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On the convergence of the product of
independent random variables
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Hiroshi SATO

1. Introduction

Let {X k } be a  sequence of integrable random variables on a probability space
(0, P), an b e  the o --algebra generated by {X k ; 1 <k<n }, denote the  mathe-
matical expectation by E [  ]  and the mathematical expectation on a  se t A E a  by
E [ ; A].

{X,} is upper semi-bounded if there exists a positive constant K such that

E[X ,; X k> K ] < + oo .

If there exists a positive constant K such that X k <K , a.s., k  N, then {Xk } is upper
semi-bounded.

Assume that {X,; k e NI are independent and upper semi-bounded with non-
negative means. Then in  Paragraph 2  we shall show the equivalence of the  L 1 -
convergence and the almost sure convergence of E X k (Theorem 1). Furthermore,
assume that X k> —1, a .s . ,  and  E[X k ]=  0, k e N . Then in  Paragraph 3  we shall
show the equivalence of the almost sure convergence of E x, and the L' -conver gence
of n (1 + X k ) (Theorem 2). Note that if {xk } is a real sequence, then the convergence

_
of E .x„ does not imply the convergence of n (1 + x„) (for example xk  = ( — 1)k k  2 ).
Conversely the convergence of ri (1 + x,) does not imply the convergence of ri (1+

X k )  (for example xk  = ( — 1)k k  2 + (2k) - 1 ). A s an application in  Paragraph 4  we
shall give necessary and sufficient conditions for the equivalence (mutual absolute
continuity) of two infinite product measures based on the convergence . of marginal
densities (Theorem 3).

2. Sum of semi-bounded independent random variables

In this paragraph we prove the following theorem.

Theorem 1. L e t {X ,}  b e  a  sequence o f  upper sem i-bounded independent
random variables such that E[X,] > 0, k e N .  Then all of the following statements
are equivalent.
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(A) E X k  converges in I ) .

(B) sup ER 
k
±

1 
X k l] < + Œ .

n =
(c) E  X k  converges almost surely.

( D )  E X k  and E X i converge almost surely.

P roo f. (A ) (B )  an d  (D )(C ) a re  tr iv ia l. (B )(C ) is proved by the Doob's
theorem since S n = X k  is a 4-matringale (W. Stout [3], Theorem 2-7-2).

k=1
(C) (D ) . Since {X,J is upper semi-bounded, there exists a positive constant

K such that

(1) E E[X k ; X ,>K]< + oo .

Define

{ X k ,  if 1X k l<K,
Yk =

0,o th e rw ise ,

a n d  Z k =X k — Y,„ k e N .  T hen , s in ce  E X k  converges alm ost surely, by
Kolmogorov's three series theorem the following three series are convergent.

(2) E Klxkl > K )< + 0 0  ,

(3) E E[Yk ] converges,

(4) E IEEIT — EL Yd2} < + co •

For every k in  N  define E[Xk ; X k > IQ> 0, m ?=E[Y k ]=E [X ,; IX k i <
K ], and m = — E[X k ; X k  —K]> O. Then by the assumption we have

+ m ?—  =E[X  k ] > 0, k  E N ,

and by (1) and (3)

E E  +  E  —°".k

converges. Furthermore we have for every k in N

—mt > — (n4 +m -k)

so that

E 1141 E  (m +m)+ink)+ E (14 +1741)< + oo •
Consequently E mio, converges absolutely. This implies the convergence of E E[Y,J2
and by (4) we have

(5 ) E EDT < + oo

By Kolmogorov's three series theorem (2) and (5) imply (D).
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(C) (A ) . For every m, n(n < m) E N we have

EEl E  xkl]<EEI E  YIP-E[I E  zkl]
n < k rn n < k5m k n < k . n a

E[I
1

E Yk192 +  E  E[lzkl]
n <kS n<k5m

E  EE311+ E  E  (mi- +m)1 2 } 2 +  E  (m + m )
n<k5rn n <krn n < k rn

-03 as n, + co. Therefore E X k converges in L l.

3 .  Infinite product of independentrandom variables

In this paragraph we extend Theorem 1 to the convergence of infinite product
of independent random variables.

Theorem 2. L et {X k }  be a  sequence o f  independent random  variables such
that E[X,J=0 an d  X  k >  -1 , a s . ,  ke N . T h e n  a ll  of  the following statements
are equivalent.

(A) E X k converges in L '.

(B) sup E[i X k l<  +  oc.
n k=1

(C) E X k converges almost surely.

(D) E X k and E X i converge almost surely.

(E) 11(l+ X k ) converges and is positive almost surely.

(F) F1(1+ X k ) converges in L '.

P ro o f . S in ce  - X k } is upper semi-bounded with zero mean, the equivalences
from (A) to (D) are already proved in Theorem 1. (D)(E) is proved by Lemma 8
of H. Sato [2].

(E) ( F ) .  Since we have

lim inf ER/ ft (1 + Xk)]
k= 1 k=1

     

>E[lim inf (1 + x k ) ]  E[/ fi (1 + x j] > o,
k=1 k= 1

the arguments of J. Neveu [1], Proposition 111-1-2 imply (F).
(F )= .(C ). Assume that V„= n (1+ X„) converges in Then, since {V,,}

k=1 +co
is a .4„-martingale, 1/, converges almost surely to V = n (1 + x k ) and we have

k=1

E[V] = lim E[V„] =1 ,

so that P( V> O)> O. Since {log (1 + X I) }  is an independent random sequence, by
the 0-1 law we have
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P(V> 0) = P(E, log (1 + X k ) converges)

= 0  o r  1.

Therefore we have V > 0, a.s..
On the other hand define

U i  =1 ,

U k =  X  k Y k _ i ,  k= 2, 3, 4,....

Then { Uk } is a ,-martingale difference sequence such that

sup ED Uk l] = sup E[V,T] = 1 < + co .
n k=1

Define

vk =1 ,

vk = k= 2, 3,

Then for every k in N, v k  is a k_ r measurable and we have

1
sup IQ <  sup 11 ( 1 + X,) _ 1- .< inf lA ( 1 + X k ) <+ oo , a.s..

n k = 1 n  k = i

Therefore by Burkholder's theorem (W. Stout [3], Theorem 2-9-4) E X k =  E VkUk
k k

converges almost surely.

4 . Absolute continuity of the infinite product measures

In this paragraph we apply Theorem 2 to the equivalence of two infinite product
measures on the sequence space.

Theorem 3 . L et y=F1 y k an d  v=11v, be inf inite product m easures on the
sequence space R N ,  w here  Luk ; ke N I  an d  {vk ; ice  N I  are  probabilities o n  RI-
such that vk — yk (equivalent)for every k in  N .  Then all of the following statements
are equivalent.

\--, dv,(A) (
t , o k  ( x , )  1) converges in Ll(y).

(B) supf k t1  ( ddliVkk (Xk)
—  1 )  d(y i  x  y, x • • • x it„) <  + cc.

(C) E ( dv k   ( x i :  _

k Citik
)  1 )  converges almost surely (y).

dv dv(D)
k Gi P k

E  (  d
 k  (X  k )  —  1 )  and  E(  ,  k  (X  k )  —  1 )

2

 converges almost surely  (y).
k ct klk

r T  dv k( E )  y d i l l  (x k ) converges and is positive almost surely (y).
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(F)

In the above statements x ,= x k (x), k e N , denotes the k -th coordinate of x = {Xk} E RN.

P ro o f . Define

X k (x) — dv
 k X  =  { X  k }  ERN , k  e  N .

(Attk

Then obviously the random sequence {X k }  on the probability space ( R N ,  kt) satisfies
dv. te hypothesis of Theorem 2. Since the L 1 -convergence of 11 (xk) = fl (1+ X  k )

k  C i t i k k

is equivalent to v—tt (J. Neveu [1], Proposition 111-1-2), Theorem 3 is a special case
of Theorem 2.
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