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On the convergence of the product of
independent random variables

By

Hiroshi SATO

1. Introduction

Let {X,} be a sequence of integrable random variables on a probability space
(Q, #,P), #, be the g-algebra generated by {X,; 1<k<n}, denote the mathe-
matical expectation by E[ ] and the mathematical expectation on a set A€ # by
E[ ; A4].

{X\} is upper semi-bounded iff there exists a positive constant K such that

> E[X,; X, >K]<+ 0.
k

If there exists a positive constant K such that X, <K, a.s., ke N, then {X,} is upper
semi-bounded.

Assume that {X,; ke N} are independent and upper semi-bounded with non-
negative means. Then in Paragraph 2 we shall show the equivalence of the L!-
convergence and the almost sure convergence of > X, (Theorem 1). Furthermore,
assume that X, > —1, a.s., and E[X,]=0, keN!f Then in Paragraph 3 we shall
show the equivalence of the almost sure convergence of kZ X, and the L!-convergence

of [T(1+X,) (Theorem 2). Note that if {x,} is a real sequence, then the convergence
3 -1
of ¥ x, does not imply the convergence of [T (1+x,) (for example x,=(—1)kk 2).
k k
Conversely the convergence of [T (1+ x,) does not imply the convergence of ] (1+
k k
-1
x;) (for example x,=(—1)*k 2+4(2k)™!). As an application in Paragraph 4 we
shall give necessary and sufficient conditions for the equivalence (mutual absolute

continuity) of two infinite product measures based on the convergence of marginal
densities (Theorem 3).

2. Sum of semi-bounded independent random variables
In this paragraph we prove the following theorem.
Theorem 1. Let {X,} be a sequence of upper semi-bounded independent

random variables such that E[X,]>0, ke N. Then all of the following statements
are equivalent.
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(A) % X, converges in L',
(B) supE[ 3 Xil]<+co.
© % X, converges almost surely.
(D) ; X, and zk: X? converge almost surely.
Proof. (A)=(B) and (D)=(C) are trivial. (B)=>(C) is proved by the Doob’s

theorem since S, = i X, is a #,-matringale (W. Stout [3], Theorem 2-7-2).
k=1

(C)=(D). Since {X,} is upper semi-bounded, there exists a positive constant
K such that

(1) S E[X,; X,>K]<+o0.

Define
X, if (X <K,

=
0, otherwise,

and Z,=X,—Y,, keN. Then, since > X, converges almost surely, by

k
Kolmogorov’s three series theorem the following three series are convergent.

¢)) ;P(|Xk|2K)<+OO,
3 };, E[Y,] converges,
C)) ; {E[Y2]—E[Y,]?}< + .

For every k in N define mj=E[X,; X, >K]>0, m)=E[Y,]=E[X,; | X\l <
K], and my = —E[X,; X, < —K]>0. Then by the assumption we have

mf+md—m;=E[X,]>0, keN,
and by (1) and (3)
; my < % mi + % mj
converges. Furthermore we have for every k in N
mi +m>mi>my —mi > —(mf+mp)
so that
; [mQ| < %‘, (mf+mp)+ sz‘_ (mf+m)<+o0.

Consequently 3= m{ converges absolutely. This implies the convergence of 3 E[Y,]?
k k

and by (4) we have
%) ; E[Y#]<+ 0.

By Kolmogorov’s three series theorem (2) and (5) imply (D).



Independent random variables 383
(O)=(A). For every m, n(n<m)e N we have

E[l > XJI<E[l X WI+E[l ¥ Zl]
n<k<m n<k<m n<k<m
<E[l 3 Yi’1*+ ¥ E[Z]
n<k< n<k<m
<{ ¥ EIYPI4+[ ¥ (mi+mdDP}2+ ¥ (mf+my)
n<k<m n<k<m n<k<m

—0as n, m— +o00. Therefore 3 X, converges in L!.
k

3. Infinite product of independentrandom variables

In this paragraph we extend Theorem 1 to the convergence of infinite product
of independent random variables.

Theorem 2. Let {X,} be a sequence of independent random variables such
that E[X,]=0 and X, > —1, a.s., ke N. Then all of the following statements
are equivalent.

(A) Xk‘, X converges in L.

(B) sup E[|’§1 X, 1< + oo.

© % X converges almost surely.

(D) % X, and ; X2 converge almost surely.

(E) ];[ (14 X,) converges and is positive almost surely.

(F) TI(+X,) converges in L.
k

Proof. Since {—X,} is upper semi-bounded with zero mean, the equivalences
from (A) to (D) are already proved in Theorem 1. (D)=>(E) is proved by Lemma 8
of H. Sato [2].

(E)=(F). Since we have

kfj1 B[+ X)) =lim inf E[\/ I7(1+ X)]

>Ellim inf 4/ [T (1+ X,)] = E[«/hlill (1+X)]>0,

the arguments of J. Neveu [1], Proposition I11-1-2 imply (F).
(F)=(C). Assume that V,= ]_[ (1+X) converges in L. Then, since {V,}

is a #,-martingale, V, converges almost surely to V= H (1+X,) and we have
E[V]=Ilim E[V,]=1,

so that P(V>0)>0. Since {log(1+ X,)} is an independent random sequence, by
the 0-1 law we have
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P(V>0)=P(X log (1+ X,) converges)
K

=0 or 1.

Therefore we have V>0, a.s..
On the other hand define

Ui=XVioy, k=2,3,4,...

Then {U,} is a #,-martingale difference sequence such that
sup E[] i‘, U,/l=supE[V,]=1<+00.
n k=1 n

Define
v,=1,
v=V, k=2,3,4,...
Then for every k in N, v, is %, _;-measurable and we have

1
sup [v,| < supk]ill(1+Xk)_1g inka:‘[l (1+X,) <+o0, as..

Therefore by Burkholder’s theorem (W. Stout [3], Theorem 2-9-4) > X, =3 U,
k k

converges almost surely.

4. Absolute continuity of the infinite product measures

In this paragraph we apply Theorem 2 to the equivalence of two infinite product
measures on the sequence space.

Theorem 3. Let pu=I]p, and v=[1v, be infinite product measures on the
k k

sequence space RN, where {y,; ke N} and {v,; ke N} are probabilities on R*
such that v,~ u, (equivalent) for every k in N. Then all of the following statements
are equivalent.

(A) Z ( dv, (x)— 1) converges in L'(u).

®) sup | (42 e (50— 1)y % - X ) < 0.

o X < dv, (x) — 1) converges almost surely (u).
k

dv - (x) — 1) converges almost surely (u).

(D) ‘kz(dvk () =1)and 3 (9
B 19

k
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(F) v~pu.
In the above statements x, = x,(x), k € N, denotes the k-th coordinate of x={x,} € RV,

Proof. Define

X(x)=

ZLZ (x)—1, x={x}eRY, keN.

Then obviously the random sequence {X,} on the probability space (R¥, y) satisfies

dv, _
du, (xk)_l;l 1+ X,)
is equivalent to v~ u (J. Neveu [1], Proposition I1I1I-1-2), Theorem 3 is a special case

of Theorem 2.

te hypothesis of Theorem 2. Since the L!-convergence of []
k
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