J. Math. Koyto Univ.
10-1 (1970) 1-82

On differential systems, graded Lie
algebras and pseudo-groups

By
Noboru Tanaka

Dedicated to Prof. Atsuo KomATsu
for his 60th birthday

(Received Aug. 8, 1969)

Introduction

A differential system (or Pfaffian system) D on a manifold M is a
law which assigns to every point x € M a subspace D(x) of a given
dimension of the tangent space T.(M) to M at x and which is differen-
tiable in a suitable sense, or it may be simply defined as a subbundle
of the tangent bundle T (M) of M. Let D (resp. D) be a differential
system on a manifold M (resp. M’). Then a diffeomorphism ¢ of M
onto M’ is called an isomorphism of (M, D) onto (M', D) if it induces
a bundle isomorphism of D onto D', i.e., ¢xD(x)=D'(¢(x)) at each x
€ M.

The geometry of differential systems may be described as usual as
a geometry of linear group structures (G-structures) whose structure
group G is of infinite type and even not elliptic. This fact makes the
geometry rather difficult to be studied on the basis of the usual theory
of linear group structures. (By the usual theory, we here mean the
local theory as appears in Singer and Sternberg [9] and the global
theory (cf. Ruh [8] and Ochiai [7]) based on the theory of elliptic
differential equations.) For instance, it seems to us that a direct use
of the usual theory fails to give any finiteness theorem on the automor-

phism groups of differential systems. The same remark holds for other
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geometries based on the geometry of differential systems, e.g., for the
geometry of pseudo-complex structures (=the geometry of real submani-
folds of complex manifolds, see §10).

In the previous paper [ 13], we have established a new prolongation
scheme which can be well applied to a class of differential systems, to
a class of pseudo-complex structures and generally to a class of linear
group structures subordinate to differential systems. As an application,
we have obtained a finiteness theorem for these structures.

The main purpose of the present paper is to give a further gen-
eralization of this prolongation scheme and to make some studies on
graded Lie algebras, pseudo-groups, etc, which are closely related to the
equivalence problem.

Let us now proceed to the description of the various sections and
explain the main results in the present paper.

§1 is concerned which the assumptions to impose on the differential
systems. We first introduce the notion of a regular differential system
(Def. 1.1): A differential system D on a manifold M is called regular
if there is a family (D?),., of differential systems on M such that D'
=D and

Dp:[Dp-H, D»~1]+ Dp+1,

where D” is the sheaf of local cross-sections (local vector fields) of the
vector bundle D”. If D is regular, then the family (D?) is uniquely
determined and there is an integer x>0 such that--=D*2..-2D!
=D. Throughout the present paper, we shall be mainly concerned
with regular differential systems D with D*=T(M). We next in-
troduce the notion of a fundamental graded (Lie) algebra (Def. 1.3): A
graded Lie algebra m=} g’ the indices p taking values<0, is called
fundamental if it satisﬁegothe following conditions:

(1) dim m<eo;

(2) m is generated by g7', i.e., [, q =g

Moreover a fundamental graded algebra is called of u-th kind if g”
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{0} for all p<—px and g #=<{0}. Let D be a regular differential
system on M. Then it is shown that the direct sum m(x)= Z:Dp(x)/
D?*!(x) is endowed with a structure of fundamental graded aiigebra (of
#-th kind). Given a fundamental graded algebra m, we say that D is
of type ut if every mi(x) is isomorphic with m as graded algebras (Def.
1.4). For example, every homogeneous differential system D is regular
and of type m with some ni.

In §2, we define the standard differential systems. Let m—Zg

be a fundamental graded algebra and let M(m) be the simply connected
Lie group whose Lie algebra is given by ni. Then the subspace g*
m defines a left-invariant differential system D on M (i), which is regu-
lar and of type m. This differential system D is called the standard
differential system of type 1. For example, every contact structure is
locally equivalent to a standard differential system. In §3, we argue
about the “universal” fundamental graded algebras, which leads to the
study of “generic” differential systems.

In §4, we generalize the notion of regular differential systems of
type m to give the notion of Gj-structures of type nt. These structures
are the very linear group structures on which we discuss the equivalence
problem. We here only explain how to define the group GJ. Let m
=g’ be a fundamental graded algebra and let G°(ut) be the automor-
ph?;r(;'l group of m as graded algebra. Let N° be the subgroup of GL(m)
consisting of all aEGL(m) such that aX=X(mod d**') for all Xebd?
and p<0, where b”—Zq Given a Lie subgroup G° of G°(m), then
the group Gj is defined %o be the product G°-N° of G° and N, being a
Lie subgroup of GL(m). Note that a regular differential system of type
nt may be described as a G3(m)-structure of type ui, where Gj(u)
=G(n)-N°.

§5 is concerned with the algebraic prolongations of fundamental
graded algebras, etc. It is shown that every fundamental graded algebra
m=),g” is prolonged to a graded algebra g(m)= Zq" +Zq"(m) Note
thatpq<°(m) is the Lie algebra of all derivations of ut as graded algebra,
i.e., the Lie algebra of G°(m). In general, let g° be a subalgebra of
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q°(m). Then the direct sum Zq” is prolonged to a graded subalgebra

g= Zq of g(m), which is called the prolongation of (n1, g°). We say
that (m, g°) is of infinite type (resp. of finite type) if g’={0} for all
p=0 (resp. if g?={0} for some p=0).

In §6, we study the infinitesimal automorphisms of the standard
differential system D of type ni. We prove that the formal algebra of
all formal infinitesimal automorphisms of (M(u), D) is the completion
g(m) of g(m) (Th. 6.1).

§7 is preliminary to the subsequent sections. Let m=),g” be a
fundamental graded algebra and let G° be a Lie subgroup of G%?lou). Let
a® be the Lie algebra of G° which is a subalgebra of ¢°(m) and let g
=Y q” be the prolongation of (i, ¢°). We first define the groups G*
=Gp§/N" (k>0) by using the prolongation of (i1, ¢°) and then introduce
the notion of a pseudo-G*-structure of type ui(Def. 7.2). A pseudo-G*-
structure of type m on a manifold M is a triple (P* D%, 6®) as
follows: P* is a principal fiber bundle over the base space M with
structure group G¥; D™ is a family of differential systems on P¥; 6%
is a family of “pseudo-1-forms” on P* the “fundamental form” of this
structure. It should be remarked that a Gj-structure of type m, P}, o
a manifold M may be described as a pseudo-G’-structure of type ni,
(P° DO 0®) on M(cf. Th. 8.1).

§8 is mainly devoted to the description of the prolongation theorem
for pseudo-G°-structures of type m. The prolongation theorem is roughly
stated as follows (Th. 8.3):

(1) With every pseudo-G’-structure of type ni, (P° D 6©) on
a manifold M, there is associated a sequence

(P): (po, D(O), 6(0))4—-”4—(1”", D(k), 0(k))<_...
of pseudo-G*-structures of type ni, where (P* D®, %) is a pseudo-
G*-structure of type m on P*°!;

(2) The assignment (P°, D, 0(©)— (P) is compatible with the
various isomorphisms.

As an immediate corollary, we have the following finiteness theorem
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for GY-structures of type m (Th. 8.4): Let P} be a Gj-structure of
type ut on a connected manifold M. If (m, g°) is of finite type, then
the Lie algebra of all infinitesimal automorphisms of P$ is of finite
dimension <dimg. In this connection, we remark that the group G}
is of infinite type and not elliptic unless mut is of first kind. Th. 8.4
generalizes the finiteness theorems contained in [17], [97], [11] and [13].
In §9, we construct sequence (P) and prove the prolongation theorem.

In §10, we first introduce the notion of a pseudo-complex structure.
Let D be a differential system on a manifold M and let I be a cross-
section of the vector bundle Hom (D, D). Then the pair (D, I) is
called a pseudo-complex structure on M if I2(Y)=—Y for all Y

€ D(x) and if, for any two local cross-sections X, Y of D,
(1) [IX,IY]—[X, Y] is a local cross-section of D;
(2) [IX, IY]-[X, Y]=I(IX, Y]+[X, IY]).

We then clearify the close relation between the geometry of pseudo-
complex structures and that of real submanifolds of complex manifolds
and apply our main theorems to the former geometry. Recently Tanaka
[147] has applied the results in §10 combined with those in §§5 and
6 to the determination of infinitesimal automorphisms of Siegel domains.

Finally in §11, we study certain graded modules (over non-com-
mutative rings) and apply the result to some problems on certain graded
Lie algebras. Let m—Zq” be a fundamental graded algebra over a field
K of characteristic zer% and let E be a (right) m-module. Assume that
E is graded: E= ZE”(dlrect sum); E?q" CE?*"; dim E?< oo, Moreover

assume that
(1) E?={0} for all p<—p if m is of x-th kind;
(2) for each p=0, the condition “a € E?, ag~'= {0} implies a=0.

For each p=>0, let H?(E) be the subspace of E’ consisting of all a
€ E? such that ag”= {0} for all r< —1. Then we prove that E?=~{0}
for all p=>0 if and only if H?(E)=={0} for all p=>0 (Th. 11.1). Th.

11.1 will be of some interest relating to the algebraic theory of partial
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differential equations. As an immediate corollary, we obtain: Let m
= >1g” be a fundamental graded algebra and let ¢° be a subalgebra of
Sggm). Let §° be the ideal of q° consisting of all X&g” such that
[X, g ]J=1{0} for all r<—1 and identify §° with a subspace of Hom
(@7 % g Y ((by identifying X€§® with the endomorphism g '3 Y—
[X, Y]eg™). Then (m, g°) is of infinite type if and only if the
subspace §° CHom (g™}, q™!) is of infinite type (Cor. 2 to Th. 11.1).
This result is of much importance in connection with the finiteness
theorem stated above and plays a fundamental role in the classification

of primitive infinite pseudo-groups (see Morimoto and Tanaka [6]).

Conlents

§ 1. Strongly regular differential systems

§ 2. The standard differential system of type m

§ 3. The universal fundamental graded algebras

§ 4. Gi-structures of type m

§ 5. The algebraic prolongations

§ 6. Infinitesimal automorphisms of the standard differeatial system of type m
§ 7. G)%-structures of type m and pseudo-G*-structures of type m

§ 8. The prolongation theorems

§ 9. Proof of Theorem 8.1, Theorem 8.2 and of Lemma 8.2

§10. Applications to the geometry of real submanifolds of complex manifolds

§11. Some results on certain graded modules

Preliminary remarks

1. Definition 1. Let g be a Lie algebra over a field K. Assume
that there is given a family (g?)pez of subspaces of g which satisfies

the following conditions, where Z denotes the additive group of integers:
1) gz};g" (direct sum);
2) dim g’<oo;
3) [g%g"JCg™

Under these conditions, we say that the system {g, (g*)} or the direct

sum g= 2, g’ or simply g is a graded algebra.
»
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Moreover we define the notion of homomorphism and of isomorphism
for graded algebras in an obvious manner.
Let ¢ be a Lie algebra and assume that there is given a family

(0")r<ps: Of subspaces of g such that g= qu (direct sum). Then we

shall say that the direct sum g= Zq” is a graded algebra if g= Zq
becomes a graded algebra by puttmg g’={0} for any p(p<k or p>l)
Let g=2,0” be a graded algebra. A subalgebra [y of the Lie algebra
q will bep called a graded subalgebra if we have Hh= 2 h\g”.

2. Throughout this paper, we shall always asgume the differen-
tiability of class C* unless otherwise stated. Given a manifold M, T,(M)
will denote the tangent space to M at a point x € M.

Definition 2. (1) An n-dimensional differential system D on a
manifold M is a differentiable mapping D which assigns to every point
x €M an n-dimensional subspace D(x) of T,(M).

(2) Let D(resp. D) be a differential system on a manifold M
(resp. M’). A diffeomorphism ¢ of M onto M’ is called an isomorphism
of (M, D) onto (M’, D’) if we have ¢xD(x)=D'(¢(x)) at each x € M,
¢x being the differential of ¢.

3. As for differential forms defined on differential systems, principal
fiber bundles and G-structures, we shall adopt the definitions and nota-

tions given in [137], §1.

§1. Strongly regular differential systems

1.1. Let M be a manifold. We denote by T (M) the tangent
bundle of M. Every differential system D on M may be identified with
a vector subbundle of T'(M), and vice versa. Given a differential system
D on M, we denote by D the sheaf of all local cross-sections of the
vector bundle D. The sheaf T'(M) is nothing but the Lie algebra sheaf
of all local vector fields on M, and the sheaf D is a vector subsheaf
of T(M). In general, let 2 be a vector subsheaf of T(M). 2(x)
denotes the stalk of 2 at a point x € M. Given a local cross-section

X of 2 defined on a neighborhood of x, X, denotes the germ at x
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represented by X, which is an element of 2(x).

Let D and D’ be two differential systems on M such that DCD’,
i.e., D(x) CD'(x) at each x € M. Let x be any point of M. We denote
by &(x) the vector subspace of T(M)(x) spanned by all the elements
of the form [X,, Y, |+ Z, where X,, Z,€D'(x) and Y,€ D(x), i.e.,
& (x)=[D'(x), D(x) ]+ D'(x). Moreover we denote by D”(x) the sub-
space of T,(M) consisting of all the elements X,, where X, € &(x).
Then we say that the pair (D', D) is regular if dim D’(x) is constant.
If (D', D) is regular, then we see that the assignment M > x— D"(x)
gives a differential system D" on M and that the assignment M3 x—
&(x) gives the sheaf D" associated with D”’. We have D" D D'DD.
For the moment, the differential system D'’ will be denoted by D'(]D.
The differential system D[JD is called the derived system of D (cf.
[2]). D is completely integrable if and only if [ D(x), D(x)]C D(x)
at each x € M or equivalently D(OD=D.

Definition 1.1. We say that a differential system D on M is
regular if there is a family (D?),., of differential systems on M satisfy-

ing the following conditions:

1) ~~>D”‘1)D”D~~DD‘1=D;

2) For each p<0, the pair (D?, D™') is regular and D!
=D1D7 .

It is clear that the family (D?),., satisfying the above conditions
1) and 2) is uniquely determined by D. Since dim D?<dim M, there
is an integer #>0 such that

=D l=DprDi...2D

Definition 1.2. 4 being just as above, the regular differential
system D is called of x-th kind.

We say that a differential system D on M is homogeneous if the
pseudo-group of all the local automorphisms of (M, D) is transitive on

M. 1t is obvious that a homogeneous differential system D is regular.
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Remark. Our regularity condition for differential systems is a
general one. In fact, it is easy to see that any differential system D

on M is regular on some open set U of M.

Proposition 1.1. Let D be a regular differential system of p-th
kind on M. Then the differential system D™ * is the smallest completely

integrable differential system on M containing D.

Proof. We have [D?(x), D" '(x)]CD?*(x) at each x€M. It

follows that [ D"(x), D*(x) ]CD"**(x). Prop. 1.1 is easy from this fact.

Let D be a regular differential system of x-th kind on M, and let
N be a maximal integral manifold of D7* Then each differential
system D? can be restricted to NV, which we denote by D?|N. Then
it is clear that D|N=D"'|N is regular and that (D?|N),., is just the
family of differential systems associated with D|N. Moreover, we see
that D|N is of x-th kind and D™#|N=T(N). In this paper, we shall
be mainly concerned with regular differential systems D of x-th kind
with D™*=T(M).

1.2. Let D be a regular differential system on M and let x be
any point of M. We set q?(x)=D?(x)/D?**'(x) and m(x)=J g’(x)
(direct sum). Let us define, in a natural manner, a bracket oig’)fa(;ation
in m(x) so that im(«x) becomes a graded algebra. For this purpose, we
set g ?(x)=D"(x)/D**(x) and m(x)=3 ¢”(x) (direct sum). Since
[D’(x), D°(x)]C D" *(x), the bracket olgzl?ation [,] in T(M)(x) in-
duces a bracket operation [, ] in m(x) in such a way that m(x) be-
comes a ‘“‘graded algebra”. (Note that dim g”(x)=c0). Since [D*(x),
D)+ D) =DM (x), we have [g'(x), g '(x)]=g"'(x). Let
a’ (resp. a”) denote that projection of D?(x) (resp. D?(x)) onto g’(x)
(resp. g’(x)). The mapping D?(x)> X,— X, € D’(x) induces a linear
mapping 3” of ¢”(x) onto g’(x) such that B*(a’(X.))=a’(X,) for any
X.€D?(x). The family (8?), defines a linear mapping B of m(x)
onto m(x).

Lemma 1.1. Let X.€ D?(x) and Y,.€ D).
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(1) If X,=0, then we have [ X, Y], € D**4" (x).
(2) If X,€ DY (x), then we have [ X, Y], € DP*4*1(x).

Proof. (1) Let w'=-=w*=0 be a local equation of D?*¢*! at
x. We have o'((X, Y ],)=—do' (X, A Y,)+ X, 0'(Y)— Y, 0'(X). Since
X.=0and D?C D" "*! we get o' (X, Y],=0 (1<i<k), which means
[X, Y],e D" (x). (2) follows easily from (1) and the fact that
[D**}(x), D'(x)]C D" (x).

By Lemma 1.1, we know that there is a unique bracket operation
[,7] in m(x) such that m(x) becomes a graded algebra and such that
@ gives a homomorphism of ni(x) onto m(x) as graded algebras. Since
[g”(%), g7 (%) 1=g"""(x), we have [¢*(x), g~"(x)]=g""}(x).

Definition 1.3. (1) We say that a graded algebra 111=p§,;g” over

a field K is fundamental if it satisfies the following two conditions:
1) dim m<oo;
2) m is generated by ¢!, or more precisely [¢%, g7 ]=g""'(p<0).

(2) We say that a fundamental graded algebra ni= ), g? is of x-th
<0
kind if g?={0}(p< —px) and g~*=¢{0}.
By this definition, we see that the graded algebra ni(x), constructed

as above, is fundamental.

Definition 1.4. Let D be a regular differential system on M.

(1) D is called strongly regular if the graded algebras m(x)
(x € M) are mutually isomorphic;

(2) Let m=),g” be a fundamental graded algebra over the field
R of real number;@ Then, D is called of type m if the graded algebra
n(x) is isomorphic with the graded algebra m at each x & M.

It is clear that homogeneous differential systems are strongly regu-
lar. In §3, we shall see that “generic” differential systems of some

kind are also strongly regular.

Examples. (1) Let m=g *4g ' be a fundamental graded algebra

of second kind, where dim g"*=1 and dim g~'=n. Let e, be a base of
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g% and define an anti-symmetric bilinear form B on g ! by B(X7!,

Y Yeo=[X!, Y-'] for any X!, Y 'eg'. Let r be an integer with
O<r§[—g—]. We say that m is of class r (resp. non-degenerate) if
rank B=2r (resp. if B is non-degenerate). It is clear that there is a
unique fundamental graded algebra m of class r up to isomorphism.
Let M be a manifold of dimension n+1, and let D be a differential
system of dimension n on M. Let im be a fundamental graded algebra
of second kind, where dim g"*=1 and dim q"'=n. Then we say that
D is of class r(resp. non-degenerate), if m is of class r (resp. non-
degenerate) and if D is of type ni., D is also called a contact structure
if it is non-degenerate.

(2) (cf. [1], p. 936-938) Let mzig" be a fundamental graded
algebra of x-th kind, where dim g"1=2pa_r;g dim m=<5. Then we have

the following five cases:

1) dim m=2, u=1(n"1=2),

2) dimm=3, £=2(n"*=1, n"'=2),

3) dim m=4, x=3(n"3=n" =1, n"'=2),

4) dim m=5, £=3(n"3=2, n""=1, n"1=2),

5) dim m=5, g=4(n"'=n=n" =1, n"1=2),
where we put n?=dim g’. It can be easily shown that, in each case,
there exists a unique fundamental graded algebra nt up to isomorphism.
Let M be a manifold of dimension 5, and let D be a regular differential
system on M, where dim D=2. Then we have dim g '(x)=2 and
dim m(x) <5 at each x € M. Therefore we know from the above
argument that D is strongly regular.
§2. The standard differential system of type m

2.1, Let m=J,g” be a fundamental graded algebra of x-th kind

<0
over R. Let M(m) be the simply connected Lie group whose Lie alge-
bra is given by . (Hence m may be identified with the Lie algebra
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of all left invariant vector fields on the Lie group M(m).) We set d?
—Zq and define a differential system D? on M () by D?(x)=(b?),, the
subspace of T,(M(m)) consisting of all the vectors X, (X€bd?). Since
[g?, g ' ]=a?"!, we easily have [ D?(x), D™'(x)]+ D?(x)=D?*"'(x). This
shows that D=D"! is a regular differential system on M () and that

(D?) <o is the family of differential systems associated with D. Moreover
it is clear that D is strongly regular of type m. The differential system
D on M(m), thus obtained, is called the standard differential system of
type nt. Let & be the Maurer-Cartan form of the Lie group M (in)
which is the nt-valued 1l-form on M (i) defined by &(X,)=X for any
Xem and x€M@n). Let & denote the g’-component of & in the
decomposition nt=,g”. Then it is clear that D’ is defined by the
equations &" =0 (réjg).

2.2. Let us now realize the Lie group M(m) as a Lie subgroup
of the affine transformation group AF () of m. Let u? denote the
projection of nt onto ¢” in the decomposition m=},g?, which may be
considered as a g”-valued function on ni. Then tﬁzosystem (u?)-p=p<o
defines a linear ‘“‘coordinate system” of the manifold m. (Note that u?
=0 if p<—u) For each X&€m, we define an infinitesimal affine

transformation s(X) of m by
@) =X+ T x g LaC0, w1

for all Yem. Then it can be easily shown that the mapping X — s(X)
gives an injective homomorphism s of the Lie algebra m into the Lie
algebra af (in) of all infinitesimal affine transformations of m. Further-
more we see that s generates an injective homomorphism S of the Lie
group M(m) into the Lie group AF(m).

2.3. The affine transformation group AF(m) may be expressed as
the product ntx GL(n1); We denote by p the projection of 4F(mm) onto
nm. Then the mapping f=p o S gives a diffeomorphism of M (u1) onto
m. We have f(ax)=S5(a)f(x) for all a, x €M(Qu). It follows that
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the group S(M(m)) is simply transitive on m and that the differential
system ﬁz(f‘l)*D on 1 is invariant by S(M()). Moreover if we
put &2 =(f"1)*&? then D is defined by the equations &#=0 (p< —2).
For the sake of simplicity, assume that #< 3, i.e., m=g *+g *+g~ .
If we put

7 t=du,

77_2=du-2___21_|:u_1a du_l:ls
77’3=du'3——;—[u‘2, du_lj—%[u"l, du=%]

+g- w7, [ut du '],

then it can be shown that £?=y?(p=—3, —2, —1). Thus we know
that the differential system D is defined by the equations 7 3=7"%=0,
which may be adopted as the second definition of the standard differen-

tial system of type ut for the case #<3.

Examples. (1) The case where #=2, dim g"*=1 and where m
is of class r (cf. 1.2, Example (1)). Let e, be a base of g7%. Then
we can find a base e, -, e, of g7' such that [e;, e;]=e, (1<i<r,
j=r+i),=—ei=r+j, 1<j<r) and=0 (otherwise). Let x°, ..., x"
denote the coordinate system of m corresponding to the base e, - -, €.

2

n .
Then we have u2=x"¢; and " '=) x'e;, and we see that the dif-
i=1

ferential system D on m is defined by the equation

r . . . .
dJ\co—L (P dx™—x" " dx')=0.
2 =
The Darboux’s theorem shows that any regular differential system D’
of dimension n and of class r on a manifold M’ of dimension n+1 is
locally isomorphic with the differential system D on mn.

(2) The case where #=3, dim g7*=2, dim g"*=1 and dim g'=2
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(cf. 1.2, Example (2)). There is a base ey, ---, es of mt such that ey,
e (resp. e3; resp. ey, es) forms a base of g3 (resp. g~%, resp. g°') and

such that e,=[es, e4 ], es=[es, 5] and es=[ey, e5]. Let x', ..., x°

denote the corresponding coordinate system of ni. Then we have u™3

“2—=4x%¢, and u"1=x464+x5e5, and if we put £'=ux'

—x el-l-x 62, u
2
+3 3 x _’_(’64)2 and 9?2=.r2+7x3x5+-(15—x4(x5)2, then we

see that the differential system D on m is defined by the equations
daEl—(xS—%x4 2 dxt=0
A‘:z—(xs—l—%x“xs) dx%=0,
dx3——;—(x4 dx®—x5dx*) =0

(cf. [17, p. 977).

§3. The universal fundamental graded algebras

3.1. In this section, vector spaces and Lie algebras to be con-
sidered are those over a fixed field K of characteristic 0 unless otherwise
specified. Let (V?)pca be a family of finite dimensional vector spaces,
where A is a subset of Z. Set V=), V? and consider the second
exterior space A%V of V. Denote by tl’/’/\ VS the subspace of A%V
spanned by all the elements of the form X"AY*®, where X"'€ V" Y°
€ V5. Then we have: VAV A2V VANV =V AV ZVQV®
(rs=s); /\Z(V)—Z VA V® (direct sum). Moreover, for each X&€ V, we
denote by X? the V?.component of X in the decomposition V= Z Ve,

Let m—Zq” be a graded algebra which satisfies dim g“1<oo and
gt~ 1=[g? g~ 1] (p<0). (We do not necessarily assume dim m<eo.)
We set Z?=Hom () g"Ag®, g¢”) and 9 =3 J* which is a subspace of
% =Hom (A*m, 1‘1:)+.s_pNow the bracket (fje:_rzation of the Lie algebra m
gives an element B of # by defining B(XAY)=[X, Y] for all X,Y
€. We clearly have B€.7. The Jacobi identity in the Lie algebra
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m means & B(B(XAY)AZ)=0 for all X, Y, Z€m, where & stands
(X,Y.,2) (X,Y,2)

for the cyclic sum with respect to X, Y, Z. It follows that

S X 2 BAB'X*AYHYAZS)=0
(X.Y.Z) ris=puto=r
for all X, Y, Z€m and p<-—2.

Let 7V be a finite dimensional vector space. Assume that dim V
=2. By using the vector space V, we shall construct a graded algebra
b(V)=72, b2(V).

Le€'<lols define vector spaces b?(¥)(p<0) and linear mappings B?:

2V (MIN (V)= b (V)(p<—2) inductively as follows: First, we
(ri:,;ine b=Y(V) to be ¥ and b7*(V) to be A*V. Furthermore we define
B~? to be the identity transformation of A®V. ¢ being an integer
< —3, suppose that we have defined vector spaces b*(¥) (¢<p<0) and
linear mappings B?: Z (VYN (V)= b?(V)(g<p=—2) in such a way

r+s=p
that B? is surjective and its kernel A?(¥) is spanned by

3.1) & X X BX*AYHYAZ® (X7, Zej_}b ).

(X,Y,2Z) r+s=p utv=r

Let A%(V) denote the subspace of Y, b"(V)Ab*(V) spanned by (3.1)

r+s=gq
with p=g. Then we define 5*(V) to be the factor space (Z b’(V)/\
b5(V))/A(V), and B? to be the projection of Z b” (V)/\b (V) onto

rt+s=p
b?(V), completing our inductive definition.

We put (V)= Zb’(V) and define a bracket operation [, ] in

b(V) by
[X, Y]=% X BAX'AY®)
p=2-2 r+s=p
for all X, Y€ b(V). Then we see from (3.1) that this bracket opera-
tion in &(V) satisfies the Jacobi identity. It is clear that (V) is a
graded algebra. We have clearly b2(V)= X [b"(V), b5(V)], which
r+s=p

means that 6?1 (V)=[b?(V), b'(V)]. If dim¥V =n, we have dim 5~%(})



16 Noboru Tanaka

:% n(n—1), dim 573(V) :—%—(n—l— 1) n(n—1), etc..
Proposition 3.1. Let m= Zq” be a graded algebra which satisfies
a?'=[g”, ¢ 'J(p<0) and dim g 1<a’zm V. Then every linear mapping
f of V onto g~ is extended to a unique homomorphism f of the graded
algebra b(V') onto the graded algebra m.

This is easy from the construction of 5(V).

We now assert that b?(F)=={0} for any p<O0. Indeed, we can
easily construct a graded algebra mzxq" such that dim ¢*=1 (p<—1)
and dim g"'=2 and such that g~ lp—[q" g '](p<0). Theorefore by
Prop. 3.1, we have dim 6?(F)>1 for any p<0, proving our assertion.

Let # be an integer >0. Sinceﬂgﬁb"(V) is a graded ideal of
b(V), we see that the factor space b(V, ) =b(V)/ 3 b*(V') becomes a
fundamental graded algebra of x-th kind. e

By Prop. 3.1, we get

Proposition 3.2. Let m—Z a? be a fundamental graded algebra
of p-th kind. Assume that dim gTFSdlm V. Then every linear mapping
f of V onto a7! is extended to a unique homomorphism f of the graded
algebra b(V, 1) onto the graded algebra m.

The graded algebra b (V, x) is called a universal fundamental graded
algebra of x-th kind.

-1
Corollary 1. Let m=7},g" be a fundamental graded algebra of

p-th kind. Assume that dzm-;]‘;’—dzm (g ) (—pusp=<-—1).

(1) The graded algebra m is isomorphic with the graded algebra
b .

(2) Let G°(m) be the group of all the automorphisms of the graded
algebra m. Then the mapping G°(m)Da—>al|g ' (the restriction of a
to g EGL(g™") gives an isomorphism of the group G°(m) onmto the
group GL(g™%).

Corollary 2. Let D be a regular differential system of dimension
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n and of p-th kind on a manifold M. Then we have
dim g(x) <dim b’ (R") (—p<p<-—1, x€M).
Corollary 3. D being as in Cor. 3, assume that
dim g*(x) =dim 0*(R") (—pu<p<—1,x€M).
Then the regular differential system D is of type b(R”, u).

§4. Gj-structures of type m

4.1. In this section, we shall consider a fixed fundamental graded
algebra m=),g” of x-th kind over R. We put m=dim m.
<0

®” being as in §2, denote by H° the subgroup of GL(m)

consisting of all the elements a such that ad”=»%” for any p<0. Denote
by S° the subgroup of H° consisting of all the elements a such that
ag?=g? for any p<0, and by N° the (normal) subgroup of H° consist-
ing of all the elements a such that aX?=X? (mod d"*') for any
X?eg? and p<0, where we put d*={0}. We have H’=S°N°.

Denote by #x the subset of #=Hom(A?’m, ut) consisting of all
the elements B such that the vector space m together with the family
(6”)p<o gives a fundamental graded algebra with B as bracket operation.
Let B€E®,ac H°, and express a as a’-a”’ ('€ S° a’€N°). Then we
define an element B of # by B (XAY)=a 'B(a’X)A(d'Y)) for all
X, Yem. We have (B%)'=B%. Thus the group H° linearly acts on
% to the right. %x is clearly an invariant set of 4.

Let (F, w) be a H°structure” on a manifold M of dimension m.
Let 7 denote the projection of F onto M. Every element z € F gives a
linear isomorphism of m onto T,(M), where x=n(z). ® being an
m-valued 1-form on F (the basic form of F), we have w4 X=2z-0(X)
for any X€ T,(F) and z€ F. We denote by w? the g’-component of w

1) For the definition of a G-structure, we refer to [13], §1.
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in the decomposition m=72,g".
»20
Let D be a regular differential system on a manifold M of dimen-

sion m satisfying the following condition:
(4.1) dim g”(x) =dim ¢’(p<0, x € M).

Note that D #= T (M) under this condition. As is easily observed, D
gives rise to an H%structure (F, ») on M (unique up to equivalence)
such that the differential system n*D? is defined by the equations ”
=0(r<p) for any p<0. (We have only to define F to be the totality
of the linear isomorphisms z of ut onto T.(M) satisfying z-d?=D?(x),
where x runs over M.)

We have easily

Proposition 4.1. The assignment (M, D)— (F, w) is compatible
with the respective isomorphisms.

Let D be a regular differential system on a manifold M of dimen-
sion m satisfying condition (4.1), and let (F, ) be the corresponding
H'structure on M. Let z€F and set x=n(z). We have z:d’=D?(x),
and define a linear isomorphism a(z) of ut onto m(x) by a(z)-X?
=a’(zX?) for any X?€g” and p<0. Let a€H° and express it as
a+a’(a'€ S’ a”’€N°®. Then we have clearly a(za)=a(z)d’. By
using @, we now define a mapping 7T of F to &% by

(4.2) T()XANY)=a(z) "' [a()X, a(z)Y]
for any z€F and X, Y€m. We have
(4.3) T(za)=T(2)*

for any z€F and a€ H’. For any p<<—2, let I(p) denote the subset
of Zx Z consisting of all the pairs (r, s) such that r+s<p and p<r,
s<0. If (r,s)€ I(p), we have r, s=<—2.

Proposition 4.2. For any p<—2, we have
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szd(oﬁ+_é__ Z T((l)r/\a)s)EOZ)

r+s=p
{mod 0’ (r=p); 0" Aw*((r, s) € I(p)}.

Proof. We may assume without loss of generality that the prin-
cipal fiber bundle F is trivial. Take a cross-section g of M to F, and
set £=g*w and &’=g*w?. Since 7*D? is defined by the equations
0’ =0(r<p), we see that D” is defined by the equations & =0(r<p).
Let x€M and set z=g(x). We have U=m*gxU=2z-£(U) for any
Uec T.(M). Therefore we have U=2z&?(U) (mod D?*'(x)) for any U
€ D?(x), whence

(4.4) a?(U)=a(z)-¢*(U).
Let Ue D’(x) and V&€ D*(x). We assert that
(4.5) (g*2(UANV)=0 if r+s=p.

Indeed, we can find an X, € D"(x) (resp. aY, € D*(x)) such that U=X,
(resp. V=1Y,). We have

(g*@N(UAV)=Us"(Y)—V(x)—&*([X, Y

+ I TOE WA

2) For the notations, we refer to [13], §1: For each p<0, take a base
(eP)isis.» of g? and let (w?) be the corresponding expression of the g?-valued 1-form
w? on F. Then we have:

w"/\m‘:iz;m’{/\mje;/\e;,

T(w’/\m‘):t’;k Tj i Awdept,

dowP== ;dwf er,
where (T;;(z))1sis.r+s is the expression of the g **-valued function T (z)(ejAe})
on F with respect to the base (e;**). Now let (2?) be the expression of the g#-
valued 2-form Q7 on F with respect to the base (e?). Then the equality “Q»
=0{mod.--}” in Prop. 4.2 means that

2?=0{mod wj(r=p, 1Sj=n"); wjAwj
(r,)€I(p), 1=jsn, 1=k=<n9)y (1=iZn?).
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If r+s>p, we have clearly (g*2?)(UAV)=0. Now suppose that
r+s=p. Then by using (4.2) and (4.4), we have

(g*@N(UNV)=—§"([X, Y])+ T(x) §(U)NET))
=—a() (X, Y1)
+a(2) " [a(2)-¢7"(V), al2)-§°(V)]
=—a(z) [a’(U), @*(V)]+a(2) " +[a’(U), a*(V)]
=0.
Thus we have proved our assertion. (4.5) means that
(4.6) g* 2?=0{mod &’ A&(r+s<p)}.

Since z and gom(z)(z€F) lie in the same fiber of F, we can find
an element a(z) € H° such that z= gon(z)+a(z)"'. Moreover a(z) can
be expressed as a'(z)-a”’(z)(a’(z) € S, a”’(z) € N®). Setting €=r*¢, then
we have w=a-§, whence

4.7 w’=a’-E"{mod E"(r< p)},
and
4.7) Er=a'""w’{mod 0’ (r<p)}.

By (4.7), we have
do*=a'+dE{mod &'r<p); dE'(r<p)},
and by (4.6),
dE"=0{mod E‘A3"(u+v<1)}.
It follows from (4.7’) that

(4.8) do’=d'dE’{mod 0’ (r<p); 0" Aw*(r+s<p)}.
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Since T'(2)*®=T(gon(z)), it follows from (4.7") that

1

2 r+s=

4.9 d-dE=— T(o" Aw®){mod 0" Aw*(r+s<p)}.

»

From (4.8) and (4.9), we get the desired equalities. We have thereby
proved Prop. 4.2.

Remark. We set Sh=Hom( Y q"Ag’, g?), and T4x= X T4
(ri,sYEL(p) ps=-2
which is a subspace #. By Prop. 4.2, we can find, for each p<—2,

a unique mapping T% of F to 74 satisfying the following equality:
*

da)”-l-_zl- Y T Ao®)+ L T Ao)=0

R
r+s=p 2 (r,s)EI(p)
{mod o’ (r<p)}.

We set Ty= ), T%. Then the sum T+ Ty« may be considered as the
pE—2
structure function of the H°structure (F, w).
We now state the following proposition without proof, which is a

converse of Prop. 4.2.

Proposition 4.3. Let (F, 0) be a HCstructure on a manifold M.
Assume that there is a mapping T of F to B« satisfying the equalities
in Prop. 4.2. (It is clear that T is uniquley determined by this con-
dition.) Then there is a unique regular differential system D on M
satisfying condition (4.1) such that the given (F, w) is equivalent to
the H°-structure associated with D.

We have thus characterized regular differential systems satisfying
condition (4.1) in terms of H%structures.

4.2. The group H° acted on %4 to the right. We denote this
transformation group H® on @4 by (£, H°). The bracket operation in
the fundamental graded algebra m determines an element B, in %x.
Let GJ(in) denote the isotropy group of (#x, H°) at the point B, € Zx.
We set G°(m)=Gy(m)N\S°. Then we have N°CGI(m) and Gj(m)
=G°(m)-N° The group G°(m) is nothing but the group of all the auto-
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morphisms of the graded algebra ur

We shall characterize regular differential systems of type m in
terms of GJ(m)-structures.

Let D be a regular differential system on a manifold M of dimen-
sion m satisfying condition (4.1), and let (F, w) be the corresponding
H%structure on M. Consider the image T(F) of F by the mapping T:
F—%s. By (4.3), we see that T(F) is Hinvariant. Let [ B, ] denote
the orbit through the point By € @By of (Bx, H). Then by using (4.3),
we can easily show that T(F)=[B,] if and only if the regular dif-

ferential system D on M is of type nu

Assume that D is of type m. Let P, be the subset of F consist-
ing of all the elements z with T(z)=B,. Since T(F)=[B,], we see
from (4.3) that P, is a Gj(u)-subbundle of F. Thus we get a Gj(m)-
structure (P,, o) on M. The equalities in Prop. 4.2 restricted to P,

yield the following equalities:

(4.10) dw"—l—% 2 Lo 0*]=0

r+s=p
{mod 0" (r< p); 0" Ao*((r, s) € I(p)H} (p=—2).

Thus we have shown that to every regular differential system D
of type m on a manifold M of dimension m there is associated a G§(11)-
structure (P,, w) on M satisfying equalities (4.10). By Prop. 4.1, it
is clear that the assignment (M, D)—(P,, w) is compatible with the
respective isomorphisms. Conversely, let (P,, ) be a Gj(m)-structure
on a manifold M satisfying equalities (4.10). Then it is clear from
Prop. 4.3 that there is a unique regular differential system D of type
m on M such that the given (P,, ®) is equivalent to the GJ(in)-structure
associated with D,

4.3. We shall now generalize the notion of a regular differential
system of type m on a manifold of dimension m. Let G° be a Lie
subgroup of the group G°(m) of all the automorphisms of the graded
algebra ni. Then the product G$=G°-N° is clearly a Lie subgroup of
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From (4.6), we get

FAB= kB (e g TIE A ot EAE G s<p).

the group GY(u)=G°(m)-N°.

Definition 4.1. We say that a G§-structure (P, ®) on a manifold
M is of type m if it satisfies equalities (4.10).

The above argument shows that giving a G$(mr)-structure of type
m on a manifold M of dimension m is nothing but giving a regular
differential system of type ut on M. Moreover, G} being a Lie subgroup
of Gj(m), we know that every Gj-structure (P,, ») of type m on a
manifold M gives rise to a Gj(u)-structure of type m on M in such a
way that the given P, is a G}-subbundle of the Gj-bundle.

4.4. Finally we shall generalize the notion of the standard differ-
ential system of type m to give the notion of the standard Gj-structure
of type L.

Let D be the standard differential system of type m on the manifold
M(m), and let (F, w) be the corresponding H°-structure on M(m). At
each x € M(m), we define a linear isomorphism of mnt onto T ,(M(m))
by g(x) X=X, for all X€m. It is clear that the mapping x— g(x)
gives a cross-section g of the principal fiber bundle F. Moreover we
have clearly T(g(x))=B,. Let P, be the Gj(i)-subbundle of F' defined
by T=B,. Then it follows that g gives a cross-section of P#. Now
let G and GY be as above. We denote by P, the subset of P, con-
sisting of all the elements of the form g(x)-a(x € M(m), a €G}), which
is a Gy-subbundle of P,. Thus we get a Gj-structure (P, ) of type
nton M(ut). The G§-structure (P,, ») of type m on M(in), thus defined,

is called the standard G3-structure of type ut.

§5. The algebraic prolongations

5.1. Let m=7),g” be a fundamental graded algebra over a field K
50
of characteristic 0. We shall construct a graded algebra g(m)zZzg”(m)
pE
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over K satisfying the following conditions:

1) The graded subalgebra X, g’(m) of g(ut) coincides with the
given fundamental graded algebrap<1(1)1;

2) Let p be any integer _-0. If X?€g”(m) and if [X?, g™']
={0}, then X?=0;

3) g(n) is maximum among graded algebras satisfying condition
1) and 2) above. More precisely, let H=2 H? be any graded algebra
satisfying 1) and 2). Then 1) is imbedded inﬂg(m) as graded subalgebra.

We set g’=g’(m) (p<0). Let us define vector spaces g’(ur)
(p=0) and bilinear mappings 0”7: g’(m)x ¢ 3 (X?, Y")—>[X?, Y]
€gl*"(m)(p=0, r<0) inductively as follows:
First g°(m) is defined to be the Lie algebra of all the derivations X°
of the graded algebra m, and @%7 is defined by [X° Y ]=X°Y" for
any X°€g’(m) and Y €g’. k being an integer >0, suppose that we
have defined vector spaces g”(m)(0<p<k) and bilinear mappings 0"
(0<p<k, r<0) in such a way that

(5.1) (x4 Y1, z7]—[[x% 277, Y- ]-[X", (Y, Z7]]=0

for any X?€g?(m), Y'€g™" and Z"€g"(0<p<k, r<0). Then we put
q*(m)= > Hom(g’, ¢"**(m)), which may be identified with a subspace
of Homr(<1;)1, Y g?(m)). This being said, g*(m) is defined to be the sub-
space of qk(l,;)’8 consisting of all the elements X* satisfying the following

equalities:
CXHY ™, Zz]-[XXZ"), Y ]-X*Y ', Z2"])=0

for any Y '€g ! and Z"€¢’(r<0), and O%" is defined by [X* Y]
=X*(Y") for any Y”€g’. Then we have clearly equalities (5.1) with
p=Fk. We have thus completed our inductive definition.

By using the fact that g""'=[g", ¢7'J(r<0), we can easily prove
property 2) for g(m) and the following equalities:

(6.2)  [[x?% Y], Zz7]—-[[X? 2°], Y ]-[ X" [Y", Z2°]]=0
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for any X?eg?(m), Y"€qg’, Z°€g’(p=0,r,s<0).
We set [Y7, Y?]=—[X? Y"] for any X?€g”’(1) and Y’ €gq’
(p=0,r<0). Let us now define bilinear mappings

071 g?(m) X g*'(m) 3 (X* Y9 —>[X?, Y ]eg" (m)(p, ¢=0)

inductively as follows: First, @°° is defined to be the bracket operation
in the Lie algebra g°(m), ie., [X° Y ]=XY°—Y°X? for any X°, Y°
€q°(m). k being an integer >0, suppose that we have defined bilinear
mappings @”¢(p, ¢=>0, p+q<k) in such a way that

(53) [[Xp> Yqja Zr]—[I:Xpa Zr]s Yq:l—[Xp’ [Yq3 Zr:|:|=0

for any X?€g’(m), Y?€g’(m) and Z"€¢'(p, ¢=0, p+q<k, r<0).
Let p, ¢ be any integers with p, =0 and p+g¢=k, and take any X”
€g?(u) and Y?€g?(m). Define an element W* of g*(m) by

whznH=[[x" z"], Y J+[X* [V 2"]]

for any Z'€¢’(r<0). Then we can easily show that W*&g*(m). This
being said, we put [ X?, Y9]=W* The bilinear mapping @9, thus
defined, clearly satisfies (5.3). Thus we have completed our inductive
definition.

We have clearly [X?, Y?]=—[Y% X*] for any X?€qg?(in) and
Y?eg’(m)(p, g=0). Moreover we can prove the equalities:

(CXx? Yo, 27 ]+ (LYY 27], XP]+[[Z7, X7], Y*]=0

for any X?€g’(m), Y?e€g’(m), Z"€gq"(m)(p, ¢, r =0).

Finally we put g(m)=2,g”?(m). Then we know that the bilinear
mappings @7 together withpthe bracket operation in m define a struc-
ture of graded algebra in g(i1) so that g(in) has the desired properties.
The graded algebra g(m) is called the prolongation of the fundamental
graded algebra m1.

5.2. Let mt and g(ut) be as above. Suppose that we are given a
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sequence g, ---, g which satisfies the following conditions:

(5.4) 1) g’ is a subspace of g?(M)(0=Zp=<k);
2) The family (g?)_.<p<r satisfies [g", a°]Cq""*(r+s<k). Then

kil qk+2 ... inductively as follows: [ being an

integer >k, suppose that we have defined g**!, ..., g’ ! as subspaces of

we define a sequence g

g“*t(m), ..., o'"*(m) respectively, in such a way that [g?, g"]Cg?*’
(k<p<l,r<0). Then we define g' to be the subspace of g'(n) consisting
of all the elements X' such that [ X' g7*]Cg' ! or equivalently [ X'
" 1Ca"""(r<0). If we put g=2 g”, then we can easily prove g to be
a graded subalgebra of g(n). I:F;e graded algebra ¢ is called the pro-
longation of (n1, g% ---, g*). We put =2 Hom (g’,g"*'), being a
subspace of q'(m). Then we have g’(q’f\rg’o(m) for any [. Moreover
we have g'=q'"\g'(m) for any [>k.

Let g° be a subalgebra of ¢°(m). Then we have clearly [g”, g*]
Cg""*(r+5=<0). Therefore we may talk about the prolongation of
(m, g°).

Definition 5.1. Let m be a fundamental graded algebra.

(1) 1 is called of finite type (resp. of infinite type) if dim g(u)
< oo(resp. =o0).

(2) Let g% ---, g* be a sequence satisfying condition (5.4) and let
g be the prolongation of (n1,q° -.-, g¢*). Then (1, g’ -, g*) is called
of finite type (resp. of infinite type) if dim g< oco(resp.=o0).

5.3. Examples. Let 111=p§0g” be a fundamental graded algebra of
#-th kind over R. We shall investigate, for several special cases of ni,
the prolongation g(ut)= g?(1) as well as the group G°(m) of all the
automorphisms of the grgded algebra m. First we make some general
remarks on g(m) and G°(mt). i) For each A€ R, define a linear auto-
morphism €(4) of m by e()X?=2?x? for any X?€g”’(p<0). Then
¢(2) is in the center of G°(m). ii) g°(im), being the Lie algebra of
G°(m), contains a (unique) element E in its center such that [E, X?]
=pX? for any X?€g?(p<0). iii) Let h?(p=—1) denote the subspace
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of g?(in) consisting of all the elements X” such that [ X?, q"]= {0} for
any r< —1. Then we have [)?, g7']C0h? *(p=0). Moreover, §° may
be identified with a subalgebra of gl(q”'), and from the construction of
g(m), we know that H”’(p>0) may be identified with the p-th prolonga-
tion (§°)® of ()° in the usual sense.

(1) The case where #=2 and dim g *=1 (cf. 1.2, Example (1);
2.3, Example (1); [13], §7). We put n=dim g'. Let e, be a base
of g7% and let B be the anti-symmetric bilinear form on q~! defined
by [X7Y, Y']=BX ™ Y e, (X!, Y 'eg™). Considering a base e,
..., e, of g°' as was explained in 2.3, Example (1), we define a matrix
I=(1;) of degree n by I;=B(e; e;). Then the group G°(u1) may be

represented, with respect to the base ey, ---, e, of m, by matrices of

<€a2 0 )
0 ab/ ,
where a>0, b€GL(n, R), ¢2=1 and 'bIb=¢l. Let us now study the
graded algebra g(ut). Let 0” denote the linear mapping g”(11) > X?—

[X? ey]eg? 2(m). Then the subspace BH? of g’(mn) clearly coincides
with the kernel of 0?(p—-—1). We assert that the subalgebra }° of

degree n+1 of the form:

gl(q™!) is involutive. Indeed, let m be of class r. Then we see that

B may be represented by matrices of degree n of the form:

<bl 0 >
by bs/
where by, b3 are arbitrary and b, €&p(r, R). Since &p(r, R) is involu-

tive, it follows that the same holds for [)°, proving our assertion.

Proposition 5.1. 07 is surjective for any p. Therefore we have

a?~2(m) =2 g?(m)/H?.

Proof. 07 is clearly surjective for any p<0. 0° in surjective,

because 0°(E)= —2eo. Let us prove 0! to be surjective. Let X! be
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any element of g~!. Define an element u € Hom(g™% g™') by u(eo)
=X"1, and an element b€ Hom(g™!, gl(q™")) by

(Y )2 = BXCL Z)Y e B, 27X

for any Y™!, 7z '€g™!. This being said, define an element w& Hom (g™?,
g°(m)) by

w(Y‘l):—%B(X“, Y1 E4+b(YY

for any Y '€g7!, and set X'=u-+w, being an element of q'(m)
=Hom (g7% g~'(m))+Hom (g7}, g°(m)). Then we can easily show X'
€g'(m). We have clearly 0'(X')=u(e,)=X"'. Therefore we have
proved 6! to be surjective. (We here explain the Spencer cohomology
groups associated with the subalgebra §)° of gl(g~!), which will be
needed from now on. Set C"'=0""'QA% g ")*(p, ¢=0), and define

an operator 9: C?4— CP~14+1 py
q+1 . N
(0c)(X1/\/\‘ q+1)=§1(—1)'[6(X1/\/\X,/\/\Xq.,l), X,]

for any c€C”? and Xy, .., X;;,1€q7". Then we have 6°=0. The
cohomology groups H?%(p, g=>0) associated with the complex {C”%
with operator & are called the Spencer cohomology groups. Since §° is
involutive, we have H”?={0} for any p>0 and ¢ =0 ([9]).) Now, /
being an integer >0, suppose that 0 is surjective. Let X'! be any
element of g'~'(m). Define an element u € Hom (g7%, ¢'~'(11)) by u(e,)
=X'"'. Since ¢' is surjective, we can find an element @ € Hom (g},
g'(m)) such that [u(ep), Z ' ]=[w(Z"), eo] for any Z '€g~'. Define
an element c€g' " '(mM)Q A% g 1)* by

(Y IAZY=[a(Y ™), Z)—[0(z Y, Y ]—u( Y, 271)

for any Y !, Z7'€g'. Then we see easily that c(Y 'AZHep
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whence ¢ € C"2=1'"'QA%(g"!)*. Moreover we have dc=0. Since H'*
= {0}, it follows that there is an element b€ C''"'=H&(g"')* such
that c=—0b. Set w=iw+b, being an element of Hom(g~?, g'(m)), and
set X'*'=u+4w, being an element of q'*!(m)=Hom (g% ¢’ "'(m))
+Hom(g™Y, g'(m)). Then we can easily show X'*'€g'*'(m). We
have clearly 0'*' (X" D) =u(eo)=X'"'. We have thus proved 6'"! to be
surjective. By induction, we have thereby completed the proof of Prop.
5.1.

(1) Let m be as in (1). From the proof of Prop. 5.1, we know
. that there is a (unique) injective linear mapping @' of g~! to g'(m)

satisfying the following equalities:

[ml(X—l)’ eo] =X—1>

[, Y], 2 )= B(X™, ¥ 2
+ B(XL Z) Y B(Y, 27 X!

for any X°!, Y!, Z7'€g~!. Then it can be proved that [X° @} X 1))
=0 [X° X 1)) for any X°€g’(m) and X 'eg’ If we put g°
=g%m) and g'=0'(g™"), then it follows that the sequence g°, g' satisfies
condition (5.4). We denote by g=),g” the prolongation of (m, g° g').
Now, assume that m is non-degenerapte. Then it can be shown that g’
={0}(p>2) and dim g*=1. More precisely, g°> has a base X? defined
by [X2 eo]=—FE and [X2 Y ']J=0(Y"') for any Y '€g ! Fur-
thermore we see that ¢ is isomorphic with the simple Lie algebra
8p(k+1, R), where kz—%—. The graded algebra g is known as the
projective contact algebra (cf. [9]]).

(2) The case where £=3, dimg 3=2, dimg?=1 and dimg~'=2,
i.e., m=b(R? 3) as graded algebras (cf. 1.2, Example (2); 2.3, Example
(2); [1]). Consider a base ej, ---, es of m as was explained in §2,

Example (2). Then the group G°(m) may be represented, with respect
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to this base, by matrices of degree 5 of the form:

Na Ac 0 0 0
Ab Nd

fe)
o
o

o 0 0 b d),

where A =ad—bc0. We have g”(m)={0}(p>3), and we have
the natural identifications as follows: g°(m)=¢ '®(g~")* and g’(m)
=(g"")*(0<p=<3). Moreover g(m) is isomorphic with the exceptional
simple Lie algebra of dimension 14.

As for other examples, see the previous paper [13].

§6. Infinitesimal automorphisms of the standard differential

system of type m

6.1. Throughout this section, we shall consider a fixed fundamental
graded algebra m=72,g” of sx-th kind over R. Let g(ur)=72 g’(m)
denote the prolongapt?oon of m, and M(m) the simply conneé?ezd Lie
group whose Lie algebra is given by .

Let D be the standard differential system of type m on M(m).
We denote by o the sheaf of all the local infinitesimal automorphisms
of (M(ut), D), which is a transitive LAS on M(ut). (For the definition
of an LAS, see [9].) Let (P* w) be the G3(m)-structure on M (m)
corresponding to D. Then & is nothing but the sheaf of all the local
infinitesimal automorphisms of (P,, w). The sheaf & is called the

standard Lie algebra sheaf of type m. Now let & be the Maurer-Cartan
1
form of the Lie group M(m). Since dé-I—Tl:E, &¢1=0, then we have

the following equalities:

1
(6.1) A&+ L L&, ¢7]=0 (p<O),
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&? being the g’-component of ¢ in the decomposition nr=7,g?.
520

Lemma 6.1. Let X be a vector field on an open set U of M(m).
Then X gives a local cross-section of & if and only if there is a family
(fP)pso of functions satisfying the following conditions:

1) f?is a g’(m)-valued function on U (p=<0);
2) fr=eM(X)(p<0);

3) d ”E,%Ef"", ¢ H{mod ¢"(r<p)} (p=0).

Moreover the family (f?)ps0 as above is uniquely determined.

Proof. Let g3(m)(resp. 1°) denote the Lie algebra of G3(mt) (resp.
N®. Then we have g9(m)=gi(m)+1° (direct sum) and we see that
n® is equal to the subalgebra of gl(u1) consisting of all the elements A
such that A Cd”*! for any p<0. Let us consider the cross-section g
of Py defined in §4. Then we have &= g*w. It follows that X is a
local cross-section of & (or induces a local infinitesimal automorphism
of (P, w)) if and only if there is a gj(in)-valued function B on U such
that Ly £=B¢ or equivalently there is a g°(m)-valued function f° on
U such that

Ly &?=[f° & ]{mod &"(r<p)} (p<O).

Now put f?=£&(X)=X1¢&" (p<0), which is a g’-valued function on
U. Then we have Lx&’=d(X] &*)+ X1 d&’. From (6.1), it follows
that

-1

(6.2) Lx¢&=dfr— +[1:f”", ¢1 (p<o).

r=p
Lemma 6.1 is immediate from these arguments.

Lemma 6.2. Let X be a local cross-section of & defined on an
open set U of M(m). Then there is a unique family (f?)pez of func-

tions satisfying the following conditions:
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1) f?is a g’(m)-valued function on U (pEZ);
2) fr=¢&r(X) (p<O);
3) df’=r§0[f”"’, ¢ ](pe2).

Proof. £ being an integer =1, suppose that there is a family

(fP)p<r of functions satisfying the following conditions:
1) f?is a g?(m)-valued function on U (p<k);
2) fr=&r(X) (p<0);

3) dff=3 [f*7, & Hmod € CSp=h} (p<h).

(Note that, in the case when k=1, the family (f”),<; in Lemma 6.1
satisfies these conditions.) Then by 3’), we can find a q(m)-valued

function f* on U such that

(6.3) dft=3 [f*", &1+ (e

r=p—k+1
{mod &'Gr<=p—k—1)} (p<k).

By applying the exterior differentiation d to the both sides of (6.3),

we get

S Cdfrr, &4 fHdE4=0

r=pkt1
{mod §"(r<p—k); d&"(r=xp—h)}.
We have
df*-r=fHe?" ) {mod &*(s2xp—r—k)},

dé&"=0{mod ¢A&(+t=r)},

deﬂ—k_l__;_ _ZI; I:er’ $p-r—k:|:0.

r=p—k+1l
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It follows that

T M@, ey B & T)=0

r=p- r=p—k+1

{mod &'r<p—k); ¥ NET+sxp—k)}.

“=0" in this last equalities clearly reduces to ‘“=0". Therefore we

get
CrHEN, & 1+L 5D, 1-fH (e, D=0 (r,5<0),
whence
LMD, Y O-LfAY), X7 ]—fHX7, Y )=0

for any X" €gq’, Y*€g°(r, s<0). This means that f* is a g*(m)-valued

function on U, and by (6.3), we have
-1
df"szk[ff’", & ]{mod &'r<p—k—1)} (p<k+1).
r=p—

Thus the family (f?)p<s.1 satisfies conditions 1’), 2') and 3') with &
replaced by k£-+1. By induction, we have thereby obtained a family
(f")pez of functions which satisfies conditions 1), 2) and 3') for all
k=1. Let p be any integer and take an integer k=0 with p<k— .
Then by 3), we have (lf”:rg()[fﬂ—" &7, because & =0 if r<—u.
Thus we have proved existence of a family (f*),ez satisfying conditions
1), 2) and 3). Uniqueness is clear.
We shall denote by (f%),ez the family (f?)jez in Lemma 6.2.

Lemma 6.3. Let x be any point of M(m) and let a=)}, a® be
pSk
any element of q(m), where «®€g?(m). Then there is a unique cross-

section X of & such that
f¥x)=a® (p=h),

fy=0 (p> k).
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Proof. Let k be any integer =>0. Set mk——-ig"(m) and denote
by u? the projection of m* onto g”’(n). Then tﬁ; I;ystem (u?)_p=psk
defines a “‘linear coordinate system” of the manifold ni,. Consider the
product M(m)xm*. Then &”(resp. u?) may be confounded with a form
(resp. a function) on M(m)x m* Let us consider a system of pfaffian

equations as follows:

-1
(6.4) @ =du?— 3 [u?™, &1=0 (—u=p=<k).
r=p—k
We assert that system (6.4) is completely integrable. By applying the

exterior differentiation d to the both sides of (6.4), we have

dat=—3 [du’™, &]— 2 [u?", d&7).

t=p—k r=p—k

By (6.1) and (6.4), it follows easily that
-1
da? =— P I:ap_t’ 51]’
t=p—k

which proves our assertion. Now denote by ., the vector subsheaf of
& which consists of all the elements X, such that f 2 =0 for any p>k.
From Lemmas 6.1 and 6.2 and from the fact that system (6.4) is com-
pletely integrable, we see that, at each x & M(m), the linear mapping
_Xxezk] f%(x) maps the stalk .2,(x) isomorphically onto the vector
spac:;;;". Since M(m) is simply connected, the standard argument
shows that every local cross-section X of &, defined on a connected
open set U of M(m) is uniquely extended to a global cross-section X

of ;. Therefore we get Lemma 6.3,

Lemma 6.4. Let X and Y be two cross-sections of < defined on

a common open set U of M(m). Then we have

ftxri= —H;:ll’:f%, f+1 (pe2).
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Proof. By (6.1), we have

flx vy =X Y 5%+ 2 L:fﬁf, fy1 (p<o),

rt+s=

and by Lemma 6.2,

Xfy=-Z L% fid Yk=2 [f% /il (p<O).
s<0 7<0

If we put g?=—2> [ f%, f§], then it follows that ffy y7=g?(p<0).
r+s=p
We have

dg'=— T df% i1~ D[4 dfy] (pe2),

and by using Lemma 6.2, we get easily dg”z—tgolzg”", &"]. There-
fore we have shown that the family ( g”)pez satisfies the conditions in
Lemma 6.2. Thus we get g’=ffx 1 (pEZ).

Let X and Y be two local cross-sections of &/ defined on a common
open set U of M(m). Let (¢;) be a local one parameter group of local
transformations which is generated by the vector field X. Then the

vector fields ¢« Y also give local cross-sections of /. We set as fol-
lows: f4=9F(f%) and gt=¢¥(f}.v).

Lemma 5.6. The notation being as above, we have

0g%
0t

=Left+ 3 [f1 1] (p20).

7,s=0

»
Proof. Put &2=¢F&?. Then we have LXE{’-——-%i’—=¢’,"(LXE”)

and Ly &2 =¢¥(Le, v &?). Therefore from Lemma 6.2 and equalities (6.2)
follow the following equalities:

Lyéit=[f), &' Lx =0 (p=-2),

Lysii=[g} &', Lr§i=0 (p=-2),
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dft=Cfi &1, dgh=[gl"™", &' (p=0),

where “A4=B" means that 4=B{mod &;(r <—2)}. Lemma 6.5 can be
proved by induction and by the use of these equalities. The details are

left to the readers.

6.2. We shall now make a general consideration on a sheaf of
Lie algebras which is subordinate to a differential system. Let D be a
regular differential system of type m on a manifold M of dimension m,
where m=dim mi. Let % be a sheaf of Lie algebras of local vector
fields on M. We assume that % is transitive on M and that it leaves

invariant the differential system D.

We fix a point e of M and denote by #(e)° the isotropy subalgebra
of #(e). Starting from the pair (Z(e), #(e)?), let us define a family
(ZL(e)l)pez of subspaces of Z(e) inductively as follows (cf. [97]): First,
we define Z(e)4(p<0) as L(e) and L(e)k as ZL(e)’. p being an
integer >0, suppose that we have defined #(e)4!. Then #(e)4 is
defined to be the subspace of .#(e)4! consisting of all the elements X,
such that [ X,, L(e)4 ' ]1C 2(e)} ", completing our inductive definition.
We have Z(e)i'D #Z(e)s and [ L(e)}, L(e)s]1C L(e)i*s.

Denote by #(e)”! the subspace of #(e) consisting of all the
elements X, such that X,€ D(e). Starting from the tripple (%(e),
ZL(e)7t, £(e), let us now define a family (£(e)?),cz of subspaces of
Z(e) inductively as follows: p being an integer < —1, suppose that we
have defined #(e)”*!. Then #(e)” is defined as [ L(e)?*?, L(e) }]
+%(e)’*'. p being an integer >0, suppose now that we have defined
#£(e)? !, Then Z(e)’ is defined to be the subspace of £(e)’"' con-
sistng of all the elements X, such that [X,, Z(e) ' ]C £(e)’ !, com-
pleting our inductive definition. We have Z(e)”"'D #(e)? and [ L(e)",
L(e)’JCZL(e)™ .

Let (D?),.o be the family of differential systems associated with

the regular differential system D. Then we have

Lemma 6.6. For any p<0, Z(e)’ consists of all the elements
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X, € %(e) such that X, € D?(e). In particular, we have Z(e) *=%L(e).

Proof of this lemma is left to the readers.

Remark 1. We set g’(e)=%(e)?/%(e)’'! and g(c)z?zg”(e).
Since [Z(e)”, £(e)" ] #(e)’**, we see that g(e) is endoweé’ with a
structure of graded algebra. Then the graded algebra g(e) may be
naturally identified with a graded subalgebra of g(m) in such a way
that m= 2, g’(e).

<0

By using Lemma 6.6, we have easily

Lemma 6.7.
L)L) DL (p=0).

We set L=lim #(e)/%(e)%, which is called the formal algebra of
Z(e) or f([gj)fﬂmThe projections of £(e) onto Z(e)/Z(e)} give rise
to a homomorphism 6 of the Lie algebra #(e) to the Lie algebra L.
We set Li=lim £(e)i/%(e)i. Then L4 may be identified with a
subspace of Lr:mand we have L=Ly'D - DLL'DLED - and NLE
=4{0}. We shall consider a topology in L such that the famil; (LY
forms a fundamental system of neighborhoods of 0 (=the zero vector
in L).

6.3. Let us now return to the study of the Lie algebra sheaf &
on M(m). We shall apply the above argument to # =« and the
identity element e of the Lie group M(m). We denote by A the
formal algebra of 2(e).

Lemma 6.8. For any p, &(e)? consists of all the elements X,
€ (e) such that f%(e)=0 for any r<p.
This follows easily from Lemmas 6.4 and 6.6.

We set g(m)=Hg”(m):£[g’(m) (direct product). Then the struc-
peZ P>k

ture of Lie algebra in g(im) yields that in g(i). The Lie algebra g(m)
is called the formal algebra associated with the graded algebra g(in).

Now let a be any element of g(im). By Lemma 6.3, there is a unique
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cross-section X of & such that f%(e)=a’(p<k) and f%=0 (p>k).

Then it follows from Lemma 6.4 that the mapping a—— X, gives an

injective homomorphism ¢ of g(m) to «/(e). By lemmas 6.7 and 6.8,

it is clear that ¢ gives rise to a homeomorphic isomorphism ¢ of (E(TO

onto A, where an_) should be equipped with the standard topology.
We have thereby proved the following.

Theorem 6.1. The formal algebra A of the standard Lie algebra
sheaf o of type m on M(m) may be naturally identified with the formal

algebra g(m) associated with the prolongation gq(m) of nu

Remark 2. Let us try to describe the subspaces 4% of A=q(m)
in terms of the graded algebra g(ut). Put A”:rl;lpg’(m), being a sub-
space of g(n). Then we have A?D ALD A**(p=>0) by Lemmas 6.7
and 6.8. Since g(n)=m+ 4% (direct sum), A4(p>0) consists of all
the elements X € 451 such that [ X, m]C A4 1. Now suppose that x
=2 and dim g"2=1, and use the notations in 5.3, Example. (1). By
Prop. 5.1, we can find a linear endomorphism @ of g(m) such that
0 (g?"%(m)) Cg?(m) and such that [O(X?72), eq]=X?"? for any X?°?
€g?"%(m). Then we have g?(m)=0(g?"%(m))+0? (direct sum), and
[O0(X?2), Y V]=0(X?% Y ') (mod ') for any X?~*€g’~*(in)
and Y '€g™'. By using these facts, we can verify the following

equalities:

A= A,

AL=0'+ 42,

AL =0+ {0+ 0 (")} + 4*,

A=+ {0+ 0 (5)} +{0°+ 0 (H° + 0 (')} + 4°, etc.
If we put gh=A4%4/A%"", then it follows that

=g’ +0 (™),
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G =b + 0@ )+ 0% h,
b = H*+ 0 (5') +0*(g°(m)) + #(g~"), etc.

Note that g4 is equal to the p-th prolongation of g% and that g% is in-
volutive (cf. [9]).
6.4. Suppose that we are given a sequence g°, ..., g* satisfying

condition (5.4), and let gngzg” be the prolongation of (1, g° .-, g*).

We set g=11g” which is a closed subalgebra of g(u). We shall show
that g ma;ezbe characterized as the formal algebra L of a suitable
transitive Lie algebra sheaf % on M(m).

We denote by % the vector subsheaf of & consisting of all the
elements X, such that, for any p(0<p=<k), the g”’(in)-valued function

f% becomes a g’-valued function. For each p=0, choose a comple-
mentary subspace (g?)’ of g in g?(nt), and denote by I the projection
of g?(in) onto (g”)’. Then it is clear that % is composed of all X, € .o/

satisfying the following equalities:
(6.5) I'fi=0 (0Zp=k).
It should be remarked that (6.5) may be considered as a system of

differential equations with X as unknown.

Lemma 6.9. (1) Let X be a local cross-section of £. Then f%
becomes a g’-valued function for any p=0, or equivalently I f%=

(p=0).
(2) Let x€M(n) and a=Y, a®, where a?€g’. Then there is a
Py

unique cross-section X of ¥ such that
fE(x)=a? (0=p=)),
fX =0 (P>l).

(3) Let X and Y be two local cross-sections of ¥ defined on a

common open set U of M(m), and let (¢:) be a local one parameter
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group generated by X. Then the wvector fields ¢,.Y also give local

cross-sections of £.

Proof. (1) and (2) are easy. Let us prove (3) and use the
notations in Lemma 6.5. Let p be any integer >0, and suppose that
I'fs,y=0 (0=r<p). We have I'f;=1'87=0 (0<r<p) and [g’, g*]
Cq"*°. Therefore by applying I” to the both sides of the equality in

Lemma 6.5, we have

o(rgy _
ot

r'Lfe, revl

Since I'8=If?=0, we get ['8/=0 by the uniqueness theorem for
systems of ordinary differential equations, whence /'f2.,=0. We have
thereby proved (3) by induction.

By Lemma 6.9, we know that . is a transitive LAS on M(m),
which is called the standard Lie algebra sheaf of type (mi, g° ---, g*).
Let L denote the formal algebra of #(e), which is a closed subalgebra
of A. Then we see from Lemma 6.9 that the isomorphism ¢ of g(ur)
onto A gives an isomorphism of § onto L.

We have thus proved the following

Theorem 6.2. The formmal algebra L of the standard Lie algebra
sheaf & of type (m, q°, ..., g%) may be identified with the formal algebra
 associated with the prolongation g of (m, g% -, a.

Let G° be a Lie subgroup of G°(in) and let (P;, w) be the standard
G)-structure of type m on M(m). Let g° be the Lie algebra of G°.
Then we notice that the standard Lie algebra sheaf .# of type (in, g°)
is nothing but the sheaf of all the local vector fields on M() which

induce infinitesimal automorphism of (Py, w).

§7. Gj-structures of type m and pseudo-G*-structures of type m

7.1. In this and the subsequent two sections, we shall consider a

fixed fundamental graded algebra m=7},g? of u-th kind over R and a
#<0
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fixed Lie subgroup G° of G°(m). We shall denote by g° the Lie algebra
of G° and by g=7> g” the prolongation of (u, g°).

First of all, pvi: shall define four series of Lie groups H*, N*, G
and G*(k>0) together with operators 9: 8% —E*~Y(k>0), which will
play important roles for our later arguments.

We set m*=> g”. Let k be any integer =>0. We set b{,’:ri'pg’

Sk

(p<0). Then we have dj=m*(p<—z) and
mt=p0R - 2oy =g

For each p<k, we define a g’-valued linear form &} on d)* by &f(X)
=X’ for any X€d,7®. It is clear that e}(p< —px) vanish and that
ef(p—k < — ) are defined on the whole m*.

The groups H* and N*(k>0). First we define H* to be the
subgroup of GL(m*~1) which consists of all the elements a satisfying

the following conditions:
i) adf,=dp, (p<0)
ii) aX* '=X*1 for any X* teqgtl,
i) a*ef'=eb., (p<k-—2).
Let a€ GL(m*"!). Then it is easy to see that a € H* if and only if

(7.1) (- X =8, ,X"

for any X€m* ! and for any pair (p,r) such that r—k+1<p<—2
or —1<p<k—2, r<k—2or p=k—1, r<k—1, where (Jp,,) denotes
the Kronecker's symbol, We now define N* to be the subgroup of
GL(m*!) which consists of all the elements a satisfying (7.1) for any
Xem*™! and for any pair (p, r) such that r—k<p<—2 or —1<p
<k—1, r<-—1. NF* is a normal subgroup of H*

The group H* consists of all the matrices a of the form:
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L L 1

The subgroup N* of H* consists of all the matrices a with * replaced
by 0.

Let us observe the Lie algebra of H* and of N*. We set as
follows: & =Hom (¢*7*, ¢*) (p<k—1), 8#*"'=Hom (d;1,, g*° "), u*?
=2 Hom(g", ") (p < k), gkz'; gkr, u”zp%u"” and Hr=g*+n*. We

r<p—k <k
have m* '=3 g?=(Y ¢*)+bd;1,+g*"!, and we may identify h* with a
p<k p=-2

subspace of gl(m*~!). Then we see that H*(resp. n*) is the Lie algebra
of H*(resp. N*). Now define a mapping t* of §* to GL(m*"!) by
(W) Y=Y+ u(Y) for any w€lh* and Yem* L, It is clear that ¢*
gives an injective mapping of H*(resp. 1¥) onto H*(resp. N*¥). We have
HE=t*@H)N* and t*(u)t*(u)=t*(u+u')(mod N*) for any u, u' €8s,
If k= u, then we have t*(u)t*(u')=t*(u+u’) for any u, u’ € 8"

The operators 9: 8*—>C®* D (£>0). We set €2=Hom (d;1; Ag’7%,
a") (p<k—1), €t~ =Hom (d;1, Adzl;, ¢*~1) and @(")=ﬂ§¢@£. For each
u€8* and p<k—2, define an element (Ou)? of €4_; by

OWNXNZ)=[uw(X), Z]-[w(@), X' ]—u(X, ZD(p<k—2),
Ou)(XAY)=[u(X), Y ]=[u(Y), X J— (X, Y ' D (p=k—2)

for any u€8", X, YED;!, and Z€g? **!. Thus we get a linear map-
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ping 0: $¥du—ou=y (0u)’€C* Y, We have g*Cq" —Z Hom (g7,
gty 8k, and we seg :hét the kernel of 9: 8% —>E*~V jg equal to g.

The groups G} and G*(k>0). First we define G} to be the sub-
group t*(g*+uk)=1*(g")-N* of H*. Let g} denote the Lie algebra G}.
Then we have gi=g*+1*. Now we define G* to be the factor group
Gi/N*. We see that G* is an abelian group and that its Lie algebra
is given by qg*=q%/u*. Note that the mapping q*> X*— t*(X*)€G}
induces the exponential mapping exp of g* to G*. Moreover, note that
if k=y, then G* may be identified with the subgroup t*(g%) of Gi.

Finally, let us observe the Lie group G{=G°-N°. We denote by
ad (resp. 11°) the Lie algebra of G (resp. N°). Then we have gJ=g°
+11° and we see that 1°, being a subalgebra of gl(u1), may be expressed
as 2, 1%, where 110*"—2 Hom (g, g”). We denote by ¢° the injective
malpap(l)ng of 11° onto N° deﬁned by t%(u)Y=Y+u(Y) for all u€n® and
Yem.

7.2. Let k be any integer =~0. For each p<k—2, we denote
by I(k,p) the subset of ZXZ consisting of all the pairs (r, s) such
that —1<r,s<por p—k<r,s<k,r+s<p. If (r,s)€ I(k, p), we have
rys<k—2. We have I(0, p)=I(p)(p=—2).

Since G} is a Lie subgroup of GL(mm*!), we have the notion of
'=dim m*~'. Let M*' be a manifold of

dimension m*~!, and let (P%, 0o¥) be a Gl-structure on M*"l, w®

Gh-structures. We set m*~

being an nm* !.valued 1-form on P4, we denote by w? the g’-component

of »® in the decomposition: m* '=3]g”. The following definition
p<k
generalizes Def, 4.1.

Definition 7.1. We say that the G}-structure (Pf, o) is of type

m if it satisfies the following equalities

{mod wi(r=p—#k); wiAwi((r, )€ Ik, p))} (p=k—2)

7.3. Definition 7.2. Let M* ! be a manifold of dimension m*~!
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(k=0), and let P* be a principal fiber bundle over the base space M*~!
with structure group G*. Let D®¥=(D%),., be a family of differential
systems on P* and let 0¥ =(6%),., be a family of forms such that 6%
is a g’-valued 1-form® on (P* D27%). Assume the following conditions
for the system (P* D® ¢®):

1) dim Di{=dim d,(p<0), and
DD DD DDy,
where D9 denotes the differential system on P* consisting of all the
vertical vectors on P¥

2) For each p<0, D} is invariant under the action of G* on P*

3) For each p<0, D} is defined by the equations 05;=0 (r<p),
and DY is defined by the equations 6;=0 (r<k).

4) Let a€G*, and express it as exp X*(X*€g*) when £>0.

If k=0,
R(@)*=a"10; (p<0),
and if k>0,
R(a)*04=0;—[X*, 047 *| Dy ¥ (p<k),

where R(a) denotes the right translation of P* induced by a.
Under these conditions, we say that the system (P* D® ¢®) is a

pseudo-G*-structure on M*~!,

Remark 1. Let (P% D™ 6®) be a pseudo-G*-structure. Then
we have: i) 0;=0(p< —p), ii) D{=T(P*) (p<—,), and hence 0}
(p—k<—u) are usual forms defined on P*.

Definition 7.3. Let (P* D®, 6®) {resp. (P'*, D'® 0"®)} be a

3) Let D be a differential system on a manifold M. As for the definition of
differential forms defined on (M, D), see [13], §1.
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pseudo-G*-structure on a manifold M*~! (resp. M'*~1). We say that a
bundle isomorphism ¢ of P* onto P’* is an isomorphism of (P¥, D®),
6®) onto (P’*, D'® ™) if we have the equalities:

e*Di?=D; (p<o0),
p*0;7=0% (p<k).

Definition 7.4. Let (P*, D™, 6®) be a pseudo-G*-structure on a
manifold M*"!. We say that an m* l.valued l-form &*~! on P* is

compatible with 6% if we have the equalities:

gDy =05 (p<k),

where &2 denotes the g’-component of &%¥ in the decomposition m®~!

=g
<k

Remark 2. Let &% be a 1-form compatible with 6%, By con-
dition 3) in Def. 7.2, we see that D% is defined by the equations &;
=0(r<p). Let »'® be a second l-form compatible with ), Then it
follows that

7p=¢&k{mod §r<p)} (p<h).

Definition 7.5. We say that a pseudo-G*-structure (P*, D, 9®)
on a manifold M*! is of type m if there is an m* '-valued 1-form
&® on P* which is compatible with 6% and which satisfies the equali-

ties:

_ 1
Bi=d&i+— 2[4, &i1=0

rts=p
{mod ¢&i(r=p—k); §ENENC, s) € I(k, P} (p=k—2).

Remark 3. Let (P* D® 0®) be a pseudo-G*-structure of type
m. Then we see from Remark 2 that every 1l-form 7% compatible
with 6® satisfies the equalities in Def. 7.5.
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§8. The prolongation theorems

8.1. Let (P}, w®) be a G}-structure on a manifold M*~'. For
each p<0, we denote by D}, the differential system on P} defined by
the equations w,=0(r<p). Then we have

(8.1) =D D§ DD Dyt D DY,

where Dj, denotes the differential system on P} consisting of all the

vertical vectors in P§. We have dim D},=dim ?}+dim n* (p<0).

Theorem 8.1. (1) To every Gh-structure (P}, o'®) on a manifold
M*Y(k=0), there is associated, in a natural way, a pseudo-G*-structure
(P*, D®, 0B on M*~' having the following properties:

1) The principal fiber bundle P* is equal to the quotient P}/N*
of Pt by the normal subgroup N* of G* which is a principal fiber
bundle over the base space M*~' with structure group G*=Gi/N*.

2) Denote by B the projection of P§ onto P*=P4/N*. Then we

have
B*0%=wh| Dt (p<k).

(2) If (P%, w™) is of type m, so is (P*, D®, ™),

(8) The assignment (P}, o®)— (P*, D®, 0% is compatible with
the respective isomorphisms. Namely if (P}, o®)— (P*, D® 6% and
(Py®, ' ®)— (P*, D'® '™ then we have:

i) Every isomorphism ¢, of (P, o®) onto (P4, o'®) induces a
unique isomorphism ¢ of (P¥, D®, 0®) onto (P'®, D'®, /"),

ii) Every isomorphism ¢ of (P*, D® 0®) onto (P'*, D'®, ')

is induced by a unique isomorphism ¢, of (P}, o®) onto (Pg*, o'®).

Theorem 8.2. Assume that G° is connected and, for each k=1,
choose a complementary subspace €F of 08* in C*-D,

(1) To every pseudo-G* ‘-structure (P*~', D*=D 0*-1D) of type m
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on a manifold M* %(k=>1), there is associated, in a canonical manner,
a Gi-structure (P}, o®) of type m on P*~' having the following pro-
perties: Denote by « the projection of Pk onto P*=Y Then we have

a*Di-y =D}, (p<0),
a*0) =} | D3t (p<k—2).

(2) The assignment (P*=1, D%~V %=1y (P}, 0®) is compatible
with the respective isomorphisms. Namely if
(P*1, DU, 9=y 5 (P, ™) and (-1, D'*~D, g4=D) s (Pjt, o/ ®),
then we have:

1) Every isomorphism ¢ of (P*¥ ', D*=D gk-1DYy oo (P'*71,
D' /=y s induced by a unique isomorphism @, of (P, o®)
onto (P, o'®).

2) Every isomorphism ¢, of (P*, o®) onto (P4, o'®) induces a
unique isomorphism ¢ of (P*~1, D®-1 9t=Dy opto (P'*-1, D=1 k=1

Th. 8.1 and Th. 8.2 will be proved in the next section.

Theorem 8.3. Assume that G° is connected and, for each k=1,
choose a complementary subspace C€F~V of 08¢ in €%V,

(1) To every pseudo-G°-structure (P°, D@, 6) of type m on a
manifold M, there is associated, in a canonical manner, a Sequence
(P): (P°, D®O©) e (PA=1, D=1 g1y g®, (kDA (7).
as follows: 1) For each k=1, (P*, D® 6®) is a pseudo-G*-structure
of type m on P*7 ' and w* is the projection of P* onto P*71.

2) For each k=1, we have

a**Df_ =D} (p<0),
art*0_ =08 D}t (p<k—2).

(2) The assignment (P° D©, 6)— (P) is compatible with the

various isomorphisms.

Proof. This follows immediately from Th. 8.1 and Th. 8.2. In-
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deed, let (P*!, D%*-D g%~y pe g pseudo-G*~-structure of type m on a
manifold M*~%, By Th. 8.2, there is attached to (P*"', D%~V gt-1)
a Gl-structure (P§, o®) of type m on P*'. By Th. 8.1, (P% 0o®)
gives rise to a pseudo-G*-structure (P*, 6®) of type m on P*~1. Let
a*(resp. B¥, resp. o*) denote the projection of P(resp. P, resp. P¥)
onto P*(resp. P*, resp. P*!). Then we have wr*o8*=aF. Therefore,
for any p<0, we get B**(w**D}_))=a**D, | =D},=p"*D}, whence
w** Dy =D Moreover, for any p<k—2, we get R*or**0)_,
=a**0h_ =0l | D{ 1 =(p**0]) | p** DiF 1 =B (64| D)7**1), whence
or**02_ =02 D27 k*1, The iterative applications of the assignments
(Pk-1, DD g1y (P* DM H®)) yield the required sequence (P).

The sequence (P) is called the prolongation of the pseudo-G°-
structure (P°, D, 60),

Remark 1. It is easy to see that the assignment (Pf, 0®)—
(P*, D® 6®) in Th. 8.1 has a local property: More precisely, let U
be an onen set of M* !, Then the pseudo-G*-structure corresponding
to the restriction of (P}, w™) to U is just the restriction of (P* D®,
6®) to U. From the proof of Th. 8.2, we shall find that the as-
signment (P*!, D%~V g¢*-1)y (Pt »™®) in Th. 8.2 also has a local
property: More precisely, let U be an open set of M*“2 Then the
Gl-structure corresponding to the restriction of (P*~!, D%=1 gk-Dy to
U is just the restriction of (P%, »®) to o~ '(U), or being the projection
of P¥! onto M*“% It follows that the assignment (P°, D@, 6)—(P)

in Th. 8.3 has a local property in a suitable sense.

8.2. Theorem 8.4. Assume that the pair (n, g°) is of finite type,
and let (P,, 0) be a G{structure of type mt on a connected manifiold M.
Then the Lie algebra of all the infinitesimal automorphisms of (P,, w)

is finite dimensional and of dimension = dim g.

Corollary. Let m be a fundamental graded algebra of finite type,
and let D be a regular differential system of type mi on a connected
manifold M of dimension m=dim m. Then the Lie algebra of all the

infinitesimal automorphisms of (M, D) is finite dimensional and of
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dimension < dim g(m).

Proof of Th. 8.4. Let (P° DY 6©®) be the pseudo-G’-structure
of type ut on M which corresponds to the Gj-structure (P,, w). Let us
consider the sequence (P) in Th. 8.3. Let [ denote the largest p—=—1
such that g?2={0}. Setting k=/+ s, then we have P'=P* where we
put P7'=M. It is clear that the forms 04(p< —u or p>I) vanish
and that the forms 64(—x#<p=[) are usual forms defined on P'. We
have dim P’=ledim g?=dim g, and we know that the forms 64(—x <<
p=l) define pe;n—#absolute parallelism on P, ie., the mapping T.(P')
BX—L Y 62(X) € g gives a linear isomorphism at each z € P'. Therefore,

p=—n

Th. 8.4 follows from Th. 8.1 (applied for £=0) and Th. 8.3.

8.3. We shall introduce the notion of the structure functions of a
pseudo-G’-structure of type ni.

For any integer p—=—u, we denote by A(p) (resp. B(p)) the
subset Zx Z which consists of all the elements (r, s) such that r+s
=p, —pn=rys (resp. =1 <r,s=porr+s<p, —pu<r,s<p+nu). Let
(P°, D9, 6™) he a pseudo-G’-structure of type 1t on a manifold M and

let us consider its prolongation (P).

Lemma 8.1. Let (k, p) be any pair of integers with p<k, —u
Zp<k—2pu, and consider the pseudo-G*-structure, (P*, D® ™) of
type m on P*L,

(1) The forms 0% and 07, 05 ((r, s)€ A(p)\IB(p)) are usual
forms defined on PF*.
@) O=doi+-— 3 [0}, 05]=0 {mod 0;A0; ((r,s) € B(p)}.
2 (r,8)EA(p)
Proof. (1) is clear. Let us prove (2). Let &® be an m*~l.valued
1-form on P* compatible with 6%. Then we have &£=6% and ¢&;
=03, £5=0; for any (r,s)€ A(p)\UB(p). Furthermore we find that

B(p) consists of all (r, s)€ I(k, p) with r, s=—pu. Therefore (2) fol-
lows from the equality in Def. 7.5.
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We put 8= 3, Hom(g"Ag’, g”) (p=—x). Let k be any integer
(r,s)EB(p)

=>n. By Lemma 8.1, we know that, for each p(—u<p<k—2u),

there is a unique $?-valued function K% on P* satisfying the following

equality:

(8.1) or+-L s KrerA0p=o0.
2 ,9eBp

k=2n
We shall say that the sum K® =3 K? is the k-th structure function
q=—4

of (P°% D, 9®) and that the system of equations (8.1) for all p(—u
<p=<k—24) is the k-th structure equation of (P° D@, 6»).

Theorem 8.5. Suppose that the pseudo-G°-structure (P°, D, )
is associated with the standard G3-structure (P$, ®'®) of type m on M
=M(m). Then the structure functions K® vanish for all. k= p.

This theorem will follow from Lemma 8.2 which we shall explain
from now on. Let a=},a” be any element of g, where a’€g?. We
denote by 07 1(a) the v;ftlor field X on M(m) defined by the equalities
in Lemma 6.3. Then we see that the mapping a—>d *(a) is linear
and that [07'(a), 672(b)]=—0""(a, b]) (Lemma 6.4). Moreover we
know that ¢ !(a) induces an infinitesimal automorphism ¢3(a) of (P},
o®) (See 6.4). Therefore it induces, for each £=>0, an infinitesimal
automorphism ¢*(a) of (P* D®, 6%®) (Th. 8.1, applied for k=0, and
Th. 8.3).

Lemma 8.2. For each k=0, we have the following proposition
(S*): There are a point e* € P* and an m* '-valued 1-form &% on P*

compatible with 0%, which satisfy the following conditions:
1) £(0*(a?)er) =0,pa”

for any a?€g?(p<k) and any r<k.
2) c*(@").e=r(a").x

for any a*€E€gt, where r(a*) denotes the vertical vector field of the
principal fiber bundle P*(P*~',G*) induced by a*.
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3) d*a?).=0

Sor any a®?€g?(p>k).

This lemma will be proved in the next section.

Proof of Th. 8.5. We have [0%*(a), 0*(b)]=—0*a, b]) and
L,i@03=0. Tt follows that ®%(c*(a) Ac*(b)) = —0%(c*([a, b]))tr.uezm
[67(c%(a)), 65(c*(b))]. Therefore we have O2(6*(a).s AG*(b)e+)=0 by
Lemma 8.2. Since the mapping a—>0*(a),x maps g onto T,«(P*)
(Lemma 8.2), we have (6%),=0. Moreover it follows that ®2=0 on

a neighborhood of e*

, because L,i4®2=0. Since P* and 6% are real
analytic and since P* is connected, we get ©®,=0. Thus we have
proved K® =0,

A converse of Th. 8.5 is also true (at least) in the case where
(m, g% is of finite type. Indeed, let (P,, ») be a G§-structure of type
m and let (P°% D@, 09) be the corresponding pseudo-G°-structure. Let
[ be the largest p==—1 such that ¢”2¢{0} and put k=[+42x. If the
k-th structure function K® of (P° D 0©) vanishes, then the given
G{-structure (P,, ®) is locally isomorphic to the standard Gj-structure of
type u1. For the proof of this fact, we note that the family (Oi)_,,épél

gives an absolute parallelism on P'=P* and that @=0(—x<p<0).

8.4. Remark 2. Let us define a decreasing sequence (G%);so of
Lie subgroups of G}=G°-N° as follows: Put g2 =), Hom (g" ?, g") and
q2=2 Hom(g""?,g") (p>0). Then we have q”:qr;-ol—q&, and we denote
by 0/15 r;lple projection of q” onto q? with respect to this decomposition.
Noting that g” is a subspace of q?, we put nk=3; 1(g®)+ 2 g%. Then
we find that 1% is a subalgebra of n°=>q” anodqt,i;t 1t°)nk}k< S oyl
=nf=---. Denote by N% the connecté’goLie subgroup of N° generated
by the subalgebra n% of n° ie., Nit=t°(nt). Then the product G%
=G°-N% is proved to be a (closed) subgroup of G§. (The proof uses the
fact that every a €G° is uniquely extended to an automorphism of the
graded algebra g). We clearly have G}DOGLD - DGL '=Gh=-. 1t
should be remarked that the Lie algebra of G4 ! may be regarded as
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the linear isotropy algebra of the standard Lie algebra sheaf of type
(m, g°.

Now we have proved ‘“the first reduction theorem” which may
roughly be stated as follows: Under a suitable condition (C,) on the
pair (m, G°), every G{-structure (P,, ) of type m on a manifold M is
reduced, in a canonical manner, to a Gk-structure (Pk, w) on M in such
a way that the assignment (P,, w)— (Px, w) is compatible with the
respective isomorphisms.

Note that condition (C,) is satisfied if G° is connected and if the
representation of G° on g~' is completely reducible. It is natural to
expect that one can continue analogous reductions under further suitable
conditions on the pair (n1, G°) to obtain a decreasing sequence of G&-
subbundles of P§: P{DPLD---DPy'=Pit=-

For example, consider the case where #=3, dim g7*=2, dim g™
=1 and dim g '=2 and where G°=G°(m). (cf. 5.3, Example (2)).
Then it can be shown that the pair (m, G°) satisfies condition (C;) and
hence that every Gj§-structure (P, w) on M is reduced to a Gj-structure
(PL, w) on M in the canonical manner. Moreover, we can show that
the Gl-structure (P}, w) on M is reduced to a Gik-structure (P%, w) on
M in a canonical manner. In his paper [1], p. 965-971, E. Cartan
has really carried out such reductions in a “messy and complicated”
manner. Finally, we mention that the Lie algebra g} (resp. g2) of G}
(resp. of G%) is equal to the Lie algebra gis(resp. g7) in [10], p. 326-
327, and that the first prolongation (g3)" of g% in the usual sense may
be identified with g® and the second vanishes. (Note that g”={0} for
any p>3.)

§9. Proof of Theorem 8.1, Theorem 8.2 and of Lemma 8.2
Proof of Theorem 8.1

9.1. Let (P ™) be a Gi-structure on a manifold M*~* (k=>0).
« denotes the projection of P¥ onto M*~!. We put P*=P}/N*. Then
P} is a principal fiber bundle over the base space P* with structure

group N*. 3 denotes the projection of P} onto P*. Moreover P* is a
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principal fiber bundle over the base space M*~! with structure group
G*=G%/N*. o denotes the projection of P* onto M*"'. We have a
=wr0f. For any a€G} (resp. a €GH), R,(a)(resp. R(a)) denotes the
right translation of P¥(M*~!, G}) (resp. P*(M*~', G*)) induced by a.

Let «€GL If k=0, there is a bE€G such that a=b (mod N°),
and if £>0, there is an X*€g* such that a=(¢*(X*) (mod N¥). We

have R,(a)*0o®=a"'o™ and hence, according as k=0 or £>0,
9.1) R, (@)*0l=b"" wh{mod wj(r<p} (p<0),
ﬁ(a)*wk—wk [Xka “)k ~#]{mod w/z(’<P k)} (P<k)

By (9.1), we have R,(a)*D},=Dj}, for any a€G§ and p<0. In
particular it follows that there is a unique differential system D% on P*
such that 8*D2=D%,. We assert that the family D® =(D}),., satisfies
conditions 1) and 2) in Def. 7.2. In fact, the kernel of the linear
mapping D},(z) 2 X — B4« X € D4(B(z)) consists of all the vertical vectors
in P}(P*, N*) at z. Therefore we have dim D}=dim D},—dim d3.
From (8.1) and the fact that A*D}=D},, we get:---DD{D---DD;'D
Dy.

Let a €G% and let @ be the image of a by projection of G} onto G*.
Then we have BoR,(a)=R(a)oB and hence B*(R(a)*D})=R,(a)*B*D}
=R,(a)*D}, =D}, =p*D%, whence R(@)*Di}=Dj. We have thereby
proved our assetion.

Let a € N*. By (9.1), we have R J@)*(wi=0} {mod v} (r<p—k)},
whence R,(a)*(w}| Diy*) =wh| Di;*.

Moreover we see that wh|D};* vanishes for vertical vectors in
P%(P*, N*). Therefore we have: For any p<k, there is a unique g’-
valued 1-form 6% on (P* D% %) such that B*02=wh|D}z*. We must
show that the family 6% =(6%),., together with D‘® satisfies conditions
3) and 4) in Def. 7.2. Condition 3) is clear from the fact that, for any
p<0, D}, is defined by the equations w;=0 (r<p) and that D}, is
defined by the equations w;=0 (r<k). Let us verify condition 4).



54 Noboru Tanaka

First suppose k=0. Let a€G°CGy. Then we have R(a)ef=pB°R,(a)

and
B*(R(@)*07) = R,(a)*B* 0} =R, (a)*(w}| D})
= (a0} | DE=F*(a" 0,

whence R(a)*05=a"'05. Now suppose k>0. Let a>G} and let X*
be as before. Then we have a=exp X* and R(@)ef=p°R,(a). By

using (9.1), we have
B*(R(a)*0}) =R (a)*8*0; = R (a)*(w}| D};*
=0} Dii* —[X*, wh™*| Di;*
=p*(0y—[X*%, 047 * DY),

whence R(a)*0%=64—[X*, 02~k Dy *].

We have thereby proved that the system (P*, D®, §%®) is a pseudo-
G*-structure on M*~!,

Assume that the Gl-structure (P, »®) is of type mi. Since N* is
homeomorphic with a Euclidean space, P#(P*, N*) admits a cross-section
g. Putting ¥ = g*w®, then we have g*D}(y)CD},(g(y)) and &5(X)
=wf(gx X)=(8*0}) (g« X)=04(X) for any y€P* XE Dy *(y) and p
<0. This shows that &€* is compatible with 6. Moreover it is clear
from the equalities in Def. 7.1 that &® satisfies the equalities in Def.
7.5. Thus we have proved that the pseudo-G*-structure (P*, D®, §%*)
is of type m.

9.2. We shall show that the assignment (P%, 0®)— (P*, D® g®)
is compatible with the respective isomorphisms. Let (Pf, 0®) (resp.
(Pi*, 0'™)) be a Gl-structure on a manifold M*~! (resp. M'*~'), and
let (P*, D® 6®) (resp. (P’*, D'®, §’®)) be the corresponding pseudo-
G*.structure on M*~! (resp. M'*~!). We shall write as A4’ the quantity
in (Pg*, w'®) or (Pi*, D'™®, 6'®) which corresponds to a quantity 4 in
(%, o®) or (P*, D), ).
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Every isomorphism ¢, of (P}, »®) onto (P}, »'™) induces a bundle
isomorphism ¢ of P*M* ! G*) onto P*(M'*~', G*). We have ¢of
=fop,. Since pfo'®=0®, we see that ¢*D;?=D}(p<0) and ¢*0;?
=0%(p<k). Thus ¢ gives an isomorphism of (P*, D®, 6®) onto (P,
D® gy,

Conversely, we assume that there is given an isomorphism ¢ of
(P*, DB ¥ onto (P'*, D'™, g'*)),

First, suppose that there is a mapping ¢ of P} to P* such that
goB=p'o¢. Since p*D;?=Di(p<0) and ¢*0;?=04(p<k), we have

9.2) P*Di=D3,  (p<0),
(P*oi?— o) | DEF =0 (p<k).

Next, suppose that there are two mappings ¢; and ¢, of P% to Py*
such that geB@=pf"c¢)y=f"c¢h;. Then there is a unique mapping 0 of
P} to N*® such that ¢,(z) =¢,(2). 0(z)7! for any z€ Pi  Furthermore
there is a unique mapping u of P} to n* such that d(z)=t*(u(z)) for
any z€ P%. Let u’ denote the n*”-component of u in the decomposition

= 1*?, These being said, we have 0-¢¥w'®=¢¥w'® and hence
p<k

9.3) viop=gtop (T gtol) (p<k).

By using these facts, we shall prove that there exists a unique iso-
morphism ¢, of (P}, o®) onto (P¢*, »'®) which induces the given ¢.

First of all, let us prove uniqueness of ¢,. Suppose that there are
two isomorphisms ¢; and ¢; of (Pf, ™) onto (P* w'®) such that
poB=R o1 =["o¢,. Since ¢p¥w'®=¢Fo'®=w®, it follows from (9.3)

that u?(}] w;)=0, whence u’=0. Therefore we get 0(z)=e for any
r<p—

bk
z€P% Thus ¢; and ¢, must coincide.

Let us now prove existence of ¢,. By uniqueness of ¢, just
proved, we may assume without loss of generality that both P¥M k-1

G%) and Pi*(M'*-', G%) are trivial, It follows that there is a mapping
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¢ of P§ to Pi* such that gof=p"o¢. By (9.2), we have ¢*w,”
=wy(r<k—u). p being an integer <k, suppose that there is a mapping
¢p-1 of P§ to Py* such that ¢of=pf"o¢p,_; and such that ¢F_;w;”
=w}j(r<p). Then by (9.2), we have ¢}_,0;? —w=0 {mod wj(r<p—k)}.
Therefore we can find a unique mapping u” of P} to u*’ satisfying the

equality :
(9.4) oh=¢F Lo+ u (X ,<p-r0)).

Define a mapping ¢ of P} to N* by d(z)=t*(u?(z)) for any z€ P,
and a mapping ¢, of P} to Pi* by ¢,(z2)=¢, 1(z):0(z)"" for any =z
€ Pt Then we clearly have gof=pf"0¢,. From (9.3) and (9.4), we
get ¢Fw;"=w,(r<p). Therefore by induction we know that there is a
mapping ¢, of P§ to Pi* such that gpof=g"cp, and ¢fo'P=0®. It
can be easily shown that ¢, gives a bundle isomorphism of Pi(M*1,
G}) onto P*(M'*~', G§). Thus ¢, is an isomorphism of (P§, ) onto
(Pi*, o'™®) which induces the given ¢.

We have thereby proved Th. 8.1.

Proof of Theorem 8.2

9.3. Let (P*! D*-U g*-D) be a pseudo-G* l-structure on a
manifold M* 2(k=>1). o denotes the projection of P*"! onto M*2.
For any a€G* ! (resp. X€g*™1), R(a) (resp. r(X)) denotes the right
translation (resp. the vertical vector field) of P*! induced by a (resp.

We have dim P*'=dim m* !, Considering the Lie subgroup H*
of GL(m*~1), let us define a H*-structure (F*, o™) on P*~! as follows:

k-1

First of all, by using the vector space m“” ", we define the frame bundle

F of P*' as in [[13], §1. Let # be the projection of F onto P*°1,
Then we define F* to be the subset of F which consists of all the

elements z satisfying the following conditions:
1) zdf =D} (7(2) (p<0);

2) 2 Z*l=p(Z* 1)z for any ZF leghtl
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3) 04_1(zZ)=¢e}_1(Z) for any ZedZt' L (p<h—2).

It can be easily shown that F* is a H*-subbundle of #. Thus we have
obtained a H*-structure (F*, ™) on P*! »® being the basic form of
F*. 7 denotes the projection of F* onto P*"'. For any a€ H*, R(a)
denotes the right translation of F* induced by «. Moreover, denote by
o} the g’-component of w™® in the decomposition m*~'=73] g and, for
each p<0, denote by D} the differential system on F "<kdeﬁned by the
equations w;=0(r<p). We have---D D}---D Dy D DY, where DY denotes
the differential system on F* consisting of all the vertical vectors in
F*P*', H*). We have dim D{=dim d}+dim §*(p<0).

Lemma 9.1, n*Db_ =D} (p<0),
708 =0l | DI (p< k—1).

Proof. Let z€ F* and Z€ T.(F*). Then we have n4Z=z-0®(Z)

=2 zwh(Z). Tt follows that Z€& (a*D:_,)(z) if and only if Z
p<k _ _

€ Di(z), whence n*D?_,=D% Let Z€ D?7%*1(z). Then we have w4« Z

k—1 k—1
= 2 z-wj(Z). Therefore we get (z*02_))(Z)= 3, eb_(0;(2))
r=p—k+1 r=p—k+1

?(Z), whence n*02_| =wh| D)1,

Assume for a moment that k=1, Every element ¢ of G° is ex-
tended to a unique automorphism, denoted by the same letter a, of the
graded Lie algebra g. In particular, it follows that the group G° is
represented on the vector space m’. For any z€ F! and ¢ €G°, define
an element za of F by (za)-Z=R(a)sx(z+(aZ)) for any Z€m".

Lemma 9.2. Let z€F' and a, b€ GO
(1) za€F.

(2) (za)b=2z(abd).

(3) n(za)=rn(z)a.

4) R@*oP=a"'0W, where R(a) denotes the transformation

F'Sz— za€ FL,
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Proof. (2) and (3) are clear. (1) (za)-d)=R(a)x(z-02)=R(a)«
D (n(2)) =D} (% (za)). Let Z°€qg’. (2a)Z°=R(a)x(z:(aZ’))=R(a)x
T(GZO),,(Z)ZT((I_laZ);(za)ZT(ZO);(Z(;). Let Z€ bg. 0{,’((za)°Z)=a_10‘g(Z°
aZ))=ateb(aZ)=a"taed(Z)=e}(Z). Thus we get za€ F".

(4) Let ZE T.(FY). nxR(a)xZ=(za)*(R(@)*0™)(Z). n4xR(a)xZ
=R(a)x7xZ=R(a)x(z:0"(Z)) = (za)+(a 0V (Z)).
Hence, R(a)*0®=a"1o®,

For any X°€g’ let #(X°) denote the vector field on F'! which is

induced by the one parameter group of transformations of F!,
R(exp tX9).

Lemma 9.3. Let X°€g’

(1) 74t (X%, =r(X"pe at each z€F.

(2) of(FX%))=0,0X°(p=0).

(3) Lyxyol+[X° of]=0 (p=0).

Proof. (1) and (3) follow immediately from Lemma 9.2, (3) and
4). (@) 7t (X9, =2z:0MF(X°),) and 74 (X, =r(X "), =2-X".
Therefore we get oV (#(X°)=X"

Now, assume for a moment that A>1. For any ¢« €G* ! and Z

€m*L, define an element aZ of m*~! by

aZ=7+ Y [X* 1 z7],
<0

where X*~! is a unique element of g*~! such that ea=exp X*~1. We
clearly have eZ=Z. Let a, b€G* ! and express them respectively as
exp X*°1, exp Y*°!, where X*7!, Y*'eg:~l. If 1<k<p then there
is a unique element w of n* such that a(bZ)=(ab)t*(w)Z for any Z
embl. If k>u, then we have a(bZ)=(ab)Z for any Zem*™, i,
the group G*! is represented on m*"!., For any z€ F* and a€G* !,
define an element za of F by (za)-Z=R(a)x(z+(aZ)) for all Zem* 1,

Lemma 9.4, Let z€F* and a, beG* 1.
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(1) za€F*
(2) (za)b==z(ab)t*(w) AZkZ ),
(za)b=z(ab) (u<k).
3) n(za)=n(z)a
(1) a(R@)*o®)=w®, where R(a) denotes the transformation

F¥>3z—>zac F*,

Proof. (2)-(4) are just analogous to (2)-(4) in Lemma 9.2. Let
us prove (1). (za)-d-; =R(a)x(z-0}-1) = R(a)x D}, (7(2)) = D} (7t (za)).
Let Z* e g*~t (za)-Z* '=R(a)x(z+Z* )= R(a)xr(Z* ) a(ey=1(Z* D20
This last equality is the case, because G*~! is an abelian group. Let
ZEvhTht,

03-1(Ga)-2) = (R(@)*0;-1) (z+(aZ))

=0, — (X" 024 [ DEZE T D (2+(Z+ Z<5|:X”“, Z'])
g<0
=efa(Z+ DLXM 20 L4 e 2+ ZLX*, 20)]
g<0 q<0

:2p+[Xk—1, Zp—k+1]__|:xk—1’ Zp—k+1]_EXk—1, I:Xk‘l, Zp—2k+2:|:|.

Since p—2k+2<p—k+1, we have Z?7****=0 and hence 0% _,((za)-Z)
=7t=¢}_(Z). Thus we have proved za € F*.

Let X*~'€g* ! and put f;=R(exp tX* ). Then we see that [t
is a one parameter family of transformations of F* and that fo is the
identity transformation. We denote by 7#(X*"!) the vector field on F*

induced by the family fi, i.e., #(X*),= aféid

=0

Lemma 9.5. Let X* 'egt L,
(1) 7w (XN, =r (X* 1),y at each z€ F*
(2) w‘z(;'(Xk_l))=5p,k—1Xk_l(p§k-l).

(3) Lypxe-nob+[X* Y o1 ]=0 (p<k—1),
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Lyxr-now}™=0.

Proof. This follows from Lemma 9.4. The proof is just analogous
to that of Lemma 9.3.
Let us return to the general case. By using the basic form o®

= 3, w}, we define g’-valued 2-forms 2% on F* as in Def. 7.1. i.e.,
#<k

.Qﬁ:dwi-l-—;— p =b[a),’e, o] (pZk—=2).

Lemma 9.6. For any p<Fk—2, we have
24=0{mod w}j(r<p—k); ojANoi(p—k<r, s<k)}.
Proof. This is easy from existence of a connection in F*(P*!,
H").

9.4. In what follows, we assume that the pseudo-G* l-structure
(P*=1, D=V g%-1y is of type nu.

Lemma 9.7. For any p<k—3, we have
24=0{mod w}j(r <p—k+1); wj Ay, s)€ I(k—1, p)}.

Proof. By the assumption, there is an m* %.valued l-form &%*-V
on P*~! which is compatible with 0%~ and which satisfies the equalities
(with k replaced by k—1) in Def. 7.5. Therefore if we put E#=n*g?

then we have

05)  dErtp % [EE]

r+ts=p

0

{mod &"(r=p—k+1); ENEr, )€ Ik—1,p)} (p=k—3).

Moreover by Lemma 9.1. we have (§?—w})| Dy #"1 =0 (p<k—2) and

hence

(9.6) §'=wj{mod w; (r <p—hk)},



On differential systems, graded Lie algebras and pseudo-groups 61
wp=8{mod &'r<p—k} (p=k—2).
Lemma 9.7 follows easily from (9.5) and (9.6).
Lemma 9.8. For any p<Fk—2, we have
22=0{mod 0j(r Zp—k); oy ANwi((r, s) € Ik, pH} (p=k—2).
Proof. Let X*'€g*"!. By Lemmas 9.3 and 9.5, we have
9.7) FXED T 0 =0p 1 XN (p<Ek—1).
Moreover we have
(9.8) FXED T 20=0 (p=k—2),
because
Lyxe-nyoh+[X* 1 0?#"1]=0 (Lemmas 9.3 and 9.5).
Lyxs-nyoh=r(X*"1)1 dob+dF(X* ) 1 0}),

FXPD1 22=#(X* Y1 dob+ X [F(X*H 1 0}, 0f].
rts=p

Let p be any integer <k—3. From Lemmas 9.6 and 9.7, it follows
that

(9.9) 24=0{mod wj(r<p—k); Wi ¥ Akl 0 Awi((r, s) € Ik, p))}.

Then by (9.7), (9.8) and (9.9), we get the equality in Lemma 9.8 for
p=<k—3. From Lemma 9.6, it follows that

(9.10) 8 2=0{mod 0i(r <—2); i ' ANo(—1<r<k—1);
oA\ oi((r, s) € I(k, k—2))}

Then by (9.7), (9.8) and (9.10), we get the equality in Lemma 9.8 for
p=k—2.
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Let p be any integer <<k—3. Let J(p) be the sebset of I(k, p)
consisting of all the pairs (r, s)€ZXZ such that r=p—k+1, —1<s
<k—2 or —1Zr<k—2,s<p—k+1. We put Ik, p)=1Ik, p)
—J(p). By Lemma 9.8, then we see that there is a unique mapping
C? of F* to G%_, satisfying the equality

(9.11) 20+ CP(aNwb * 1) =0
»
k=2
where a= Z a)k and where, in general, 4=B means that 4= B{mod

»
0y (r<p— k), wi A wi((rys) € Ix(k, p))}. Moreover by Lemma 9.8, there
is a unique mapping C*~% of F* to Gkz2 satisfying the equality:

(9.12) Qi“z-i-—;—C"‘Z(a/\a)EO,
k-2

where, in general, A B means that A= B{mod w}j(r<—2)}. We put

C=7Y. C?, which glves a mapping of F* to %V,
psh—2

Lemma 9.9. Let a € H* and let u€8* be such that a=t*(u)(mod
N¥). Then we have

R(a)*C=C+0u.
Proof. Since R(a)*w™® =a"'0™, we have
(9.13)  R(a)*vh=wt—u(wi ) {mod wj(r<p—k)} (p=<k—2).
R(a)*wt 1=0k"1'—u(a){mod wj(r<—2)}.

By Lemma 9.8, we have

(9.14) dw,,+— 2 [0}, 03]=0

r+s=0
7,s<0

{mod wi(r<p); 0z Awi((r,s) € I(0, p))} (p=—2).

Let p be any integer <k—3. From (9.11), (9.13) and (9.14), we
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get the following equalities:

R(a)*(24+ ClaNwj 1)) =0,
4
R(a)*dwy=do}+ u(loz?, 0f 1),
?

1

Cof, 0f D=5 (5 [of, 0iD)—[u(@), of+*1]
4 b rts=p

—[u (i), 03D,

R(@)*(C(aNwl 1) =(R(a)*C) (@ Awl **1).
»

Therefore we have
—C@Nn oy )+ (R(@)*C) (@A o™
+u(Cort, 0 1) —[u(@), oj™**1]
—[u(o}™*), w;l]fO-

13

=?%” in this last equality clearly reduces to “=0". Thus we get
»

(9.15) —CXAY)+R@*CO)XAY)+u(XY, Y])
—[u(X), Y]+ [u(Y), X 1]=0
for any X€bd;1, and YeEgP**L,

From (9.12), (9.13) and (9.14), we get the following equalities:

R(@)* (24— C@na=0.

R(a)*dof 2= dof> +—-u(Cor?, 07",

2

R@*Cot™, 07*J= [0}, 07 ]—[u@), o'

63
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5 R@*Cana)= 4 R@*Cana).

Therefore we have

— - Ca @)+ (R@*C) @A)

- Cor, 07D —~[u(@), 0*1=0.
k=2

“=0" in this last equality clearly reduces to “=0". Thus we get
k-2

(9.16) —CXANY)+(R@*CYXAY)+u( X, Y1)
—[u(X), Y J4+[u(Y), X 1]=0

for any X, Yebdil,. It follows from (9.15) and (9.16) that —C
+ R(a)*C—0u=0. We have thereby proved Lemma 9.9.

9.5. In what follows, we shall consider a fixed complementary
subspace €§1 of 9s* in C* Y, Moreover we assume that the Lie
group G° is connected.

Let P} denote the subset of F* consisting of all the elements z
such that C(z) €E§1. We show that P} is a Gl-subbundle of F*(P*1,
H*). First, we have w(P{)=P*"'. Indeed, let z€ F* Then there is
a u€d® such that C(z)+0u€CP. If we put a=t"(u), then we
have C(za)=C(z)+0u€CP P (Lemma 9.9), which means za€ P}.
Therefore we must have 7(P§{)=P*"'. Now, let z€ P} and a€ H".
Let u €8* be such that a=¢#(x)(mod N*). By Lemma 9.9, then we see
that za€ P§ if and only if du=0, i.e, u€g’. Therefore za€ P} if
and only if a€GE We have thereby proved our assertion. By Lemma
9.8, we find that the G}-structure (P}, o) on P*~1) thus obtained, is
of type m. Let « be the projection of P} onto P*~!  which is just
the restriction of 7 to P§{. We clearly have D},(z) =D4(z)N T.(P%) for
any z€ P§ and p<0. Therefore, from (9.2) follows that D},=a*D}_,
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(p<0) and o}| Dit=a*0i_ (p<k—1).

We have thus shown that to every pseudo-G*¥ l-structure (P*°%,
D%=D gk=Dy of type m on a manifold- M*~* there is associated, in a
canonical manner, a G-structure (P§, »®) of type m on P*°1,

9.6. We must show that the assignment (P*~! D*-D gk-Dy_,
(Pk, o™) is compatible with the respective isomorphisms.

Let (P*~1, D%*-D g% -D) (resp. (P*~1, D'~V ¢'*-D)) he a pseudo-
G"~Lstructure on a manifold M* % (resp. M'*~%) and let (P%, o) (resp.
(Pi*, '™)) be the corresponding Gj-structure on P*~! (resp. P'*°1).
Furthermore, let (F* w™®) (resp. (F'*, w'®)) be the corresponding H*-
structure on P*7! (resp. P'*"!). We shall write as A’ the quantity in
(Pt DpE=D gDy or (Pgky o' ™) or (F'*, w'®) which corresponds to
a quantity 4 in (P*71, D¥=D §%=D) or (P, o®) or (F*, o®).

Let ¢ be an isomorphism of (P*!, D*=1 gt-Dy onto (P41
D'*=D g k=1 From the definition of (F* »®), we see that ¢ yields
an isomorphism @ of (F* »®) onto (F* o'®). We clearly have
C'(¢(2))=C(z) for any z€ F*. Therefore ¢ yields an isomorphism @,
of (P§, w™®) onto (P4, w'™). Conversely, let ¢, be an isomorphism of
(Pf, 0™) onto (Pi*, 0'*®). Let ¢ be the diffeomorphism of P*~! onto
P*"! induced by ¢,. Since goa=a'cp, and ¢fo'®=0®, we have
*Di2,=D4_(p<0) and ¢*04., =604 (p<k—2). Take any z € P¥ and
set z'=¢,(2), x=a(z) and x'=a'(z’)=¢(x). Then we have r'(X*'),
=2 X ' =gu(z- X ) =pyr(X* 1), for any X*'€g*!. Since the
group G*7! is connected, it follows that ¢(xa)=g¢(x)e for any «x
€P* ! and a€G* '. We have thereby proved ¢ to be an isomophism
of (P¥1, D*- D gDy onto (Pt pr-D k=D

We have thus completed proof of Th. 8.2.

Proof of Lemma 8.2.

9.7. Hereafter we shall use the notations in Lemma 8.2. Let us
consider the Gi-structure (P}, w®) on P*~! corresponding to the pseudo-
G*lstructure (P*', D*-D g%~y (Th, 8.2.). Then the infinitesimal

transformation ¢*~'(a) of (P*~!, D%~V g%*-1) induces an infinitesimal
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transformation ¢}(a) of (P%, w*) (Th. 8.2.). Now consider the follow-
ing proposition (S§)(k=0): There is a point z* € P% such that

(9.17) (6% (a?),x)=0,pa’
for any a® € g’ (p arbitrary) and any r<k.
Lemma 8.2. follows immediately from the following
Lemma 9.10. (1) (S}) is true.
(2) If (S%) is true, so is (S¥) (k=>0).
(3) If (S*Y) is true, so is (S§) (k>0).
Before proving Lemma 9.10, we first prove the following
Lemma 9.11. Suppose that (S§) is true (k=0). Then we have:
(1) ofa").r=ry(a").

for any o* €g, where, in general, r,(a) denotes the vertical vector field
of the principal fiber bundle P4(P*7', G}) induced by a€ gf=gh+n".

(2) ol(a”).+=0 (mod ry,(1n*),+)
for any a?€g? (p>k).

Proof. Let a’€g’(p=k). By (Si), we see that of(a’).x is a
vertical vector in P}(P*"', G}). Therefore we can find an a’€g}
such that c}(a?),e=r,(a*),.. We have r,(a@’)1 do®+a’o®=0 and
L.t ano®=0}(a?) | do®+d (04(a?) 1 0®)=0. Let b?€g?(¢<0). Then
we have L,;(,,q)a)(k)=0 and [0}(a?), 0§(b9)]= —0}(a?, b*]). By using

these equalities, we get
(9.18) —o® (@t (Ca?, b7]).x) +at-b7=0.

From (9.18) and (S%), it follows that [a*, b%]=a*-b?, whence a*=a".
Moreover it follows that @’-b~'=0 for any p>#k, whence a’€n*. We

have thereby proved Lemma 9.11.

Proof of Lemma 9.10. Let a*(resp. 8*) be the projection of P}
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onto P* (resp. P*).

(1) Let & be the Maurer-Cartan form of the Lie group M (u1) and
let g be the cross-section of P}(M(m), G}) which was observed in 4.4.
Put z°=g(e) and let a’€g?. Then we have wj(0§(a?).)=¢"(0""(a?).)
=fr-1,n(e)=0,,a’. Therefore we have proposition (S§) for the point
ZO.

(2) Put e*=pR*(z*) and take a cross-section h of PL(P* N*) such
that A(e*)=z*. Then &® =h*p® is compatible with 6. Let a?€ g’
Then we have £;(0%(a?).)=w}(0§(a?).+)0,,a®. Moreover by (S§) and
Lemma 9. 11, it is clear that ¢*(a*).x=r(a*).» and 0*(a?),x=0 for any
p>k. Thus we have proposition (S*) for the pair (e, &%).

(3) Let (F*, o) be the HF-structure on P* ! corresponding to
the pseudo-G*~!-structure (P*~!, D%*-D §%*-D) and let us use the nota-
tions in 9.3-9.6. Let d(a) denote the infinitesimal transformation of
(F*, »®) induced by ¢* '(a). First of all, we shall show that there is
a point z*€ F* such that

(9.19) 0}(@(a?).)=0,pa’

for any a”€g?(r<k, p arbitrary). Indeed if we put E#=n*g}_|, then
we have wi=E&’{mod &’(r <p—k)} for any p<k—2. Take a point
yE€ F* such that n'(y)=e"*1. Then it follows from this fact and (S*°!)
that there is @ ¢ € H* such that w*(5(a),)=ta for any a€m* % Put
z*=yc. Since R,43(a),=7(a).+ and R¥o®=1""0®, we get

(9.20) o® (5 (a),+) =a.

Let a*"'€g*!. Then by (S*!) and Lemmas 9.3 and 9.5, we have
(9.21) oG (@), 0) =P G (@* ) ,) =a* 1.

Let a?€g¢”’(p=k). Then by (S*7!), we have

(9.22) ' w® (7 (a?),x) =0.
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(9.3) now follows from (9.20), (9.21) and (9.22), proving our assertion.
Let us prove z*€ P} For this purpose, it suffices to show that (2%).
=0{mod (w}).«(r <p—k)} for any p<k—2. But, this is easy from
(9.19) and the following facts:

[6(a), 6(a) ]=—6(a, b]); L;,((,)a)(k)zo; F(u)l 22=0

{mod wj(r<p—k)} for any w€b*. Finally it is clear from (9.19) that
we have proposition (S}) for the point z*.

We have thus completed the proof of Lemma 8.2.

§10. Applications to the geometry of real submanifolds of

complex manifolds

10.1. In this section, we shall always assume the differentiability
of class C*.

Let f be an imbedding of a real manifold M to a complex manifold
M. Let x be any point of M. Then the tangent space Ty (M) is a
complex vector space and the image fy4T.(M) of the tangent space
T.(M) by the differential fy of f is a real subspace of Ty (M). We
denote by D(f, x) the maximum complex subspace of Tyuy(M) con-
tained in fy T.(M), i.e.,

D(f, x)=fxT-(M)NNV—1 fsxT:(M),

and, throughout this section, assume that dim¢D(f, x) is constant.
The notations being as above, we now define a subspace D (x) of
T.(M) by fs«D(x)=D(f, x) and a complex structure I, on the vector
space D(x) by f*IxX:\/—_l f+X for all X€ D(x). Then we see that
the assignment x — D (x) gives a differential system D on M and the
assignment x — I, gives a cross-section I of the vector bundle Hom
(D, D). Denotes by D%! the subbundle of the complexified tangent
bundle T°(M) of M which consists of all the vectors X+v—1 IX
(X€ D). Then we have fyxD%'(x)=T"'(f(x))NfxT(M), where T

denotes the bundle of tangent vectors of type (0, 1) associated with the
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almost complex structure on M. Since the almost complex structure is
integrable, we have [T*!, T"'JCT%'. It follows that [D®', D*']
C D%, which is equivalent to the following two statements: For any

two local cross-sections X and Y of D,
(10.1) 1) [IX, IY]—[X, Y] is a local cross-section of D,
2) X, 1Y])—[X, Y]=I(IX, Y]+[X, IY])).

Definition 10.1. (1) Let D be a differential system on a manifold
M and let I be a cross-section of Hom (D, D). Then the pair (D, I)
is called an almost pseudo-complex structure on M if I, is a complex
structure on D(x) and if [ satisfies (10.1), 1). Moreover an almost
pseudo-complex structure (D, I) is called integrable or a pseudo-complex
structure if it also satisfies (10.1), 2).

(2) Let (D, I) (resp. (D', I')) be an almost pseudo-complex struc-
ture on a manifold M(resp. M’). Then an isomorphism ¢ of (M, D)
onto (M', D’) is called an isomorphism of (M, D, I) onto (M', D', I')
if o IX=T'¢pX(Xe€D).

By the above argument, we know that with every imbedding f of
a real manifold M to a complex manifold M there is associated a
pseudo-complex structure (D, I) on M in a natural manner. Note that
a pseudo-complex structure (resp. an almost pseudo-complex structure) is
essentially the same thing as an integrable H-structure (F, w) (resp. a
H-structure (F, w) satisfying condition (C)) in [13], §8.

10.2. Let (D, I) be a pseudo-complex structure on a manifold M
and let us consider the subbundle D%! of T°(M). Let M°® be a (suf-
ficiently small) complexification of the real analytic manifold M (cf.
[15]), which is a complex manifold of complex dimension nm=dim M
such that M is imbedded in M° as a real part, i.e., T,(M)=T. (M)
+y—1 T, (M)=T¢(M) at each x€M. Then the subbundle D®! of
T°(M) is extended to a holomorphic subbundle E of T(M°) just as in the
case of an almost complex manifold. Since [D%!, D*']C D%}, we find

that E is completely integrable, considered as a holomorphic differential
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system on M°.

Proposition 10.1. (cf. [13], Remark 2). Let f be an imbedding
of a real manifold M to a complex manifold M (such that dim cD(f, x)
=constant), and let (D, I) be the corresponding pseudo-complex structure
on M. Then there is a complex submanifold My of M such that f(M)
C M, and such that

dim M=dim M,+dim cD(f, x) (x€M).

Moreover, My is uniquely determined as a germ.

Proof. The notations heing as above, f is extended to a holo-
morphic mapping f° of M° to M. At each x € M, the differential [k,
of f° at x is a complex extention of the differential fx_of f at x.
Since f*IY:\/:T f+Y (Y€ D(x)), it follows that the kernel of f§_ is
equal to D%(x)=E(x). Since E is a holomorphic extention of D!,
we see that the kernel of f§ is equal to E(y) at each y€ M°. There-
fore the image M, of M¢ by f°¢ is a complex submanifold of M whose
dimension is equal to dim M—dim cE(x)=dim M—dim ¢D(f, x). We
clearly have f(M YC M,. Let M} be a second submanifold of M satisfy-
ing the condition in Prop. 10.1. Then (D, I) coincides with the pseudo-
complex structure corresponding to the imbedding f: M — M{. Therefore
it is clear from the above argument that M, M, as a germ. Since

dim ¢My=dim M, we must have M,=M} as a germ.

Proposition 10.2. (cf. [13], Remark 5). Let (D, I) be any
pseudo-complex structure on a manifold M. Then there are a complex
manifold M and an imbedding fof Mto M such that the imbedding f

satisfies
(10.2) dim M=dim ¢M+dim ¢D(f, x) (x€M)

and such that the given (D, I) is just the pseudo-complex structure on

M corresponding to the imbedding f.

Proof. After a suitable arrangement of M° we have only to
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define M as the manifold M°/E of all the leaves of the completely
integrable differential system E and f as the natural mapping from M
to M°/E.

Proposition 10.3. (cf. [13], Lemma 8.2). Let f (resp. f') be
an imbedding of a real manifold M(resp. M') to a complex manifold
M (resp. M) satisfying (10.2) and let (D, I) (resp. (D', I')) be the
corresopnding pseudo-complex structure on M(resp. M'). Let ¢ be a
homeomorphism of M onto M'. Then ¢ is an isomorphism of (M, D, I)
onto (M', D', I') if and only if there is a holomorphic homeomorphism
¢ of a neighborhood of f(M) onto a neighborhood of f'(M') such that
gof=f'op. Moreover, ¢ is uniquely determined by ¢ as a germ.

Proof. ¢ is extended to a holomorphic homeomorphism ¢° of M°
onto M'® assuming that M¢ and M’® are suitably chosen. Then ¢ is
an isomorphism of (M, D, I) onto (M’, D', I) if and only if ¢° is an
isomorphism of (M€, E) onto (M’¢, E’). This last statement is equivalent
to the existence of a holomorphic homeomorphism ¢ of a neighborhood
of f(M) onto a neighborhood of f(M’) such that gof®=f"°op°. Prop.
10.3 is clear from these arguments.

Analogously we have

Proposition 10.4. (cf. [117], Prop. 1). Let f be an imbedding
of a real manifold M to a complex manifold M satisfying (10.2) and
let (D, I) be the corresponding pseudo-complex structure on M. Let X
be a vector field on M. Then X is an infinitesimal automorphism of
(M, D, I) if and only if there is a holomorphic vector field X defined
on a neighborhood of f(M) such that X and X are [f-related, i.e.,
fuXe=Xjy at each x€ M.

10.3. Let (D, I) be an almost pseudo-complex structure on a
manifold M and assume that the differential system D is regular. Let
us consider the fundamental graded algebra m(x)= Zg”(x) at any point
x€M. Then we have g '(x)=D(x) and, by (10. 1), 1),

[LX, LLY]=[X, Y] (in m(x))
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for all X, Yeg !(x). For each € g %(x)*, define a bilinear form H*
on g7 (x) by H*(X, Y)=a([I. X, Y]) for all X, Yeqg *(x). Then H*
is a hermitian form on g '(x) and is called the Levi-form of (D, I) at

x with respect to a.

Let m=},g” be a fundamental graded algebra over R and let / be
$<0
a complex structure on q~'. Then the pair (i1, I) is called a pseudo-

complex fundamental graded algebra if it satisfies the equality
LIX, IY]=[X, Y]

for all X, Yeqg™'. Let (m, I) (resp. (n’, I')) be a pseudo-complex
fundamental graded algebra. An isomorphism ¢ of mut onto m’(as graded
algebras) is called an isomorphism of (1, I) onto (W', I') if I'pX=¢lX
for all Xeg™.

Let (m, I) be a pseudo-complex fundamental graded algebra. Then
we say that an almost pseudo-complex structure (D, I) on a manifold
M is of type (m, I) if D is regular and if (m(x), I,) is isomorphic
with (m, 1) at every x € M. We denote by G°(u1, I) the group of all
the automorphisms of (ui, 1), being a subgroup of G°(m), and put
G}(m, I)=G(mn, 1) N°. Furthermore, we denote by g°(mn, I) the Lie
algebra of G°(n, I), and by g(m, I) the prolongation of (i, g°(m, I)).

Proposition 10.5. (u1, 1) being as above, let M be a manifold
of dimension m=dim m. Then an almost pseudo-complex structure
(D, I) on M of type (m, I) is characterized as a GY(m, I)-structure of
type m on M.

This is easy from the arguments in §4.

By Th. 8.4 and Prop. 10.5, we have

Proposition 10.6. (cf. [3]; [11]; [12]; [13], Prop. 8.1). (m, /)
being as above, let (D, I) be an almost pseudo-complex structure of type
(m, I) on a connected manifold M of dimension m=dim m. If (m,
g'(m, I)) is of finite type, then the Lie algebra of all the infinitesimal

automorphisms of (M, D, 1) is finite dimensional and of dimension
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<dim g(u, I).

In §11, we shall see that (m, ¢°(n, 1)) is of finite type if and
only if m is non-degenerate, i.e., the condition “Xeg™', [A, g ']J=0"
implies X=0.

10.4. Let (m, I) be a pseudo-complex fundamental graded algebra.
Let us observe the standard differential system D of type ni on the Lie
group M(m). Then the complex structure I on g’l defines a cross-
section of Hom (D), D), denoted by the same letter [/, which is invariant
under the left translations of M (). It is clear that the pair (D, I)
is a pseudo-complex structure of type (i, /) on M (), which is called
the standard pseudo-complex structure of type (i, /). It can be shown
that the standard GJ(m, I)-structure of type nt on M) just corresponds
to the standard pseudo-complex structure (D, I). Therefore the Lie
algebra sheaf . of all local infinitesimal automorphisms of (D, I) coin-
cides with the standard Lie algebra sheaf of type (u1, g°(ut, I)).

By Th. 6.2, we have

Proposition 10.7. The formal algebra of ¥ inay be identified
with the formal algebra associated with the prolongation g(m, I) of
(ur, g°(, 1)).

§11. Some results on certain graded modules

11.1. In this section, K will denote any field of characteristic
zero.

Let m—Zq be a fundamental graded (Lie) algebra over K. A
vector space E over K is called a right ni-module if the Lie algebra mt
is represented on the vector space E in the right, i.e., if there is given

a bilinear mapping Ex 113 (¢, x) > ax € I as follows:
(ex)y—(ay)x=alx, v]

for all e€ £ and x, y€m. Analogously we have the notion of a left
m-module.

Let E be a right n-module. A direct sum E= }] E?, the indices p
»
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taking any integers, is called a right graded mi-module if it satisfies the

following conditions:
1) dim E?<oo;
2) E*q"CE*7,

Furthermore a direct sum E=Z’:E’ is called a right graded ni-module
if the direct sum E=J}] E?, wpl:re E?=0 (p<k or p>I), gives a right
graded mni-module. g

We say that a (right) graded m-module E=§E ? satisfies condition

(C) if it satisfies the following conditions:
1) E?={0} for all p< —y, if m is of x-th kind;
2) For any p=0, the condition “a € E? ag™'={0}" implies a=0.

Let E=) E? be a graded n-module satisfying condition (C). Then
E is called (ff infinite type (resp. of finite type) if E?=={0} for all
p=0 (resp. if E?»={0} for some po=0). If E?*={0} for some p,
=0, it is clear that E?={0} for all p>ps.

Examples. (1). Let 1 and F~' be two finite dimensional vector
spaces. Let F° be a subspace of Hom(, F~') and let F®(p>0) be
the p-th prolongation of the subspace F°CHom (i, F~'). Then we have
natural bilinear mappings F®”’xu> (a, x) >ax € F®~Y for all p=0,
where FCV=F~' and F®=F° and the following equalities: (ax) y
=(ay)x for all a€ FP(p>0) and x, yE€n. Suppose now that we are
given subspaces F? CF® (p>0) as follows: F/mCF?~'. If we consider
the vector space 1t as an abelian Lie algebra and further as a funda-
mental graded algebra of first kind, then we see that the direct sum
F =§F ? is endowed with a structure of graded n-module and that it
satipszﬁ—els condition (C). Such a graded module has been investigated in
[5] and [9]. Conversely, let F =p iIF ? be any graded n-module satisfy-

ing condition (C), where n is a fundamental graded algebra of first
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kind. Then F° may be identified with a subspace of Hom (i, F~') and
F?*(p>0) with a subspace of the p-th prolongation F¥ of F°.
(2) Let g=2.g” be a graded (Lie) algebra over K satisfying the
]

following conditions:

(11.1) 1) m=2g" is a fundamental graded algebra;
r<0

2) For each p=:0, the condition “a€g’, [a, g"']=0" implies

a=0.

Then g=2,@3” becomes a graded ni-module with respect to the bilinear
P
mapping gX m3 (a, 8) >ax=[a,x €@ and satisfies condition (C).
0
Remark 1. Let E;=)  E? be a graded nt-module such that the
p=—r

condition “a€E°, aq *=0" implies a=0. In the same way as in §5,
then it can be shown that the graded ii-module E, is prolonged to a

graded ni-module EziE” which satisfies condition (C) and which is
maximal in an approg'i_;te sense.

11.2. Let E=) E? be a graded nt-module satisfying condition (C).
Put E-'=H YE) gnd denote by H’(E)(p=0) the subspace of E?
consisting of all a € E? such that aq”= {0} for all r<—1. Then we
have H?(E)g 'CH? 'E) for all p=>0 and (ax)y=(ay)x for all a
€ H'(E)(p>0) and x, y€qg '. Therefore the direct sum H(E)= iH”(E)
is endowed with a structure of graded g '-module, where g~* j>s=h—01u1d be
considered as a fundamental graded algebra of first kind. It clearly
satisfies condition (C). If mt is of first kind, then H(E) and E coincide.

The main purpose of the present section is to prove the following

Theorem 11.1. Let mi=3,q" be a fundamental graded algebra
over K and let E=),E? be :z<0graded m-module satisfying condition
(C). If the graded fn-module E is of infinite type, so is the graded
g Y-module H(E).

Corollary 1. Let g=;g” be a graded algebra over K satisfying
(11.1),1) and 2). Let H?(p=0) be the subspace of §° consisting of all
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a€q” such that [a, " ]=40} for all r<—1, ie., WY=H!q). If the
Lie algebra g is infinite dimensional, then we have O =£{0} for all
p=0.

This is clear from Th. 11.1.

Corollary 2. Let mzr%g’ be a fundamental graded algebra over
K and let §° be a subalgebra of the Lic algebra q°(m) of all derivations
of the graded algebra m. Let §° be the ideal of q° consisting of all
a€q’ such that [a,q" =0 for all r<—1. We identify §° with a
subspace of Hom (q7Y, g71) (by identifying a €0° with the linear mapping
g '2x—>[a, x]€q™Y). Then the pair (m, g% is of infinite type if and
only if the subspace H)° CHom (q7', g7 ") is of infinite type.

Indeed, let g= 2, g” be the prolongation of (m, g°). It is easy to
see that b"zH”(g)(;)>0) coincides with the p-th prolongation §? of
H°=H({g). Therefore Cor. 2 is immediate from Cor. 1.

We say that a fundamental graded algebra m=§)g’ is non-

degenerate if the condition “x &g, [x, g7 ]=0" implies x=0.

Corollary 3. Let mzrgg’ be a fundamental graded algebra over
R and suppose that there is given a complex structure I on the vector
space 7' such that [ Ix, Iy]=[x, y] for all x, yeg™'. Let ¢° be the
subalgebra of ¢°(m) consisting of all a €q°(n) such that alx= lax for
all x€q7, ie, q° is equal to the subalgebra ¢°(m, I) of ¢°(n) defined
in §10. Then the pair (n, q°) is of finite type if and only if the fun-
damental graded algebra m is non-degenerate.

Indeed, it is easy to see that (ur, q°) is of infinite type if m is
degenerate. Suppose that mr is non-degenerate and let g=2,g” be the
prolongation of (u1, g°). The notations being as above, lept us show
that §'=H" vanishes. In fact, put <=x, y>=[1Ix, y] for all x, yeg™ '
Then we have <x, y>=<y, x> and the condition “x g™, <x, g"'>
={0}” implies x=0. Thus <, > is, so to speak, a g '-valued inner
product on the vector space g‘l. We have <ax, y>+<x,ay>=0
for all a€h’ and (bx)y=(by)x for all beph. It follows that
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<(bx)y, z>=0 for all b, x, y, z€q ' (cf. the proof of the fact
that the first prolongation o(n, R)Y of the orthogonal algebra o(n, R)
vanishes), whence b=0. We have thereby proved h'=0. Therefore

by Cor. 2, we know that (n1, ¢°) is of finite type.

Remark 2. Cor. 2 is fundamental in the classification of infinite
primitive pseudo-groups (See Morimoto and Tanaka [6]). It has been
announced in the preprint of the present paper; Our initial proof of
Cor. 2 made use of Lemma 2 in Guillemin, Quillen and Sternberg [ 4]
which was proved by an analytical method. Cor. 3 is important in the
geometry of real submanifolds of complex manifolds (See §10).

11.3. The proof of Th. 11.1 is preceded by several lemmas. In
this paragraph, 1 will denote any finite dimensional vector space over
K, identified with a fundamental graded algebra of first kind.

Let sz,F” be a graded u-module satisfying condition (C). Given
a base uj, I’: ul,, of u, denote by F#(p=>0,0<i<n) the subspace of
F? consisting of all a € F? such that ae;= - =ae;=0. Then we have
F}=F? F!={0} and FuCF*'; F?,, can be characterized as the
kernel of the linear mapping F?>a—au; € F2'.

We say that a graded 1-module F=f}F” satisfying condition (C)

p=—1
is in involution if it satisfies the following conditions:

1) F?is equal to the p-th prolongation F® of F° for every p>0;

2) 1 admits a regular base for F, i.e., there is a base uy, - -, Uy,
of u such that the linear mappings F!2a—au; € FI 1 (0<i< n, p
>0) are surjective.

Let F=} F? be any graded 1u-module satisfying condition (C).
=

»
Let ¢ be any integer >0. Then the graded i-module F(q)=F/ ), F?
p<qg-1
=2, F*? clearly satisfies condition (C). It is known that F(g) becomes

==t
in involution for any sufficiently large ¢ ([9]).

Lemma 11.1. Let Foy=2 Floy(0<a<u) be 1 graded nw-modules
p=-1
satisfying condition (C). Let V and W be two finite dimensional vector
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spaces and let ¢ be a bilinear mapping of VX W to 1 such that the
vector space 1t is gemerated by the vectors of the form (v, w)(véEV,
wE W). If Flaynu=Fi3' for all o and p>0, then there are a vEV
and a w€ W such that the linear mappings Fluy>a—ap(v, w) € FI7!
are surjective for all o and p>0.

In general, let F =i F? be any graded n-module which satisfies
condition (C) and whigl_l 1is such that Fu=F?" for all p>0. It is
known that there are proper subspaces Py, --., P, of 1t having the fol-
lowing property ([5], Appendix, Lemma 1): If x€n and if x& P,
\U---\UP, then x is regular for F, i.e., the linear mappings F?>a—ax
€ F?~! are surjective for all p>0. Therefore we can find a finite set
4 of non-zero linear forms on 1t such that x &mn is regular for every
F (o) provided o(x)=0 for all w€ 4. Lemma 11.1 is easy from this
fact.

Lemma 11.2. Let F.y, V, W and ¢ be as in Lemma 11.1. If
Fiay is in involution for every c, then there are v,€V and w,€ W
(1 <i<n) such that the n vectors u;=¢(v;, w;)) form a regular base
Jor every Fi(q.

This lemma follows from Lemma 11.1. and the theory of modules
in involution ([5] or [9]).

11.4 Let mztzl' g” be a fundamental graded algebra of x-th kind
over K(#>1) and Te?U be the universal enveloping algebra of it. Let
M be a left m-module, which is also a left U-module. Assume that M
is graded: M=ZZ:M”, the indices p taking values >0; dim M?< oo}
aMPC M. Fpo—ro each x € U, denote by x‘» the linear mapping M?
Sa—>axE€M. When x€g’, x» maps M? into M?~".

Lemma 11.3. Let veg™ and weg **' and put u="[v,w](€g™*).
If u®: M?:— M?** are injective for all p=0, then, for every p=0,
there is a t €K such that (v* '+ tw)®: MP— MP+*~1 is injective.

Proof. It is sufficient to prove that there is a t€ K such that

(* '+ tw)® is injective. Suppose that (v*7'+tw)® are not injective
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for all t€ K. As is easily observed, then there is a polynomial mapping
f of K to M° such that (v*"'4tw)f(:)=0 for all €K and such that
f(0)==0. Let us express f(1) as ’_gotia;, where ;€ M°. Then we
have a,=f(0)7#0 and

(11.2) v* la;twaei1=0 (0<i<k+1),
where we put a_;=a,_,=0. Since vw—wv=u and vu=uv, we have
(11.3) viw=wv'+iuwv' "
By (11.2) and (11.3), we have
v Dl L (w4 piuw)v® e, =0.
Since a_,=0, it follows that
(11.4) D1l =0 (0 i<k).

We have a,,1=0 and assert that a,=0. Indeed, we have v***V1qg,
=wa,=0 by (11.2) and (11.4). i being an integer with 0 i<u(k+1)
—1, suppose that v"*'a,=0. By (11.3), then we have

v wa,=wr' tay+ G+ 1) uv'ay,

whence uwviar=u®v'a,=0. Since u® is injective, this gives v'ay
=0. Thus we get v'a;=0(0<i<u(k+1)—1), proving our assertion.
Therefore by induction, we get a;=0(0=i:<k), which is a contradic-

tion.

Lemma 11.4. Let v,w and u be as in Lemma 11.3. If u‘? are
isomorphisms for all p =0, then we have M={0}.

Proof. By Lemma 11.3, we easily find dim M?=constant. We

have vw—wv=u, vu =uv and wu=uw, whence
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(P A (D) (P41 (D) — 1y ()

)=IL

P 1 () — ( (p+1) v(/’),
W) () = (P -!-,u—l) 2w

Let us identify M?'# with M” by the isomorphism u” for every p
(0<p<u) and denote by 1, the identity transformation of M”. Then

we have v+ =y® (0 é[’é/l—l) and w® =w® and hence
(11.5) B 0 (1) O =1

PP 1 pP) (P 1) 4, (0) — l/, (0 <P<ﬂ— 1)’

v(#—z)w(#—l)_w(o)v(#—l):1"_1_
Since dim M?=constant, we may further identify M? with M° (by an
arbitrary isomorphism) for every p(0<p<s). By (11.5), then we have

B2
(D ® — 4O =Dy 4TS () (B+1) (041D (D) =1,
=0

If follows that s dim M°=Trl,=0, whence M°={0}. We have thus
proved M?={0} and hence M= {0}.

11.5. Proof of Theorem 11.1. Let m=}; g be a fundamental

r=—p
graded algebra of x-th kind over K and let Ez}f E? be a graded wm-
module satisfying condition (C). We shall provpe__’lfih. 11.1 by induction
on the integer x#. If u=1, then H(E)=FE and Th. 11.1 is the case.
Therefore we may assume that ,a>1 ™" being a graded ideal of i,
the factor space mgx=ni/g” “—Z g” is endowed with a structure of
graded algebra, which is a gr_lgamental graded algebra of (x#—1)-th
kind. Put E?=FE}(p<0) and denote by E4(p=>0) the subspace of E”
consisting of all ¢ € E? such that ag™#={0}. Then we have EJg*
={0} and E} g’CEﬁ:’ for all p and all r<0. Therefore we see that

the direct sum Eyx=>, E} is endowed with a structure of graded niy-
p=—r+1
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module, which satisfies condition (C). We have H(E)=H(Ey). Con-
sequently to prove Th. 11.1, it is sufficient to prove that the graded
m-module E is of finite type, assuming the same for the graded miy-

module Ej.

Assume that Ey is of finite type and hence that E%°= {0} for
some ¢o=0. Then we have Ef{={0} for all ¢ =qo, i.e., the condition
“a€E? ag#={0}" implies a=0. Let « and ¢ be such that 0 Sa<xu
and ¢==¢,. We have E* #'#t g+ CE“"?**#~D and hence the direct
sum ), E“*9*#? is a graded g “-module, where the abelian subalgebra
q* ofp nt should be considered as a fundamental graded algebra of first
kind. It follows that the direct sum E(a, ¢)= ZE"‘” b is also a
graded g *-module (cf. the graded u-module F (c_/) in 11.3). Since
E§tet#r={0} for all p=0, the graded g *-module E(x, q) satisfies
condition (C).

Therefore for a sufficiently large ¢, the x graded g *-modules
E(a, ¢) (0<a<u) become in involution simultaneously. Fix such a ¢
from now on. Since g *=[gq7' g#''], it follows from Lemma 11.2
Vand w;€q7#"'(1 <i<n) such that the n vectors
u;=[v;, w] form a regular base for every E(a, ¢q). Let EX(0<i<n),

that there are v;€q”

k=¢q) denote the subspace of E* consisting of all a€E* such that
au;=--=au;=0. Then we have E%q CE4*"(0<i<n, r<0, k+r
=¢). Since the u graded g *-modules E(a, ¢) are in involution, the
linear mappings E%>a—au;., € E4¥™* are surjective for all k=q+ .
Let j be the smallest (0 <"i<n) such that Ef,;={0}. Since E*,;g7'
CE*%}, then we find E%,,={0} for all k=gq. It follows that the
linear mappings E%>a—au;,., € E¥™* are isomorphisms for all k=¢+ 4.

Let us now prove E%={0} for all k=gq. Denote by M?(p=0)
the dual space of E%?*? and put M= Z}M” (direct sum). For any
m€E M’ and x €g’, define an element xrz of M?~" by (xm)(a)=m(ax)
for all a€E4**~7. Then the bilinear mappings ¢" x M?3 (x, m)—> xm
EM’""(p=0,r<0) give rise to a structure of left graded m-module

on M. The notations being as in 11.4, the linear mappings u}"il are
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isomorphisms for all p_=>0.

Noboru Tanaka

Since uj,1=[vj41, wj+1 ], Lemma 11.4 can

be applied to the graded m-module M and we have M?= {0} for all

p=0.

Hence E%= {0} for all k=gq.

Therefore we have j=0 on account of the way of choosing the

integer j. Hence E*=FEk={0} for all k==¢g. We have thereby proved
J q

that the graded m-module E is of finite type and have completed the
proof of Th. 11.1.

(1]
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