPOSITION 8. For eachs < r, thereisa unique closed subscheme Z7' . C Lat't1(K)
consisting of the A-decomposable lattices of index at most s and height at most r. Further
if B7 . = UrH(K)|Z! , the scheme of lattices, B!, decomposes into a direct sum of the two
lattices, ¢, E} | and if X is any scheme with a flat family of special lattices, H, of rank n + 1
which isasublattice of X x F, ; and each of which is A-decomposable, thereisa unique map,

f:X— ZﬁssothatH:E” Xzn X.

r,s
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PROOF. Consideil.at'*!. Consider the intersectionF, ; x Lat'*1) N U"*+1(K). This
is a closedc*-stable subset of the universal family and so its reduced imagaii* is a
closed subscheme which we dendte

Let us consider the magsonT x F,,/p"** F. Write F for this group scheme ovét
Write U} ((K) for the restriction of the universal family t6 and writeU for its image inF.
Theng; (U) = ker(e;) (i # j) because the; are orthogonal idempotents. HergeU; ((K)
is closed and se; (Uy ((K)) N Uy ((K) is also. Moreover it isc*-stable inU; ((K). Thus
(@1(U (K)) NU (K)) x1 (22(Ur ((K)) N U (K)) is closed inU? (K) x7 U (K). The
maximal fiber dimension of this group schemerist+ 1)(s + nr). The set of points at which
this fiber dimension is achieved is closed &fiestable inUy ((K) xr Uj ((K). By Corollary
1 above this defines a closed subschem& .ofThis is readily seen to be the subscheme of
A-decomposable lattices afiiti | is simply the restriction of the universal family to it. Since
thee; induce a decompositiofti)’ ; itself decomposes globally. O

DEFINITION 19. WriteGLat! ((K) for the scheme ofi-decomposable lattices of in-
dex at mosk and height at most in Lat'+1(K) and writeGU” | for the scheme of lattices,
(e1 x id)(E}). ThenGU! , will be called the universal lattice of rankindex at most s and
height at most r. '

THEOREM 5. GLat/ ((K) is a digoint union of connected irreducible components
denoted GLaf{(K),s > ¢ > nr. Let GU;y denote the restriction of GU;, to
GLafy (K). Thenthe fibersof GU;{ arethe lattices of index ¢ and height at most r.

PrROOF. Write Z,, , = GLat!(K). Write E = E!'/p"" F1. In the notation of the proof
of Proposition 8E = ¢1(E) x z,, e2(E). Now E is finite dimensional and flat ovef, . and
each factor admits a section and so each of its factors must also be flat. Now the fibers of a
flat morphism are equidimensional on connected components.

If the fiber of e1(E) at z is of index ¢, then that fiber is of dimension,
(n — L)(nr + q). Sincee1(E) is flat, the index is constant on connected components. On
the other hand, Proposition 7 implies thaLifis of height at most and of type(r1, ..., r,)
and indexg, it can be connected by a series of degenerations to the diagonal lattice of type,
(=r,...,—r, (n—1r+q)insuch away that all are in the closure of the set of lattices of this
type. Since, by hypothesig, < s < r this diagonal lattice is of index and inGLat! (K).
Hence the lattices of indey;, lie in one irreducible component. Consequently the set of
points where the fiber d@Uﬁ;ﬁ(K) is of indexg constitute an irreducible component. The
rest of the theorem follows. O

It is now clear that, for > ¢, the rankn lattices of indexg and height at most are
a subscheme of the lattices of indgxand height at most + 1 andGU;’fl’s, the universal
family, restricts taGU,. .

DEFINITION 20. Forg < r write GLat."? (K) for the schemeGLaf )/ (K) andU;?
for Uy, Write GLat! (K) for the limit of the schemesGLaf"/(K), r > ¢, and write
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GIU;(K) for the limit of the scheme&U;"?. We shall refer to these as the scheme of general

lattices of ranky, and indexg and the universal general rankindexgq lattice, respectively.
S —

Write G]Latq (K) andGIUZ for their perfect completions.

3.3. Lattice classes: Consider the lattices of rarik K". Declare two of them[
and L’ to be equivalent ifL’ = AL for some non zero constarit, € K*. The resulting
equivalence classes will be calledditive lattice classes. It is self-evident thatG L(n, K)
operates transitively on the set of additive lattice classes,Ktiatperates trivially and that
the stabilizer of the standard additive lattice claskis GL(n, O). Thus the additive lattice
classes are at least set-theoretically a homogeneous space for the topélagmagd scheme,
PGL(n, K). We will show that, like special lattices, they are parametrized by an ind-scheme
which is a limit of schemes of finite type over

It is inconvenient to think of lattice classes as equivalence classes. df K" is a
maximal lattice, then Ho@m(L, L) = End(L) is naturally anO-subalgebra of\/,,(K) =
Homg (K", K™). If two lattices are equivalent it is clear that their endomorphism algebras
are equal. Conversely if and L’ are two lattices with equal endomorphism algebras, and
E = End(L) = End(L’), the two lattices are both representationszofHence there is an
E-isomorphismg, from L to L’. Localize and? becomes ai/, (K )-automorphism oK™”
and hence multiplication by a seal That is, the additive lattice classes correspond injectively
to the finite central simpl&-subalgebras oM, (K). Finally if E is any central simpl€-
subalgebra oM, (K) and L is any maximal latticeEL = N, being a quotient of a tensor
product of finites, isO-finite and hence a lattice and d@module. It follows thatE =
End(N). That is, additive lattice classes are iijebtive correspondence with the central
simpleO-subalgebras o#f, (K).

DEFINITION 21. A lattice class of degree in M, (K) is a finite central simple-
subalgebra oM, (K) of rankn?. If M is a lattice class of degreein M, (K) then the set of
maximal lattices ink” which areM-modules is called the associated additive lattice class of
M. An element of this class is called an additive representativid oFinally, a finite unital
O-subalgebra oM,, (K) which is a special lattice with respect to the standard lati,g0),
will be called a special subalgebra f, (K).

Recall that by Proposition 3, ferands positive, there is an algebraic, bilinear morphism
of group schemesgy, s : p~" Wk("') xXg p~* Wk(’) — p~ """ W which is just multiplication on
points. Here the superscripts in parentheses indicate Frobenius covers. \@rtondy, this
can be applied tp—" M, (©O) and even to the quotien™" M, (O)/p™ V" M,(©). Since
addition is defined without passing to a Frobenius cover, Proposition 3 and the properties of
addition imply that we may define an algebraic nwap: p*’M,E’) Xk p*’M,(,") - pIM,.
LetX = Latjz(K). Identify K" with M, (K) and letM,, = M,,(O) be the standard lattice in
this K -vector space. Now/, (K) admits a representation &@’. Let F C K" be a standard
lattice in K" such that Eng (F) = M,,. Taking products and using the natural properties of
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Frobenius covers we obtain a commutative diagram which we will use in the next proof:

U x i U Lo pr M x p M x X0 s p2 M, x X

lfl le gl
x® _ x® — X

PROPOSITION 9. Let X = Lat}z(K) be the scheme of lattices of rank n2 and height at
most r in M, (K). Let M, (O) bethe standard lattice. Let U’;z be the universal family over X.

(1) Thereis a closed subscheme of X, which we denote CL/ (K), which consists of
exactly those points, x, in X such that the fiber of U’;z over x is a special lattice and a
subalgebra with unitin M, (K).

(2) Let M, = U;’2|(CL;(K). Then M, is a flat family of special O-subalgebras of
M, (K) and if Y is any k-scheme furnished with a flat scheme, T', of special subalgebras of
M, (K), thenthereisauniquemap, f : ¥ — CLy(K),sothat T =Y xcrr (k) M.

PROOF. Write My = M,, x; X. Then,Mx \IU';2 is open. Hencém, o ) LMy \U;’Z)
is an open set. Denote this open BelNowIU;l2 is flat overX and so(IUﬁz)(” is flat overx ).
This implies thatfy is flat as well. We would like to conclude th#t((m, o j)~Y(Mx \U’;z))
is open. We may not becausgy, U’;z and the other schemes involved are not of finite type
overX. Considerp~™ M, It can be thought of as the spectrum of the ring of poynomials in the
countable set of variablefy; j s : —r <i, j <n,s € Z, s > —r}. The point with coordinates
xi, j,s corresponds to the matrix with entries,; whereu; ; = > g(x,-,j,s)l’ﬂp"'. From this
description, it is clear thap™" M, = (p~" M,/ p™* D" M,) xx p"*~" M, and that this
isomorphism may be taken to bepd’”~1" M, -equivariant isomorphism of varieties for the
additive structure. This observation can be extended to the progutM, xx p~"M, as
well. Now it is clear that(m, o j)~X(p~"Mx x p~"My) is p"°~*M,-invariant. This is
so becauséu,v) € P if and only if u,v € L for some special lattice, butv ¢ L. If
(u+p"~12)(v+ p"*~Lw) e L, itwould follow thatuv € L because every lattice I[Datjz(K)
containsp”” ~1M,.

There is a natural projection:

P My X p My x X — (p My /p" TIM) X (p My /T IM) x X

Consequently, the invariance Bfnoted above implies that is the inverse image of an open
set,P C (p~" My /p" " My) x (p~" My /p"" ~1M,) x X. It follows that f1(P) is the image
of P in X under the natural projection frof” /p"*~1M,)®) x x (U"*/p"*~1M,)®. This
last scheme is flat and of finite type ov&f” and so its image is open. Since the Frobenius is
a homeomaorphism, its image K is open
This image is exactly the set of lattice8, ¢ p~" M,,(K), which contain two elements
u andv so thatuv ¢ N. That is, it is the set of special lattices which are not closed under
multiplication. Hence its complement, which is closed, is exactly the set of points whose fibers
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are special lattices closed under multiplication. The Frobenius cover is a homeomorphism
and so its image irX is a closed subset consisting exactly of those lattices closed under
multiplication. Denote this seZ. (Over Z, the multiplication map is not defined.) Let
C = O -1 denote the center dffx. ThenC C Uﬁz. Both C andg—1(Z) are closed*-stable
subsets oUﬁ2 and so by Corollary 1, the image 6fn ¢~1(Z) in X is closed. This is exactly
the set of special lattices ip—" M,, which are algebras with unit.

The second statement follows from the universal mapping properﬁyeft;ﬁ(K). There
is a unigue map satisfying the asserted condition and the fact that the fitie@refsubalge-
bras ofM,, (K) implies that the image df is in CL,. m]

LEMMA 9. Let L € M,(K) be a special lattice which is also a subalgebra with unit.
Then thereisa matrix 8 € GL(n, K) sothat L = M, 8~1. Consequently, M is a scheme
of fiberwise trivial central simple O-algebras and so a family of lattice classes parametrized
by CL.

PrROOF. Consider the product, ¥ ¢ K". lItis a surjective image of.  » F and
so is finite over©® and hence free of rank. Hence for some non-singular matrig,
GL(n, K), LF = BF. FurtherLF is certainly a left.-module. Hence. < M, 8~1. Now
notice that the determinant of left multiplication Byis det8)" and the same is true of right
multiplication. Hence, conjugation is special linear and’\ébz(ﬂM,lﬂfl) = /\”2 M,,. Since
Lis special,/\’12 L= /\”2 M, . On the other hangzl\”2 L =p° /\”z(ﬁMn,Bfl) wherec is
the length of(BM,p~1)/L. It follows thatL = gM,B~L. The last statement of the lemma
follows trivially. ]

REMARK 3. A fiberwise trivial family may not be itself trivial. The constructions of
the lemma are not applicable at any but the closed poinfd.ofThis observation also applies
to the following.

LEMMA 10. Let M bealatticeclass of degree n in M, (K) of height at most m. Then
M D p™M,. Moreover M admits an additive representative, L, such that p™F 2> L D
p"F.

PROOF. First note thai is a conjugate oM,, by somes € GL(n, K). By the lwahori
decomposition, we may write = by c wherey is diagonal with powers o on the diagonal
andb andc are inGL(n, ©) but with subdiagonal entries divisible by SincecM, ¢! =
M,, M = by M,y 1b~1. For anyO-submodule ofV,(K), U, clearly p" M,, 2 Up* M, if
andonly ifp” M,, 2 b=1Ub 2 p*M,.. Hence it suffices to show thatM,,y 1 > p"M,,.

For the same reason we can see iat M,, > M if and only if p~" M, D y M,y !
and so the hypothesis allows us to assume this so. Write diag(p't, ..., p™). Then if
a = (a;j)isa matrix,yay ~1 has(i, j-entryp"i~'iq; ;. Let E; ; be the matrix whose only
non-null entry is 1 in théi, j)-place. These are a basisMf,. Hence the matrice)ssE,»,jy‘l
are a basis fop M,y =Y. ButyE; jy~t = pi~"E, ;. Ifforall i, j, r; — r; > —m, then
it is equally true that; — r; < m. This proves thap™ M, 2 M > p"M,, which is the
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first assertion of the lemma. For the secondllet M F and establish the final assertion by
multiplying the inclusions of the first assertion by O

LEMMA 11. Let Y bea k-schemeand let » : . — Y be a flat scheme of rank »n
sublattices of p~" F of index ¢. Then the scheme of endomorphisms of LL is a flat family of
unital subalgebras of M, (K) lyingin p="" 1 M,,.

PROOF Let M be the endomorphism ring of some fiberlafwhich we designaté..
Sincep™ F 2 L 2 p4t=brF we may divide these inclusions by the corresponding
powers to obtaip= ="~ > F > p"L. Hence ifd(L) € L, p?T"=Do(F) Cc (L) C
L C p"F. Thatis, ptt®=Drg(F) C p~"F henced(F) C p 9 ™ F. HenceM C
pqunrMn_

Let N = p~™~9M, x L. Matrix multiplication gives a mapy : N9 —
p~2=2 )1, (Note the Frobenius cover on the right) WUgt= o~ 1(p=2"~2 M, \ L).
ThenU is openin(p™™ ~4M, x L) ~9) . Sinceh is flat, the projection of p~" =9 M,, x
L) =9 on (p~~4M,Y) """~ is flat and invariant under a suitabfemultiple of the
lattices involved. Hence the argument dsa the proof of Proposition 9 applies and so
(id xh)(U) is openinp~2" =24 M, x Y and so its complement is closed. The complement of
the image ofV is exactly the family of endomorphism algebrad.oflt can be seen to be flat
by considering its quotient by a suitalppemultiple of M,, as in the proof of Proposition 90

ConsiderGLat’ . Its universal bundle of lattice&;U; , is a bundle of lattices of index
g. By Lemma 9, its endomorphism bundle is a flat family of central sindpleubalgebras of
M, (K) lyingin p~""~9M,. Hence there is a natural map fragiLat;? to CL," ™. Compos-
ing this with the natural inclusion, there is a natural ma@id! for eachn > nr + q. Write
@, for this map. We will find use for it in the discussion in this section.

ConsiderGLat’ , and suppose thdt corresponds to a point in it. That i, is of type
(r1, ..., ry) and ther; satisfy the conditionsr-r < r; <nr,r1+---+r, = g and—nr <
g < r. We will refer to Engh(L) as the class of.. Notice that the index opL is g + n.
ThenpL ¢ GLat! if and only if , + 1 > nr for at least ong. But then ther; satisfy,
ri+---+r, <randr; = nr. Thisis only possible if; = —r, j # i andL is special.

DEFINITION 22. Letv be an element of the integers moduland letvg be a non-
negative integer less thanrepresenting it. WritePLat, for the image ofGLat:, in

+1 : : :
cLi under®," 0 ;. We shall refer to this scheme as the schemerefpresentible pro-

jective lattice classes of index classFinally write PLat’ (v) for the direct limit lim, PLat; ,.

While it is clear that®, ), ) is injective on closed points, it is not clear that it is
separable. Hence one cannot use it to construct a universal family of additive lattice classes.
However the lattice familyMI |[PLat’, is a universal family and so the direct limit of these
families overr is a universal family of lattice classes @iat’(v). Write M, (v) for this
family.

3.4. The geometry of the lattice spaces: The spheds K) and the varieties derived
from them do not behave well with respect to the group action. Sia¢g K) contains points
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with coordinates constructed from Witt vectors of valde, it is only ther'th Frobenius
cover of SL(n, O) which acts on it algebraically. To reedy this we reparametrize the space
so thatSL(n, O) operates on it independently of In this section,SL(n, O), GL(n, O)
and PG L(n, O) denote these groups with their impeef structures. That is, they are just
proalgebraic groups ovér. MoreoverB is the Iwahori subgroup consisting of elements in
SL(n, O) with entries of strictly positive value below the diagonal.

Consider the verschiebung. Recall thak[ifo, ..., x;, ... ] is the coordinate ring of the
scheme of Witt vectors, the verschiebung is the endomorphisdefined by the algebra map,
vo(x;) = xij—1, vo(xp) = 0. Itinduces a separable additive endomorphism of the scheme of
Witt vectors. If¢ is thek-morphism defined by (x;) = xlf’ then, thoughp is an inseparable
endomorphism of the polynomial domain, on Witt vectors, that is tokspwints, it induces
the Frobenius automorphism 6f and of the Hilbert class field. In additiomg o ¢ is the
contravariant morphism of coordinate rings corresponding to multiplicatign by

The Witt vectors are embedded in the topological schekite, as the common zeros
of the ideal generated by all the with i < 0. Consequentlyy® extends to the complete
coordinate ring ofK+ by settingvg(x;) = x;_1 for all i. Let ¢ be the map of coordinate
rings, ¢ (x;) = xlf’ for both K+ and the Witt vectors. As above this gives an inseparable
additive endomorphism of the scheme of Witt vectors.

Write v for the verschiebung viewed as a segidle endomorphism of the scheme of Witt
vectors or of its ring of points. On pointg,= (ao, a1, - .-, a;, ...), v(@ = (0, ag, a1, ...).
The verschiebung extends uniquely to eitlie? or some overmodule @ in K. We write
it v as well. The co-morphism corrsponding to it is just givervbx;) = x; 1 for all i. Since
this map preserves the ideal of functions vanishingt@ for all r, this map on the fractions
restricts to the map defined above @nHence there isamap! : p~"O — O defined by
v(xi) = xi—r,i > 0andamap® : K* — K7 defined byvj(x;) = x;—s and these may be
assumed to be coherent under restriction.

Multiplication by p is anO-homomorphism of modules. Thugp (a)¢ (b)) = av(¢ (b)).

We may pass to a Frobenius cover so that damiay be written ag (b"). Doing so, we obtain:

(3.1) ao(b) = v(p(a)b).

Consider the standard modulg, € K", and fix once and for all an ordered basis for
F, {e1,...,e,}. We may use this basis, which we view as@sstructure, to define a ver-
schiebung orK™. Just sebr (> aje;) = > v(a;)e;. Thenvy is ¢-semilinear. That is, it
satisfies:
vp(u +w) =vp) +op(w),
vr(p@u) =aop(u).

If « is an(n x n)-matrix over(, this implies that:

(3.3) op(Pr(a)u) = avp(u).

Here thegr on o is given by¢r(a; j) = (¢(a;,;)) and it is evidently dependent on
the choice of basis. Notice that, fétg = SL(n, ©) and for B equal to either of the two

(3.2)
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obvious Iwahori subgroups i6g, ¢r(Go) = Go and¢r(B) = B. Thus¢, though it is a
purely inseparable endomorphism of pro-algebraic groups, is just an automorphism of groups
of k-points.

The pro-algebraic groug.L (n, O) operates algebraically an. In particular, the second
equation of (3.2) implies that the orbit of an elemenfofinderSL (n, O) is the image under
the verscheibung of an orbit.

Recall that, in the terminology of Proposition @.(q, m; N) denotes the scheme of
lattices inp? F/p™ F of k-dimension,N. Write I, (F) for L(0, nr; n(n — 1)r) and write
U, (F) for its universal family of group subschemesofp™ F. It is quite easy to see that
since these schemes are constructed by appsfargdard methods of algebraic geometry over
k to (KT)", that morphisms involving or multiplication by powers op which are defined
on them are-morphisms.

LEMMA 12. Thereis a canonical isomorphism, v’ : Lat!(K) — L,(F). Moreover
v’ carries SL(n, O)-orbitsand B-orbits under the action in the complete perfect category to
SL(n, O)-orbits and B-orbitsin the algebraic category. Moreover, for each r, the following
diagram commutes:

Lat/(K) —5 L.(F)

L b

r+1
Lat', ,(K) ——> Ly41(F)

PROOF. The morphism is the one which carries the latticec p~ F to v/, (L). The
semi-linearity insures that this is a lattice and it is evidently of the correct codimension. Since
it is functorial, it is @ morphism of lattice varieties. By abuse of language we use the same
symbol for the morphism of lattice varieties. The semi-linearity also insures, as we have
remarked, that’, carries orbits to orbits and that all orbits are images of orbits. O

It is convenient to introduce a limit of the schemks(F).

DEFINITION 23. Write v, for the k-morphism of schemes from, (F) to L, (F)
which sendsL to v}.(L). Let LOF) = Ii_)mL,(F) where the morphisms are the maps
v} 1 L (F) — L,s(F). We shall call this the space of lattices of index OFn We also
write %, for the obvious endomorphism 8P (F) induced by the constant directed family of
morphisms each of which is equalii.

The effect of Lemma 12 is that we may analyze orbit structurkatf (K) under the
standard action. This action may actually be twisted by the Frobenius but it is immaterial.
Inclusions in closures of other orbits, computations of dimension and other routine computa-
tions can be done as though all our actions are algebraic and as though the Frobenius twist
is unnecessary. This is the case becayséransforms these orbits into algebraic orbits in
L.(F). The disadvantage of passinglt8(F) in discussing orbit structure is that the rep-
resentative of an orbit is different in ea&h (F). The orbit corresponding to the diagonal
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element exp(ry, ..., r) inL"(K) is the orbit of expr+ri,....r+r) inL,(F). (Recall
that exp,(r1, ..., rn) is diagp't, ..., p™).) For this reason we describe orbitdliat’ (K).

At this point it is germaine to review the somewhat complicated situation at hand. The
group SL(n, K) admits a structure as a group objecttlire category of perfect topological
schemes. In consequence its group of points, which we also $\ite, K ), operates as a set
of automorphisms of.at’ (K ) andLL°(F). These actions, however, just cannot be realized
as morphic actions in the category of ind-schemes. On the other hand there is an algebraic
action of the pro-algebraic grouL (n, ©), on the ind-schemds, (F) and their limit,LO(F).
Further, for each, this action is essentially isomorphic, via the verscheibung, to the action of
a suitable Frobenius cover 8L(n, O) onLat’ (K).

Let B be the lwahori subgroup &L (n, O) with subdiagonal entries of positive value.
Write B for the image of this group iPGL(n, ©). Let N denote the Cartan subgroup
of SL(n, K) and letN denote the Cartan subgroup BiGL(n, K). Let T andT denote
the maximal tori contained itv and N, respectively. ThenSL(n, ©) and PGL(n, ©) are
good (bon) maximal bounded subgroups. Wiiteand I” for the groups of one-parameter
subgroups off and T, respectively. Thed™ can be thought of as the co-root lattice, while
I" can be thought of as the lattice of dual weights. TheWifis the Weyl group of the Tits
system inSL(n, K) andW* that associated t8# G L(n, K), we may writeW* = I" - W and
W* = I" - W whereW is the Weyl group associated to the special point 0. It is the same
for both groups and is generated by the reflections,. ., s;. Letsg denote the additional
reflection inW* and letsg be the one ifW*. Write 't andI”"* for the intersections of and
I with the dominant chamber.

There are at least three double coset decompositions of interest. Two are well known;
the third is easily derived from well known facts and has been frequently observed. The first of
these is the standard Bruhat decomposition associated to the Tits sy®eMsso, 51, . . ., 51)
and(B, N, 5o, 51, - - -, 5)):

(3.4) SL(n,K) = U By - wB,
yel,weW

(3.5) PGLn.K)= | ) By wB.
yel ,weW

The second pair of decompositions corresponds to the classical Birkhoff decomposition.
To state it conveniently writ€ o = SL(n, ©) andGg = PGL(n, O).

(3.6) SL(n, K) = ] GoyGo,
yelt

(3.7) PGL(n. K) = | ] GoyGo.
yel+

The last decomposition of interest depends on an observation. Consider the union
Uwew BYywB = C(y) for a fixedy. If 5;,i > 0 is a reflection inW, thenwBs; C
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BwB U Bws; B. This is just property T3 in the definition of a Tits system in [Bo]. It fol-
lows thatC(y) is stable under right multiplication bB and right multiplication by the;.
That is, C(y) is stable under right multiplication by and B and so byGo which is gen-
erated by them. Thu€(y) D ByGo. On the other hanavB C Go for eachw and so
C(y) C ByGy for eachy and soC(y) = ByGop. Finally it is clear that ify # A then the
sets{yw : w € W} and{iw : w € W} are disjoint as are theB-double cosets. The same
argument shows that the corresponding unioBjisGo in PGL(n, K). Hence:

(3.8) SL(n, K) = U BySL(n, 0),
yell

(3.9) PGL(»n.K) = | | ByPGL(n.0).
yel

The decompositions, (3.4)—(3.7), actually give the orbit structurellfat' (K) and
PLat(n, K) under the Iwahori subgroug® (respectivelyB) and a particular good maximal
parahoric subgroug;o (respectivelyGo). Letxg € Lat*(K) be the point corresponding to
the standard lattice and Iy denote the corresponding pointlii.at(n, K). We restrict our
attention taSL (n, K). Write G for this group. Then the double coset representations, 3.4 and
3.6, reduce mod;g to give the orbit decompositions &fat’(K) underGo and B, respec-
tively. Take forB the set of elements iGo which are congruent to an upper triangular matrix
modulo p. We may take forl” the set of matrices{A(p™, ..., p™) : Y . r;, = 0} where
A(x1, ..., xy) signifies the diagonal matrix with diagonal entrigs. . ., x,. We have intro-
duced the notation exfor1, ..., r,) for A(p", ..., p™). The positive simple roots are the
charactersy; ;1+1, defined byw; ;11(A(f1, ..., 1)) = titi_Jrll' The canonical pairing between
charactersy, andT-points is just given byx, ) = v(x(¢)) wherev is the p-adic value.
Thus(a; ;, exp,(ri, ..., m)) =ri —r;. Hencel't is just the set of elements ifi for which
rizr2=z-""2ry.

Since the stabilizer ofy in Lat* (K ) is Go, (3.6) and (3.8) imply that th€o- and B-orbit
decompositions of.at'(K) are:

(3.10) Lat'(K) = | J Goyxo.
yel'+

(3.11) Lat'(K) = ] Byxo.
yel

The G-stabilizer ofxg is Go and so theG-stabilizer ofyxg is ¥y Goy L. Write Go(y)
andB(y) for the Go- and B-stabilizers ofy xg, respectively. Then:

(3.12) Go(y) = GoNy(Go)y ™1,
(3.13) B(y) = BNyGoy L.

Suppose that = exp, (r1, ..., 7n). Theny Goy ~1 is the set of matriceg; ;) such that
v(x;, ;) = r; —r;. SinceGy is the set of matrices i@ all of whose entries have non-negative
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value andB is the set of matrices irg with subdiagonal elements of value at least one, these
groups can be described precisely:

(3.14) Go(y) = {(xi,j) € Go: v(x; ;) = supO,r; —rj}},
(3.15) B(y) ={(xij) € B 1 v(x; ;) =sup0,r; —r;}, i<j;
(3.16) v(xij) = supl, ri —rj}i > j}.

This description is of particular importance in view of the following for which we believe
no proof is necessary:

LEMMA 13. For each pair i, j with i and j between 1 and n, suppose that m; ; is a
non-negative integer. Let H be the set of matrices, (x; j), in SL(n, O) such that v(x; ;) >
m; ;. Suppose that H is a subgroup of the group of invertible matrices. Then the following
hold.

(1) The coset space, Go/H is a finite dimensional homogeneous space of dimension,
2 mij-

(2) Ifm;; = 1whenever i > j,then H € B and B/H is a finite dimensional homo-
geneous space of dimension Zi>j(m,-,j -1+ ij mi .

Write X (y) for the Go-orbit of xg and write Y (y) for its B-orbit. ThenX(y) =
Go/Go(y) andY(y) = B/B(y). Hence, 3.14 and 3.16 immediatly give a formula for the
orbit dimension olGo(y), y € I'".

PROPOSITION 10. Lety = exp,(r1, ..., ") be a T-point corresponding to a domi-
nant co-character. Then the following hold.

(1) dimX(y) = =231 —Dri =23 51— i)r;.

(2) Letu, = exp,((n — Lr, —r, ..., —r). Then X (u,) isthe unique maximal dimen-
sional orbitinLat, (K). Itisof dimension n(n — 1)r.

(3) Thecomplement of X () inLat,(K) is of codimension two.

ProOOF. If y is dominant, then the are nonincreasing. Henog,—r; > O wheni < j
andr; —r; < 0 otherwise. Applying (3.14), (3.16) and Lemma 13, (1), the dimension in
questionisy ; _; (ri —r;). In this sunv; occurs with positive one coefficient— i times and
with negative one coefficient— 1 times. Thissum i j(n —i)ri —=> 1 —Dr; = > 1 (n+
1-2i)r; = (n+1)> 1 ri—2> 1 ir;. Since the; sumto 0, thisis just-2 >} ir;. Substituting
ri =Y 5 —rioneobtains-23 5(i —1r; = 2) 5(1—i)r; which is the dimension formulain
the statement. It is a sum with negative coefficientsane —r for eachi and so 2 5(1 —
i)(—r) = n(n — Dr is clearly the maximum value possible and it is achieved/fef .

We show thatX (i,) is the unique maximal dimensional orbit.ff£ ., then for some
i > 1,r; > —r. Hence the orbitof’ = exp,(ri+1,....r =1 ....m) is also inLat, (K).
By direct application of (1), dinX (y') = dimX(y) +n +i — 2. Hence ify # u,, there is
an orbit of greater dimension.
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Since all the orbits are even dimensional, the complemekit(pf ) is of codimension at
least two. Let. = exp,((n —1)r — L, 1—r,—r,..., —r). ThenX(2) is the unique orbit of
codimension 2. O

Proposition 10 gives a complete description of éhgorbit structure ofLat, (K). As we
shall see, the&3-orbit structure is somewhat richer and more useful.

LEMMA 14. Let y = exp,(ry,...,7n) and suppose that r; < rit1. Let y' =
eXP, (K1, - oy i1, Fids Fiy o o5 ) ThendimY (y) +1=dimY ).

PROOF. We consider the effect of exchangingandr; 1 in (3.16) and Lemma 13,
(2). If we consider the matrix of integers,; ; = r; — r; this causes th&th and (i + 1)'st
columns to be exchanged as well as the corresponding rows. In no case is an entry moved
from above the digonal to below except for tliei + 1) and (i + 1, i) positions which are
exchanged. In the case of r; — r;+1 is negative and hence adds nothing to the dimension
of the orbit. Howevery; ;1 — r; being positive and subdiagonal,; — r; — 1 is added to the
orbit dimension. In the case ¢f, the subdiagonal element is negative, adding nothing, while
the superdiagonal element is positive and so it adds— r; to the dimension. O

LEMMA 15. Lety = exp,(r1,...,r,) bea T-point corresponding to a dominant co-
character. Then, if y # u, and Y (y) € Lat’(K), dimY (y) < dimpu, — 2.

PROOF. Sincey is dominant, the; are non-increasing and greater than or equaito
and sincey # u,, r1 < (n — 1)r and there is a largest integér> 1 so that; > —r. Let
y = exp,(r1+1,r2,...,ri —1,...,m). Then ,y" is dominant and its orbit is ihat, (K).
Applying (35), dimY(y) + n +i — 2 = dimY(y’). Since bothw andi are at least two,
dimY(y") >dimY(y) + 2. O

PrRoOPOSITION 11. The orbit, Y (u,) is the unique maximal dimensional orbit in
Lat*(K). It isaffine of dimension, n(n — 1)r and isomorphic to affine space, AZ(”’D’. There
isone unique orbit of codimension one. It isthe orbit of §, = exp,(—r, (=D, —r, ..., —r).

PROOF The dimension of (i, ) is given by applying Lemma 13, (2) to formula (3.16).
By Proposition 10, (2), its dimension is equal to the dimensidbadf (K ) and so it is certainly
of maximal dimension. It is clear that it is a surjective image of the group of upper unipotents
with coefficients inO whence it is an affine space of the appropriate dimension. The two
lemmata above show that it is unique.

Lemma 15 implies that any dominaitpoint is of codimension at least two. Arfy-
point corresponding to a permutation of a dominant character gives an orbit of lower dimen-
sion than the dominant point by Lemma 13. Hence an orbit of codimension one can occur
only as the orbit of a permutation pf.. The only permutations are the points, gkpr, ...,
(n—21r,...,—r). Thatis, we are considering the tuple all of whose entries-arbut for an
(n — Dr inthei’th place. By repeated applications of Lemma 14, this element has an orbit of
codimension — 1. O
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3.5. Infinitesimal families: In this section, we will compute the tangent space to a
lattice inLat!. Write X, = Lat’ and write 28 for the scheme of Witt vectors ovér
Write O = 2B(k). Then X, represents the functor whose value ok-achemeZ is the
set of flat families of lattices it x; p~" F. If L is a lattice inX, we shall think of it as a
2B (k) = O-submodule ofp~" F of codimensiomr. Hence the tangent space to it consists of
free 203 (k[¢])-submodules[. of Speckle]) xx p~"F = F,, flat overk[e], the ring of dual
numbers. For any such object letlenote the ideal in the coordinate ringf” F defining
L, and let/ denote the ideal in the coordinate ring Bf. defining L. We wish to give a
complete classification of such objects.

LEMMA 16. Let M bea k-vector space and let k[ M] denote the symmetric algebra on
it. Assumethat A isa flat algebra of finite type over k[e] and that A/eA ~ k[M]. Then there
isa natural isomorphism, A =~ k[¢][M]. Moreover if thereisan algebraic k* = G, ,-action
on M and A so that the quotient map is a k*-map, the isomorphism can be chosen to be
k*-equivariant.

PROOF. Thek*-inclusionM < k[M] can be liftedk*-equivariantly to a-linear in-
clusionM < A. By the universal mapping property for symmetric algebras, this extends to
amapk[M] — A. The composite of this map with the surjectioh,— k[M], is the identity
on M and so is the identity whendgM] < A. By extension of scalars this gives a map
kIM]Qy kle] — A. LetJ be the kernel of this map. Itis clear thatC k[M]e since this is
the kernel of the map to[M]. On the other hand, the kernel of multiplication bgnk[e] is
ke andke >~ k[e]/ek[e]. Hence tensoring the exact sequence,

0 — ke —> k[e] —= k[e]

with A overk[e], by flatness, yieldgle = k[M]e. Hencek[M] ®x kle] = k[M] @ k[M]e =
A. O

The affine group schemey™ F/p"~YrF, is just Azz’,aﬁine n?r space. Hence
kip™"F/p" V" F] = k[X1,—r, .., X1 (i—1)r—1» X2—r» - - - » Xn.(n—1)r—1] @S We observed in
Lemma 7 and Proposition 6. Write .. We identify thek-point, x; ; = «a;; with the
class of the vecto(us, . . ., u,) Whereu; is the class ofzg":’_lr)”lé(a,»,j)f’pf. LetM =
]_[f’;lr)r_l M; denote the graded vector space in whidgh = >"_; kx; ; is of degreep’.
We write k[M] for the coordinate ring of the affine commutative group scheme|lt is
the symmetric algebra o and we viewk[M] as graded by total weight. We recall that
the closedc*-stable subvarieties gf " F/p”~V" F are in bijective correspondence with the
closed subvarieties of Pi@j M) wherek[M] is graded by weight.

Having chosenF and, if tacitly, the standard basis for it, we may define maps,

k" — Fp,—r <i < (n—Dr. Leta = (ay, .. .,a,)T be a column vector and let(a) =
Z’}:l é(aj)f’ piej € F,. Let Vi, denote the space of column vectors dvendowed with the
k*-action,f oa = (t"ay,...,1" a,)T. Thens; is ak*-eqivariant map fron¥V; to F, and the

sSUM@_,, ..., 8u-1,-1) = >t (@) gives ak*-isomorphismy : [ [Pt

i=—r ‘/l -
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F, andyx; ; can be regarded as théh coordinate function oiv; composed with the projection
of F,onV;.

DEFINITION 24. We shall refer tad = [ """~ M, as the space of weighted linear

forms onF,. The vector subspac#/,, will be called the space of forms of weigpt.

In the following write k. for k[¢]. If Z is a k-scheme, &.-flat subscheme of x;
Speck.) with special fibery < Z, will be called an infinitesimal family of subschemes of
Z with special fibery. If Y is such an infinitesimal family and it is affine, writg[ Y] for its
coordinate ring. 1Z is affine writek.[Z] for k[Z] ® k[e]. Finally, letO?¢ = 283 (k[e]).

We shall give a construction for the ideals, defining infinitesimal families of sub-
schemes. By the discussion abokg,] is a polynomial algebra (on a subspace of the space
of weighted homogeneous forms). Letbe a flat infinitesimal family. By Lemma 16, its
coordinate ringk.[L] is a polynomial algebra and $9[L] = k. ® k[L] = k[L] + k[L]e.
Write r : k[F,] — k[L] for the restriction map and writg : ke[F.] — ke[L] for restriction
to L. This map has kerndl. This map is determined by its value &fF,] € k.[F,]. We
may write this restrictiong(a) = a + §(a)e with § € Den.(k[F,], k[L]). It is classical that
8(I%) = 0 ands|I reduces to &[L]-linear map fromi /12 to k[L].

We mayk*-equivariantly writeM = M; & M, and so we may choose a graded algebra
morphism,¢ : k[My] — k[F,] splitting the restriction morphism. Finally recall that the
restriction morphism for derivatiorts— §|/ induces an exact sequence:

(3.17) 0 — Der(k[L], k[L]) — Den (k[ F,], k[L]) — Homk[L](I/IZ, k[L]) — O

and that the map — § o ¢ gives a map from De«(k[F, ], k[L]) to Dex.(k[L], k[L]) splitting
the sequence (3.17). The significance of this splitting is thakghylinear mapyz : 1/1% —
k[L] admits an extension to a derivation; k[F,] — k[L], thatis, is a derivation whose
restriction to/ inducest. Write i for the co-addition ork[L] and uy for the map from
N =1/I°toN @ k[L]® k[L] ® N.

PROPOSITION 12. Each$ € Den (k[F,], k[L]) determinesa uniqueideal I C k.[F}]
so that the quotient, k.[F,]/I; = k¢[L] is the coordinate ring of an infinitesimal family of
subschemes with special fiber, L. Theideal, I; is given by the formula, Is = {x + ye|s(x) =
—y (modI)}. Two such derivations, § and 8’ determine the same ideal if and only if §|1 =
§'|1.

PROOF. Leta, b, etc. denote the restriction af b € k[F,] to L. Givens definep :
ke[F,] — k¢[L] by the equatiorB(a) = a + 8(a)e. Theng extends td.[L] by the equation,
B(a + be) = a + (b + 8(a))e. Now B is a surjection ontd,[L] and so it defines an ideal,
Is = ker(8). (Notice that this definition of is consistent with the definition given in the
discussion preceding (3.17).)8f = §+y wherey is a derivation vanishing oh lety denote
the element of DeI(k[L], k[L]) induced byy. Let 8’ be the surjection corresponding &6
and lety : k,[L] — k.[L] be the automorphism defined §ya + be) = a + (b + 7(a))e.
Clearly, B’ = v o B. Hence if§’ = § + y, kerB) = ker(8’). Conversely suppose that
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Is = Iy = I. Then there are isomorphismgs: k.[F,]1/I — k.[L] andp’ defined similarly.
Lety = 1o B. Theny(a) = a + y(a)e, and ify e Der (k[F,], k[L]) is a derivation
inducingy, 8’ = § + y. The formula forl; is clear. |

By Proposition 12, ideals defining infinitesimal families of subschemés wfith special
fiber L correspond to elements of Hepm (N, k[L]). We wish to examine the condition which
corresponds to the requirement thatdefine an infinitesimal family of subgroup shecmes.
If 5 € Homypz (N, k[L]) is a co-normal vector we shall say that itds-additive if (§ ®
id, id®%) o uy = 1o 6. (our convention here i® ® id, IdR8)(u Ra, bR v) =(u) @ a +
b ® 8(v))

To better understand the significance of co-additivity recall th&f if= G is a closed
group subscheme df, 7 is the sheaf of ideals definingy and j is the embedding, then
Jj*T = I/I?is the normal bundle téf in G. Write it NG/ p .

PROPOSITION 13. Let G = SpecA) be an affine commutative smooth group scheme
over k and let H = SpecA/I) be a closed smooth subgroup scheme. Let u : A — A Q¢ A
be the co-multiplicationand write B = A/I. Let J = AQ I+ 1 ® A C A® A. Thenthe
following hold.

(1) Let Ng/u = I'(H, Ng/u). Then Ng,n admits two rational H-actions. Under
either, it is free and it admits a basis of invariant sections canonically isomorphic to (I +
m?2)/m2, the fiber at the origin.

(2) Thereisa canonical isomorphism, J/J2 — (B ® NG/ ® NG/ ® B).

(3) Thereisanatural mapping, unx : N6;u — NG/u ®k B ® B ® Ng,u induced by
u sothat if x isaninvariant section, uy(x) = (* ® 1, 1 ® x).

PrROOF. The moduleNg,y is justl/I%. LetJ = A® I + 1 ® A. Sincel defines a
subgroup scheme,(1) CT®A+A®ITandsou(I?) C(AQI°+IQI+1?°Q A) = J?
and sou induces amagy : /1% — J/J2.

The vector spaceg,® I andI? ® A are both subspaces bt A and soJ2 C I?® A +
A ® I. Hence there is a surjective map,: J/J? - I QA+ARDN/(I?°QA+AQI).
Applying the first isomorphism theorem of group theory and keeping track of intersections it
is clear thay; mapsJ/J%to1/1°® A/I. In particulargy o ji mapsl/I12to 1/1?® A/I.

This is a co-action oA /I = k[H]onNg/u = I/I2 making it a homogeneous bundle
on H. Write B for A/I. Homogeniety implies that/I? contains anH -invariant basis iso-
morphic to the fiber at the origin which is isomorphictt(I N m2) = (I + m?)/m2. This
establishes (1) for the right co-actian, o .

The observations above can be applied to kfter than right translation. By an entirely
symmetric argument there is a projectign, from J/J2t0 A® I/(AQ I+ 1 ® I) =
A/I ® I/12. This map must be twisted by the antipode if it is to agree with the usual notion
of left translation butG is commutative. Hence the twist may be omitted. Thus there is a
mapgz : J/J? — A/l @ I/I?sothatgoo i : I/I? — A/I ® I/1?is a bundle co-action
corresponding to left translation. Thegso 1 is a second co-action homogenizing the normal
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bundle. These are the two actions on the normal bundle. Since these actions make the normal
bundle into a homogeneous bundle on the gréyphe first assertion is established.
Let 71, 72 denote the projection§ x G — G. Then it is commonplace to note that
over a flat baseNgxG/uxn = 1y NG/u ® n3Ng/u. On global sections this isomorphism
is realized as the product mag@y, ¢2) : J/J2 — B® Ng/u ® Ng,/u @ B. This establishes
the second assertion.
If /2 is the map froml /12 to J/J2, thengy o i andgz o 1 are left and right co-actions on
Ng,m and itis clear that they have the same invariants. iff such an invariant section, then
gioi(x) =1®x andg2o i(x) = x ® 1. Letuy = (g1 o wo, g2 o o). The third statement
is now clear. O

COROLLARY 2. Let m betheideal defining Oin F,. Let M; = M N (I + m?). The
natural map from M; to 1/1? carries M; to the L-invariants of 1/1? = N, ;...The module
I/1%is k*-isomorphic to M; ®x k[L] and, for u € M; the map u; is determined by the
foomulapu;@®1D)=welH1+1 uxl).

PrROOF. First note that the coordinate ringLF,] = k[M], is the symmetric algebra
on the space of weighted linear forms. Furthermorevifs the ideal defining the origin,
M < m and the composite of this inclusion with the natural surjection A$-aquivariant
isomorphism, : M — m/m?.

Write m for the ideal defining the identity ik[L]. Then

0— (I +m?)/m? > m/m?> > m/m?> - 0

is exact. Now! /12 = NF, 1 is homogeneous by Proposition 13 and so it is freely generated
by its L-invariants which as &-vector space are isomorphic td/1%)/m(I/1%) = (I +

m2) /m? by the proof of Proposition 13, (1). Clearjy 1((1 +m?)/m?) = M;. Thus; is ak*-
isomorphism fromM; to the fiber ofl /12 at the origen. The natural projectidn/? — (I +
m?)/m? induces &*-isomorphism from(7/1%)% to j(M;). Composing;j with the inverse of

this isomorphism we obtain /& -isomorphism,j : M; — (1/1%)E. Identifying M; with its
image undey (this does not respect co-multiplication), we may write= M; ® k[L]. The
lemma is now nothing more than Proposition 13, (3) subject to the identificatidfy b 1

with the L-invariants inN. g

We recall thet ifH = SpeadC is an affine group scheme with co-multiplication, :
C — C ® C, then an additive character &f is just a morphism of algebraic groups from
H to G, k. The additive characters @f are exactly the functiong € H such thafu(f) =
f®1+1® f. Notice that, over a field of positive characteristicFitx) = >, a,'xpi is an
additive polynomial andf is an additive character, then(f) is also an additive character.
Write A(H) for the group of additive characters &f.

If § € Homk[L](I/Iz, k[L]) is a co-normal vector, we shall say that itcs-additive if
pod=mQS§+3Qm)ou.
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COROLLARY 3. Let§ beaco-additiveco-normal vector in Homk[L](I/IZ, k[L]). Then
8|(1/1%) isalinear map from M; to A(H), the group of additive characters of L.

PROOF. The co-normal vectat induces &[L]-map froml /1% to k[L]. By Proposition
13 and Corollary 2] /1% ~ M; ® k[L] and the isomorphism is a morphism of homogeneous
bundles. Hencej is uniquely determined by its restriction 3; the submodule of invariant
sections. Ifu € M; thengi o i(u) = u ® 1 andgz o 1(u) = 1 ® u by invariance and the fact
that these are the left and right translation co-actions.

If n,¢:1/1° — k[L]are two maps(n @ + 7 ®¢) o u(u) = (n ®id, id ®¢) o puy (u).
In particular, by the observation we made just aboveé j$f co-additive and € M/, then the
equation,ii(§(u)) = (T @ 8+ 8 @ m) o u(u) = (id x8,8 ® id) o (g1 0 fi(u)gz o ji(u)) =
((d®s,sid)(1ou,u®l) = (1o48(u)+48m)®1L). This is exactly the equation which says
thaté(u) is an additive character df. Thus, for each invariant, € My, §(«) is an additive
character. ]

PROPOSITION 14. Supposethat § € Homg.j(N, k[L]). Let § bea derivation of k[ ;]
in k[L] restricting to 8. Then I; defines an additive k,-subgroup scheme of F, if and only if §
isco-additive. When § is co-additive, let 2.0 = §o¢p ®id +id @5 0p) o — ji0d). Thenlis
aderivation of k[ F,] ink[L]1®k[L] vanishingon I. If & : k[L] — k[L]®k[L] istheinduced
derivation, themap s (a + be) = fi(a) + (i (b) + A(a))e isa co-multiplication making L an
infinitesimal family of subgroups.

PROOF. Letp be the map associateddas in the proof of Proposition 12. Just wrjte
for the co-multiplication ork.[F,]. Thenl; defines a subgroup scheme if an onlgi® 8 o
w(Is) = (0), in which case the co-multiplication dn[L] is just the quotient map induced by
w. That is, consider the diagram:

0 —> Is —> ke[Fr — ke[L]

(3.18) 4l |3us
kel Fr] ®kpe) kel Fr]l —— ke[L] ®pey ke[ L]
BB

Then s defines a subgroup scheme if and only if the mapexists rendering the diagram
commutative.

Considers ® g on an element of the form® b. Then(BR B)(a®b) = B(a) R B(b) =
(m(a) + 8(a)e) @ (w(b) + 8(b)e) = 7(a) ® w(b) + (w(a) ® 5(b) + §(a) ® w(b))e. Thatis,
BRAIBW) =7 Q@7W)+ B Q7 +7 ®8)(u)e foru € k[F,] ® k[Fy].

A necessary and sufficient condition for the existencea that(8 ® 8) o i (Is) = (0).
Elements of the forma — ¢ 0 8(a)e, a € I generatd; and so it is necessary and sufficient that
(B®B) o should vanish on such elements. BAR B)ow(a—¢pod(a)e) = (7 @) ou(a)+
(T®8+5®@7)opu(a)— (T @) om(pod(a)le. Sincea € I and(r @7 )ouod = frowrod = fi
we may continuéB ® B) o u(a — ¢ o 8(a)e) = {(T @8+ @ ) o u — fi 0 8}(a)e. The
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vanishing of this expression ihis exactly the co-additivity 0. Thus it is clear that.s can
be defined if and only i8 is co-additive.

We may now compute a formula fars. If @ + be € k<[L] choosez andb in k[F,] SO
thatr (a) = a, (b) = b. Thena+be = B(a+(b—¢pod(a))e). Then(BRB)ou(a+(b—po
8(a)e) = (r@m)opu(a) +{(T ®5+3@7m)op(a)+ (T @m)ou(b)— (T ®m)ou(pod(a))le.
Recalling thair ® 7) o u = i o 7w, w(a) = a, w(b) = b and thatr o ¢ = id this shows that
ps(@+be) = (B®B)oula+ (b —¢od@)e) =@ +{ub) +(r®5+5@mou—
mod)(a)le = u(a) + () + r(a))e. O

These results give a good description of the infinitesimal deformations of a lattice in
p~ " F of codimensiomr, but what has been described is the deformations of a lattice in the
functor corresponding to families of subgroupsielcontravariant description in terms of the
coordinate ring makes it quite awkward to characterize those infinitesimal families which are
families of lattices. For that a covariant description in terms of points would be more natural.
This requires some generalities concerning ring schemesfilleé a commutative unitary
ring scheme ovek and lett be a scheme of modules ov. Let O = 9R(k) and let
M = M(k). LetM = SpecR) and letdMt = SpecA). As we must negotiate a blizzard
of notation, and the multiplication and addition are commutative, we shall not be fastidious
about such matters as co-associativitity antdefl right translation. We adopt the following
notation:

NOTATION. (1) o¢:R— R®; RandB: A — A ®; A arethetwo co-additions.

(2) n:R— RQ®i Risco-multiplicationand¢ : A — R ®; A isthescalar co-action.

() mp:A®A —> Aandmpg : R® R — R arethemultiplications, a ® b — ab and
T: P® Q0 — Q® P isreversal of factors.

(4) eo:R—k,e1:R— kandey: A — kareevaluationatOand 1in O and at 0
in M, respectively.

(5) D and Dy denote the tangent spaces of YR and 9t at their zero's. They are the
Lie algebras of these schemes regarded as additive commutative group schemes.

(6) R* and A* denote the linear dualsof R and A, respectively.

(7) eo and e represent the homomorphisms, evaluation at 0in R and Dt, respectively
andmp = ker(ep) and my = ker(eg).

Having introduced this notation we now define the following operations:

(3.19) uov=wUv)oa, u,veR* (additive convolution)
(3.20) aob=(@®b)oB, a,beA* (same)

(3.22) uxv=w®uv)on, u,veR* (multiplicative convolution)
(3.22) uxa=Wu®a)oc, ucR aecA" (scalar convolution)

These operations are all associative and they distribute over ordinary addition. That is
uo(w+w) =uovtuow, ux(v+w) = uxv+uxw etc. Notice here that denotes ordinary
pointwise sum in the two linear dual®* and A*. The addition inO and in M will be,



110 W. HABOUSH

for the duration of this discussion, written as However there is a subtlety regarding dis-
tributivity of multiplicative convolution over additive convolution. To explain this we consider
the diagram describing the distributivity conditionx (@ ¢ b) = (u xa) © (u xb),u € O,
a,be M.

< id®p

A — R®A —_— RRARA
(3.23) ﬁl ka®id ®id
ARA —> RQAQ®R®A —— RQIRRARA
$®g id ®r®id

The second distributivity conditionu ¢ v) xa = (u x a) ¢ (v x a), is encoded in the
diagram:

S aid

A — R®A — RRRQ®A
(3.24) ﬁl Tid@id ®m
ARA — RRAAR®A —— RORQRARA
s®gs id®@T®id

Foru € R*,a,b € A* we wish to establish that « (a ¢ b) = (u xa) ¢ (u x b). Let
y = (Id®1®id)o(¢®c)oB. Then (3.24) yields the equatiof,®a ®b) o (m g ®id ® id)oy =
u®a®b)o(id®B)oc. Thisis actually a distributivity equation onlyiformn g = u Q@ u, that
is, only if u is @ homomorphism, that is to say an elemen@ofThus the distributive rules
which hold are these:

(3.25) WMov)yxx =wrx)o(W*x), u,veR*  xeO
(3.26) xx(@ob)=xxa)o(xxb), abeA*,xecO
(3.27) wovyxqg=wxqg)o(w*xqg), u,veR*, qeM

Our aim is to understand the rindi(k[¢]) = O¢ and the modulept(k[¢]) = M*. To
this end, foru € O,a € M lett, (respectivelyr,) denote translation by (respectivelya).
Thatis,, (f)(v) = f(uov),1,(g)(b) = g(a ¢ b). Thenifs € Dy, y € Dy by well known
calculationsg o, = 8§ ou andy o t, = y o a. We shall writes,, for § o #,. Heres andy are
tangent vectors at 0 oR and A respectively. Thatis§(fg) = eo(f)3(g) + eo(9)8(f) and
the same fop. Now O¢ is by definition the set of paing:, 1) whereu € O anda is a tangent
vector atu. The pair(u, 1) corresponds to the homomorphigm A)(f) = f(u) + A(f)e.
The same holds fa¥/.

Now X can always be written uniquely @ for somes € Dyp. The same reasoning
applies toM¢. HenceO? = {(u,é8,) : u € O,8 € Dp}andM® = {(a,y,) :a € M,y €
Dy}.
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LEMMA 17. Thering PR(k[e]) = O° istheset of pairs{(u, 8,) : u € 0,8 € Dp} and
M(k[e]) = M? = {(a, y,) :a € M,y € Dy}. Theformulae for addition are:
(u, 8y) © (v,0y) = WOV, 8y oV + Oy ou) = (U, dyocv + Oucv) s

3.28
( ) (@, ya) © (b, vp) = (a<© b, Yaob + Vaob) -

The formulae for multiplication are:

(329) (u7 514) * (U, Vv) = (I/l * U7 (8 * v)u*v + (V * u)u*v) )
(3.30) W, 8y) x(a, g) = (ura, UxAMyxa + (8% a)yxa) -

The subset {(0,68) : § € Do} isan ideal of square zero in O¢ and it annihilates the
submodule {(0, y) : y € Dy} in M2,

PrRooOF We shall establish the formulae for additionff and for the corresponding
scalar multiplication. The other formulae are a special case.(¢gt) : B — k[e] and
(Y, y) : C — k[e] be two homomorphisms. That igh, §)(b) = ¢(b) + §(b)e and the same
for (v, ¥). Then[(¢, ) & (Y, Y)1(b ® ¢) = (@(b) + 5(b)e) (Y (c) + y(c)e) = ¢ (L)Y (c) +
(@D)y(c) +3D)Y(c)e = (9@ Y, ¢ ®y + 3@ Y)(b ®c). Thatis,(¢,9) ® (Y, y) =
@ ® V.0 ®y + 8 ® ). Consequently(a, ya) o (b.mp) = ((a.va) ® (b.mp)) o =
@®b,a®@np+y.Qb)oa = (a®boa, (a®np+y,Rb)oa) = (aob, acn,+y,ob). By the
commutativity and associatty of additive convolutiongon, = ao(nob) = no(aob) = naop
and the same faop, ¢ b. This permits us to continue our calculation. The desired expression
iS (a © b, Naop + Yaob). This establishes (3.28).

Before proceeding with scalar multiplication an observation is necessary.u For
O, f € R, g€ A, definec, by the equations;, (f)(v) = f(u xv), c,(9)(a) = g(u *x a).
Then since multiplication by is an additive endomorphism of commutative group schemes,
¢, fixes the idealsng andmy and induces an endomorphism of the Lie algebfgs,and Dy,
(indeed of restricted Lie algebras floof positive characteristic). Then fére Do, y € Dy,
as was the case for additive convolutiér,c, = §xu andy oc, = yxu. Ifu € O,y € Dy,

53 permits ustowritaxy, = ux(y oa) = (uxy) o (uxa) = (u*y ). A similar equation
holds for(8,) x a.

To establish (3.29), we proceed as we did for (3.28) except for the last step, when the
computation of the second component®fé,) x (a, v,) requires an application of the dis-
tributivity equations, (3.25), noting thate O anda € M. This second component becomes
UxVg+8xa = (uxy)ysa + (8 xa)usq. Thus both pairs of formulae are proven and then the
last two assertions follow easily from these formulae. O

COROLLARY 4. LetAbein Dy andletu,v € O. Then A x (uov) = (Axu) + (A xv).
Hence the k-vector spaces, Dy and D, are O-modules under multiplicative convolution.

PrROOF ldentify Dy, with the submodule oM?, {(0, y) : y € Dy} and identifyD¢o
with the corresponding square zero ideal. Tiigp is aOf-submodule of/¢ annihilated by
Do. The corollary follows at once. O
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DEFINITION 25. LetfR be ak-scheme of rings and |80t be a scheme dR-modules.
Then we shall refer to the tangent spacefid at 0, thought of as & (k)-module as its
infinitesimal module. We shall write it aB(D1).

Having completed the most delicate of our computations, we revert to a simpler notation.
If O = P (k) we shall uset rather thane for the addition and simple juxtaposition for the
product. We can summarize our computations in the following, which does nothing but restate
Lemma 17 in simpler notation.

PROPOSITION 15. Let R be a scheme of rings and let 9Jt be a scheme of 93-modules.
Let O = 9R(k), M = M(k). Write O¢ and M* for their groups of pointsin k[¢]. Thereisa
short exact segquence,

0O— DON) - M* - M — 0.

As an Of-module D (99%) is annihilated by D(PR). Furthermore, O¢ = {(u,8,) : u € O,8 €
DM®R)} and M* = {(a,rq) : a € MA € D(ON)}. Addition and scalar multiplication are
given by the formulae:

(3.31) (a,rg) + (b, vp) = (@ +b, kayp + Vatp),
(3.32) (u, 8u)(a, k) = (ua, urya + 8ayq) .

Theideal D(®R) is of square zero and it annihilates D(0%).

We shall use this description to complete our examination of the tangent space to a lattice
in Lat! (K). We take the special ca9% = 203, the scheme of Witt vectors ovkrltis possible
to work with the infinite dimensional schempe” F and a fixed lattice of codimensiom in
it, L € p~"F. Write M = p~"F. Let M have basig, = p~"¢; and letus, ..., u, be a
basis forL. An infinitesimal lattice inM? is just a freeD¢-submodule of it of the appropriate
k[e]-co-rank. In particular th&¢-lattices inM*¢ lying over L are just the fre€*-submodules
of M* which reduce td.. TheseD?-modules are exactly the tangent spacé ta Lat’ (K).

LEMMA 18. Let L bean element of the tangent spaceto L in Lat'(K). Then

(1) DoL={0,y):y € Dr}.

2 {v:0y)el}=Dr.

PROOF. The®¢-lattice, L, admits a basi$ii1, iz, ..., iin}, it; € M?, which reduces
to theL-basis{uz, ..., u,} ConsequentlyL = []; Ou;. Itfollows thatD; = [[; Dou;.

Sinceu; reduces ta;, it follows thati; = (u;, Affl.)). Hence by Proposition 1ED@I: =
L1; Do(u;, Af,’;.)) = [[;(0, Dou;). This proves (1).

Suppose(0,y) € L. Freeness implies that0,y) = > 1(xi, 8}6’;))(ui, A{f,)) =
O xiui, 41D ) 0 + (8Dui) x4, 1). But this means tha} ] x;u; = 0. Since theu;
are a basis this means that theare all Q But then the sum reduces @, Y7 u;). By (1),
the sum is a typical element &f; . O
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LEMMA 19. Let L be an element of the Zariski tangent space to Lat'(K) at L. Then
for eachu € L, thereisan element, (u, A,) in L. Let ¢ (u) be the class of A, in Dy;/Dy.
Then the following hold.

(1) ¢ isan O-linear mapfrom L to Dy /Dy.

(2) p"VrF < Landg(p@~VrF) = (0).

(3) If¢ € Homo(L, Dy/Dy) and ¢ (p™~V" F) = (0) then the O¢-module generated
by all elements (u, A,) suchthat A = ¢(u) mod Dy isa O¢°-lattice reducing to L and the
map associated to it by the process aboveisjust ¢.

PROOF. Write D;, for the infinitesimal module of.. Now . € M¢ and the image
of L in M is L. Hence for any: e L there is an element € L which maps to it inL.
Hencei = (u, A,) for somer € Dy. Let ¢(u) be the class ok in Dy;/Dy. If i/ =
(u, ) is another element dt lying abovew, then(0, > — y) is in L and so by Lemma 18,
A —y € Dr. Consequently, the class #fmod Dy, is well defined. Letp(«) be this class. If
x € ®and(v, y,) € L, notice that(x, 0)(x, A,) + (v, ) € L. This expression is equal to
(xu + v, XAxy4v + Veutv)- Since this elementis in it follows thate (xu + v) is the class of
xX + y. This proves linearity.

Now p"~Y"F C L because that is so for every lattice irat' (K). Consequently,
p®=Vrpe c L. This means that for any: € F, (pV"m, 0) e L. By the definition of
¢, (2) follows.

Converseley, givewp, let u1, ..., u, be a basis fo.. Choosey; so thaty; = ¢ (u;)
mod Dy . It is clear that the elementey;, (y;),,;), are a basis for &°-lattice which we will
call L. Itis also clear that the map constructed frarby the procedure above ¢s O

Now M/, the invariant co-normal vectors are dual to the invariant normal vectors which
we denotel/;. Recall that the linear maps fro; to the additive characters @fare exactly
the space of co-additive co-normal vectord.tdrhis space can be writtetd; ® A(L) where
A(L) is the group of additive characters bf

THEOREM 6. Let L beapointinLat!(K) and let I be the ideal defining it in k[F,].
LetM; =1/ mm%r). Then M7 is canonically an O-module. The tangent spaceto Lat! (K)
at L isHomo(L/(pL + p"~Y"F), M}). When L is of the form L1 + p~Y"F, for Ly a
direct summand of p~" F of rank n — 1, it is of dimension n(n — 1)r. In all other cases it
is of dimension n?r. The points where it is of minimal dimension are exactly the SL(n, O)-
orbit of any lattice of type (—r, ..., —r, (n — 1)r); they are exactly the smooth locus and they
constitute an open set with complement of codimension 2.

PrROOF. Itis clear thatM; = Dy /D, and so Lemma 19 establishes a bijective corre-
spondence between the tangent spade and Honp (L/(pL + p@~ V7 F), M7). Itis clear
thatif L is not of type(—r, . .., —r, (n—1)r), thenpL 2 p"~V"Fand saL/(pL+p"~V" F)
is of dimensiom. When it is of type(—r, ..., —r, (n — 1)r), thenpL 2 p"~Y"F and this
quotient is of dimensiom — 1. Thus the Hom in question is of dimensiafr in the first
case and of dimensiom(n — 1)r in the second. The homogeneity statement follows from
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Proposition 10. The smoothness statement is an application of the classical Zariski criterion
of simplicity. |

3.6. Some concluding thoughts on the general case: This paper has been for the most
part concerned with spaces of special lattices. In this section we wish to indicate how to deal
with general homogeneous spaces of the foipd/, whereG = G(K) is the group ofK -
points of a split semisimple group add is a bounded subgroup in the sense of Bruhat Tits.
HereK is taken to be either the field of Laurent series over an algebraically closed field or the
Hilbert class field. More properlyk is the fraction field ofW (k), whereW is aw-scheme
(see Hypotheses 1 in Subsection 2.6). Wiittor the uniformizing parameter @. We work
in this section with complete perfect topological schemes. Although further extensions of
these remarks and results are straightforward we reserve a survey of the possibilities for a
future work.

DEFINITION 26. LetO be a complete discrete valuation ring with fraction fieid,
and algebraically closed residue class fidldLet R € O be a base ring and lef be a
split semisimple group ovek defined overR. A subgroup,P, of G(K) will be called a
BT-subgroup ofG (K) if there is a group schem# over© such that:

(1) M is flat and of finite type ove®.

(2) My ~G.

(3) P =MO).
WhenP = M(©), anO-group schem@/ satisfying these conditions will be called a Bruhat
Tits group scheme associatedRo

In [BT2], Bruhat and Tits demonstrated one of their more celebrated results. The group
G (K) is the group associated to a Tits system with Weyl group equal to the affine Weyl group
of G(K) which we will denoteW. The Tits system is the one for which is an Iwahori
subgroup anav is the normalizer of a maximat'-torus. A subset is called bounded if it
is contained in a finite union of double coseBay B, wherew € W and B is the Iwahori
subgroup. The result alluded to is that every bounded subgroGp 6§, sufficiently large in
a sense precisely defined there, is the grou@gfoints of some Bruhat Tits group scheme
with generic fiberG . The closuresBwB are affine schemes (Pro-schemes, but these are
only schemes not of finite type ovir). The following only recapitlates arguments in [BT2].
We include it for illustration.

PROPOSITION 16. Let G = G(K) and let M C G be a BT-subgroup of G with as-
sociated Bruhat Tits scheme M. Then thereis afinite dimensional K -representation of G, P,
and a maximal lattice, L € P so that M isthe pointwise stabilizer of L in P.

PROOF. Let M = SpecC whereC is a finitely generated)-algebra. TherG =
SpecK[G]),C ®» K = K[G]. Letu : C — C ® C be the co-multiplication. By an
elementary argument (see [Sp, p.29, 2.3.6]), there 8-dimite right M -translation invariant
O-submodule Ng C C such thatNg generateg as anO-algebra. We may assume thés
contains the unit element and that it contains a set of generators for the ideal defining the
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identity element ifM. Right translation invariance holds if and onlyf{ No) € No ®¢ C.
Let N = {n:n € C, there exists: € O such thatun € Np}.

ConsiderN. Then sinceV 2 Np, it certainly generate§. SinceQ is a discrete valuation
ring we may choose a basis firand extend it to a linear basis 6f SinceC is of finite type
we may assume that the basis is countablenkegt. ., n, be the basis oV and letng 1, . ..
denote the extension of this basistoThen{n; ® 1},i < ¢ is a basis fotv ® C overC and
{ni ®1}isal® C basis ofC @ C. Let u(x) = Y ;n; ® b;. Thenpu(ax) = ), n; ® ab;.
Sinceax € N thenu(ax) € N ® C. Henceab; = Oforalli > g. Thush; =0 foralli > ¢
andb; € C otherwise. Thatis) is right translation invariant also.

Let? = N®o K. Then sinceV generate€ andG is the generic fiber off, P generates
K[G]and sinceu(N) € N ® C it follows thatu(P) € P ® K[G]. SinceP generateX [G]
and is right translation invariant, the right translation representatiofi of P is faithful.
Suppose thaj € G stabilizesN, thatis, thayN € N. Fori < ¢ let u(n;) = 23:1 n;®aj;.
Thengn; = Z.L}]':laj)i(g)nj. Thengn; € N ifand onlyifa;;(g) € Oforalli, j <gq.

Consider ther; ;. Apply the homomorphism, evaluation at the identity, to the left hand
side of the equationg(n;) = 23:1 nj ® aj;. \We obtain the equatiom; = Y>7_;nja;;.
This means that the;; generateC. Since this is so and sineg ;(g) € O it follows that
g € M(0). Thatis, ifgN = N, g € M. The converse inclusion is clear. O

COROLLARY 5. Let G = G(K) and let P be a closed subgroup. Then the following
are equivalent.

(1) P isclosed and bounded.

(2) P isak-closed subscheme of a BT-subgroup of G.

(3) P isaquasicompact subgroup of G.

PrROOF Item (2) implies (1) and (1) implies (3), and so all that must be shown is that
(3) implies (2). To see this choose a faithful representatiofi of the category ok -groups,
p: G — GL(n, K). In the category of perfect complete topological schemes this gives rise
to an actionG x K" — K". Choose a lattic&V € K". ThenP x N is quasi-compact and so
its image inK" under the action, which we denaBV, is quasi-compact. The setd N are
an expanding open cover &”" and soPN C n°N for somes. This means thaP N spans
some latticel. contained int®* N. ThusP € G L(L) which is a BT-subgroup scheme. Finally
GL(L)N G is aBT-subgroup of. O

This brings us to our concluding observationdf= G(K) andP C G is a parahoric
subgroup, then by the theorem of Bruhat and Tits there is a representatioorok” so that
P is the stabilizer of a lattice. Hence in the category of complete perfect schepresan
be represented as an orhitlifi (K ). In the sequel to this work we will address the question
of whether this homogeneous space has a canonical description in the category of ordinary
topological schemes.
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