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Abstract: We study the problem of selecting features associated with
extreme values in high dimensional linear regression. Normally, in linear
modeling problems, the presence of abnormal extreme values or outliers is
considered an anomaly which should either be removed from the data or
remedied using robust regression methods. In many situations, however, the
extreme values in regression modeling are not outliers but rather the sig-
nals of interest; consider traces from spiking neurons, volatility in finance,
or extreme events in climate science, for example. In this paper, we propose
a new method for sparse high-dimensional linear regression for extreme val-
ues which is motivated by the Subbotin, or generalized normal distribution,
which we call the extreme value linear regression model. For our method,
we utilize an �p norm loss where p is an even integer greater than two;
we demonstrate that this loss increases the weight on extreme values. We
prove consistency and variable selection consistency for the extreme value
linear regression with a Lasso penalty, which we term the Extreme Lasso,
and we also analyze the theoretical impact of extreme value observations
on the model parameter estimates using the concept of influence functions.
Through simulation studies and a real-world data example, we show that
the Extreme Lasso outperforms other methods currently used in the lit-
erature for selecting features of interest associated with extreme values in
high-dimensional regression.
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1. Introduction

When applying linear regression models, one often encountered issue is the pres-
ence of extreme values, defined as rare, abnormally large magnitude observa-
tions. This can occur in the form of outliers in the response variable as well as
in the form of highly influential points in the predictor variables. Historically,
statisticians have tried to develop methods to ignore or dampen the effects of
outliers in data sets when doing a linear regression analysis. Metrics such as
residual analysis, Cook’s distance, and DFFIT can be used to identify and pos-
sibly remove outliers from the data set [33]. New regression methods have also
been developed to handle outliers in response variables as well. For example,
robust regression [15] has been used in many different applications, and much
work has been to done to show theoretical asymptotic performance in the pres-
ence of outliers [14, 34]. More recently, several have studied robust regression
procedures for high-dimensional data [24, 44].

However, in certain contexts, the important information in the response vari-
able that we want to model or predict is in said rare, abnormally large magnitude
observations. For these types of applications, rather than wanting to remove out-
liers or use robust regression methods, we instead want to focus on these extreme
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values when fitting models to the data. For example, in neuroscience, calcium
imaging data collected contains measurements of fluorescence traces of neurons
in the imaged brain [45]; the signal that is important in this situation is the oc-
currences of neuron firing, indicated by large positive spikes in the fluorescence
trace. Extreme value regression models are often used as well in climatology to
measure the rate and strength of extreme climate or weather events [21], or in
finance to predict periods of high volatility of asset prices [7]. Their potential us-
age has also been studied in spectroscopy analysis and signal processing [27]. We
note that, for each of these different contexts, the exact meaning of an extreme
value can vary; therefore, we do not propose a general definition for an extreme
value observation in this work. We do, however, assume that the presence of
extreme values in the data is known by the user a priori.

Several different possible approaches to the problem of high-dimensional re-
gression for extreme values have been used in various fields. Sparse regression
methods based on classical extreme value theory utilize a generalized linear
model framework. The extreme values above a predetermined threshold in a re-
sponse variable are specified to follow a distribution, such as the Gumbel, whose
parameters are a linear function of the predictor variables and which determine
the frequency and magnitude of the extreme values [3, 32]. Another regression
model commonly applied to model extreme values in the high-dimensional set-
ting is sparse quantile regression, specifically applied to a very high or very low
quantile [16]. These types of models use a weighted absolute deviation loss func-
tion in order to find the expected value of a response variable at a particular
quantile. Extensions to high-dimensional sparse �1 quantile regression have also
been studied extensively [5, 22]. These types of regression methods have shown
to be effective for finding features which are correlated to larger magnitude val-
ues of a response variable when there is ample data to create a reliable model.
In the types of applications we are considering, though, the extreme values tend
to be very rare for a typical set of observations. Because of this, it is unclear how
the desired quantile should be chosen based on the number and magnitude of
the extreme events. The rarity of the extreme values can also cause the results
from the regression model to be numerical unstable due to the lack of adequate
data to get accurate estimates and to sensitivity to choice of quantile at the
extremes. Additionally, quantile regression will not be as useful in the situation
when the response variable of interest has both positive and negative extreme
values, as the model by construction will upweight the impact of one side of
the extreme values while heavily downweighting the other. Thus, quantile re-
gression potentially restricts us to focusing only on some of the extreme values
while essentially ignoring others.

One other widely-used approach for modeling extreme values involves pre-
processing the data via some type of thresholding algorithm, keeping only the
observed values of each variable which are above either a static or dynamic
threshold and zeroing out the others. Examples of this in different fields include
spike calling or deconvolution in neuroscience [38] or Otsu’s method in image
processing [4]. After these algorithms have been applied to the data, typical
high-dimensional regression methods are then applied to the data. In general,
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thresholding data can help in regression analysis for extreme values by removing
any influence from non-extreme values. However, this type of filtering is not
necessarily desirable in all situations. Thresholding approaches by their nature
binarize the observations of a variable in to extreme and non-extreme categories,
whereas in some cases it may make more sense to smooth the transition from
extreme to non-extreme values if it is not clear where the boundary between
the two should lie. Also, the addition of an extra data pre-processing step can
potentially lead to less precise estimates from the following regression analysis,
since any errors made in the former will propagate to the latter regression step.

In this paper, we explore a different potential approach to tackle the problem
of modeling and predicting extreme values. Our approach to this problem is to
increase the relative weight of larger magnitude losses compared to regular or-
dinary least squares. Conceptually, this problem is analogous to increasing the
power of the Gaussian kernel function, which leads to the generalized normal
distribution [37]. Thus, we base our method on �p norm regression, which uses a
general p norm for regression rather than the ordinary �2 norm. This is a method
which has been well-studied as a whole in the past in the statistics literature
[28, 30]. However, much of the effort in previous research has been focused on
showing that �p-norm regression can be more robust to outliers [13, 36] by using
a norm between 0 and 1. On the other hand, we are interested in using this
type of regression model to create a method which is more sensitive to extreme
values in the response by using norms larger than the squared error loss, i.e.
when p > 2. By doing this, we skew the regression results toward finding the
relationships with extreme values in a response variable without disregarding
potentially useful observations that could otherwise be ignored by thresholding
or substantially downweighted by quantile regression. We also analyze the theo-
retical influence of extreme value observations on our proposed regression model
as well as the finite sample performance guarantees of the estimation procedure.
While general theoretical properties of �p norm regression have been examined
in previous literature [18], the performance with respect to regression for ex-
treme values when p > 2 for �p norm regression has not been well-studied; this
particular situation presents its own unique theoretical and practical challenges,
which we will investigate in this paper.

The rest of the paper is organized as follows. Section 2 introduces and char-
acterizes the extreme value linear regression method and presents the algorithm
used for parameter estimation. We then prove consistency and sparsistency re-
sults in Section 3. Lastly, in Section 4, we investigate the performance of the
extreme value linear regression through simulation and real data studies.

2. Regression for extreme values

Let X ∈ R
n×p be a data matrix of predictor variables and y ∈ R

n be a corre-
sponding vector of responses in which extreme values are known to be present.
We would like to find features in X that are correlated with said extreme values
of y; on the other hand, the relationship between X and the non-extreme values
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of y are not considered very important for our particular problem. (Also, for
simplicity, we presume without loss of generality that each of the variables are
centered and scaled.) In this paper, we consider the context of a linear data
generating model, which will be the focus of the theory presented in Section 3
and the empirical investigations of Section 4. Here, we assume that the data are
generated from a simple linear process:

yi = Xiβ
∗ + εi, ε i.i.d..

In order to produce large magnitude extreme values in the observed response
yi from this model, either some of the corresponding predictors at the observed
time Xi need to be large in magnitude relative to typical values, or some of the
parameters in β∗ need to be large in magnitude.

Note that we assume that the errors εi are independently and identically
distributed, but do not necessarily assume that they follow a Gaussian distri-
bution. In Section 3, we will study both the cases where ε follows a Gaussian
distribution and where ε follows a generalized normal, or Subbotin, distribution
[37]. The generalized normal distribution is defined as

f(ε) =
γ

2σΓ(1/γ)
e−(

|ε|
σ )

γ

for scale parameter σ > 0 and shape parameter γ > 0. When γ = 2, the
generalized normal distribution will be equivalent to a Gaussian distribution,
while when γ > 2 the generalized normal distribution will have a thinner tail
compared to a Gaussian. Thus, we are specifically interested in studying the
case where the generalized normal distribution with γ > 2 as a potential error
distribution of the data generating model, as this relatively discourages the
presence of extremely large residuals in the regression model estimate when
compared to a Gaussian error distribution.

To get estimates of the parameters of the model above, we propose to use
the extreme value linear regression model, which is characterized by the �γ-
norm regression for γ > 2. The foundation for this method is a generalized
linear model applied to the generalized normal distribution as described above.
It follows naturally from the Gaussian case that estimating the parameters of
the generalized normal distribution for a particular value of γ is analogous to
minimizing an �γ norm regression model loss function [28], which is of the form

L(y,X, θ̂) =
1

γN
‖y −Xθ̂‖γγ

where γ corresponds to the shape parameter in the generalized normal distri-
bution. As follows from above, we are particularly interested in the case of �γ
norm regression for γ > 2.

To demonstrate the differences between the different regression methods dis-
cussed in Section 1, we show the respective scaled loss functions for each in
Figure 1. Specifically, we show the extreme linear regression loss function for
γ = 4, 6, and 8 and the loss for quantile regression at the 0.5 and 0.99 quantiles
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Fig 1. Scaled loss functions for ordinary linear regression, extreme �γ norm regression, and
quantile regression.

are shown. Comparing the different methods, we see the advantage that the γ-th
power error loss has over the other two loss functions. Relative to the squared
error loss function, the extreme value loss function puts much less weight on very
small residuals. However, as the magnitude of a residual increases, the weight
given by the extreme value loss function grows exponentially compared to the
squared error loss function. In particular, this means that the extreme linear
regression will reduce the presence of abnormally large residuals, which occur
when there is an extreme value in the response variable which is not captured
by the estimate from the model. Thus, the extreme linear regression will find
parameter estimates for the model which better predict the occurrences of the
extreme values of a response variable. Quantile regression, on the other hand,
proportionally increases the relative weight of extreme values by adjusting the
weights of an absolute value loss function using linear constants. However, since
the loss function only grows linearly, the weight of extreme values compared to
relatively large but non-extreme values in the response variable will be small for
the quantile regression loss function compared to the extreme linear regression
loss function. Additionally, quantile regression can only put increasing weights
on either positive or negative residuals in the regression estimate and not both,
meaning that it is not suitable in the case where a response variable has both
positive and negative extreme values.

In terms of the impact to the weight of observations in a regression model,
our extreme linear regression model functions most similarly to the ε-invariant
loss used in SVM regression [9] and to the heterogeneous noise regression mod-
els [35]. Both of these methods can also be used to substantially decrease the
weight of smaller magnitude residuals compared to the larger magnitude ones;
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this is accomplished by the ε-invariant loss by setting the loss for all residuals
below a selected magnitude to be 0, while the heterogeneous noise regression
models can be used to increase the weight of the observations which are large
with respect to either the predictors or the response variable. The value of the
hyperparameters selected for each of the corresponding models, e.g. γ for the
extreme value regression or ε for SVM regression, can be used to balance the
trade-off between the loss with respect to extreme values and non-extreme val-
ues. In particular, by more heavily balancing toward minimizing the losses for
extreme values, these methods potentially decrease prediction accuracy for the
non-extreme values in the response. Outside of their similarities, the extreme
linear regression model has some notable advantages compared to the other
techniques: it is not sensitive to the choice of a thresholding hyperparameter
as is the case for SVM regression, and it does not require estimation of extra
parameters as in the heterogeneous noise model in order to achieve the desired
effect for this particular application.

2.1. Sparse extreme value regression

In high-dimensional regression problems, automatic feature selection techniques
are used to obtain sparse solutions. In many contexts, this is done by adding
a sparsity-inducing regularization penalty. In the case of ordinary linear regres-
sion, this leads to the penalized squared error loss function. Applying the same
idea to the extreme value linear regression model gives the loss function:

min
β

1

2N
‖y −Xβ‖γγ + λP(β).

The form of the extreme value �γ norm loss function permits the usage of any
type of regularization penalty that can be applied to the ordinary linear regres-
sion case. For example, one can employ more complex penalties such as SCAD
[41] or MCP [46], or specify a more specific structure with penalties such as the
Fused Lasso [39], Group Lasso [10], or Exclusive Lasso [8].

Similar to the Lasso and other penalized ordinary linear regression models,
the objective function for the penalized extreme linear regression can be decom-
posed in to the sum of two convex functions, the residual norm and the penalty
terms. Thus, a proximal gradient descent algorithm can be used to estimate β̂.
Algorithmic convergence properties of proximal gradient descent algorithms for
penalized linear regression have been well-studied in recent literature. Notably,
it has been shown that the proximal gradient algorithm is guaranteed to con-
verge to a minimum. Additionally, because the �γ loss function is convex for
γ > 2, if the regularization penalty is also convex, then the algorithm is guaran-
teed to converge to a global solution [31]. Algorithm 1 gives the general outline
of the computational methodology.

As a practical consideration, the γ hyperparameter can be chosen for the
regression model either by a priori preference, or by using a stability selection
procedure as first proposed by [26]. Stability selection determines the reliability
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Algorithm 1: Regularized Extreme Regression Algorithm with Backtrack-
ing

Input : y ∈ R
N×1X ∈ R

N×p, λ ≥ 0, γ > 2, δ > 0, 0 < α < 1.

Initialize: β(0) = 0p

while 1
N
‖β(r) − β(r−1)‖1 ≥ δ do

(1) Find gradient ∇g(β) and optimal step size tr via backtracking:

(a) Set tr = 1.

(b) Calculate ∇g(r)(β(r)) = −γXT [|y −Xβ(r)|◦(γ−1) ◦ sgn(y −Xβ(r))]

(c) Repeat:

(i) z = proxλ∗trP (β(r) − trg(r)(β
(r)))

(ii) tr = αtr

until g(z) ≤ g(β(r))−∇g(β(r))T (β(r) − z) + 1
2tr

‖z− β(r)‖22

(2) Update β(r+1) = z.

(3) Update r = r + 1.
end

return β̂ = β(r).

of automatic feature selection estimates by finding the proportion of times each
feature is chosen over repeated bootstrap samples for a given set of hyperpa-
rameter values. A value of γ can then be selected via an overall model stability
criteria, such as finding the γ which gives the maximum number of covariates
which are selected at a rate above a particular stability threshold, or by using
a specific model stability metric such as the one proposed in [23].

3. Theoretical results

In this section, we present theoretical results for the performance of the sparse
extreme value regression method introduced previously. Specifically, we focus
our studies on the Extreme Lasso, i.e. the extreme value �γ norm estimator with
an �1 regularization penalty. We note that, for the following results, we assume
γ to be a fixed parameter rather than a parameter to estimate. Our analysis
below is separated in to two parts. First, we derive high-dimensional and finite-
sample performance guarantees for the Extreme Lasso estimator, showing that
it is consistent and variable selection consistent under two different error distri-
butions appropriate for the generalized normal. We then study our method with
respect to the concept of influence functions, a statistic to measure the effect of
infinitesimal, pointwise contamination of the covariates and response variable
on the resulting regression coefficients. Specifically, we formulate the influence
function of the Extreme Lasso regression model and use this to demonstrate
that the Extreme Lasso method is more heavily skewed toward selecting fea-



Sparse regression for extreme values 6003

tures associated with extreme values compared to the ordinary Lasso regression
method. Formal proofs for all of the statements in Section 3 can be found in the
Appendix.

3.1. Consistency of the Extreme Lasso

We now present theoretical results for consistency and model selection consis-
tency of the Extreme Lasso. Our results bear similarity to existing results for
the consistency of Lasso-regularized M-estimators; the main difference between
the results presented here and those in previous works lies in the distributional
assumptions of the errors. Specifically, our contribution lies in deriving concen-
tration bounds for sub-Weibull and sub-Gamma random variables. Consider the
linear data generating model:

yi = xT
i β

∗ + εi, ε i.i.d..

The Extreme Lasso regression thus solves the optimization problem:

minimize
β

n∑
i=1

|yi − xT
i β |γ + λ‖β ‖1

For simplicity, we consider the case when γ is an even integer. The problem can
now be written as:

minimize
β

n∑
i=1

(yi − xT
i β)γ + λ‖β ‖1

Define

L(β) = 1

n

n∑
i=1

�(xT
i β−yi).

Clearly, L belongs to the family of M-estimators, whose properties have been
widely studied in literature; in particular, Negahban et al. [29], Loh et al. [24],
and Loh and Wainwright [25] have established the consistency of M-estimators
in the high-dimensional setting. Thus, we can apply the ideas and theories for
high-dimensional M-estimators from these papers to the Extreme Lasso case to
obtain the results for the regularized extreme value linear regression.

We first state the previous results regarding the consistency and variable
selection consistency for general robust M-estimators which we use below. In
the literature, Negahban et al. [29] established consistency for high-dimensional
M-estimators:

Lemma 3.1 (Estimation Consistency [29]). Suppose L satisfies the Re-
stricted Strong Convexity (RSC) condition with curvature κL and

λ ≥ 2‖∇L(β∗)‖∞.
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Then β̂ exists and satisfies the bounds:

‖β̂ − β∗ ‖2 ≤ 3
√
s

κL
λ

where s = |supp(β∗)|, i.e., ‖β∗ ‖0.
Note that Lemma 3.1 corresponds to Theorem 1 in Negahban et al. [29] assuming
that the restricted strong convexity (RSC) holds with tolerance parameter τL =
0. Also, here we consider �1 penalty and Ψ(M) =

√
s. Similarly, Loh et al. [24]

established model selection consistency, also known as sparsistency, for high-
dimensional robust M-estimators:

Lemma 3.2 (Model Selection Consistency [19]). Suppose the following
conditions hold:

(1) � satisfies RSC.
(2) � satisfies irrepresentability.

Let κIC denote the compatibility constant defined in Lee et al. [19]. Then, for

any 4κIC

τ ‖∇L(β∗)‖∞ < λ <
κ2
L

2L

(
2
√
s +

√
s

κIC

τ
2

)−2 τ
κIC

, the optimal solution to an

M-estimator problem is unique and model selection consistent: β̂ ∈ M .

Further, if mina∈S |β∗
a| > 2

κL

(√
s + τ

4

√
s

κIC

)
λ, then the estimator is also sign

consistent: sign(β̂S) = sign(β∗
S).

Lemma 3.2 refers to Theorem 3.4 in Lee et al. [19]. The finite constant κIC is
the compatibility constant between the irrepresentable term and ρ∗. τ is the
constant in the irrepresentable condition. Since we consider the �1-norm, i.e.,
ρ = ‖ · ‖1, we have kρ =

√
s and kρ∗ = 1 in the theorem. L is a constant such

that ‖∇2�(β)−∇2�(β∗)‖2 ≤ L‖β−β∗ ‖2. Note in the Lasso problem, it can be
shown that L = 0; hence there is no upper bound for λ. In the Extreme Lasso
case, in general we have L 	= 0 and there is an upper bound for λ.

Importantly, the results from both Lemma 3.1 and Lemma 3.2 are entirely
deterministic. Thus, we can guarantee that, under certain conditions, the ex-
treme value linear regression with the Lasso penalty will provide consistent
estimates of the true parameters of the model. Additionally, both Lemma 3.1
and Lemma 3.2 suggest that the key ingredients for statistical consistency are
the boundedness of ‖∇L(β∗)‖∞, which ultimately determines the rate of con-

vergence of β̂ to β∗ and the local RSC condition. Notice that when � is the
squared error loss, we get the same consistency and model selection consistency
rate for the Lasso regression problem:

‖∇L(β∗)‖∞ =
1

n
‖XT (y −Xβ∗)‖∞ = ‖XT ε‖∞/n.

On the other hand, for the Extreme Lasso case, i.e. �(xT
i β−yi) = (yi −xT

i β)γ ,
we have:

‖∇L(β∗)‖∞ = γ · 1
n
‖XT ε◦(γ−1)‖∞.
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To establish complete results for consistency and model selection consistency
for the Extreme Lasso, we first build a concentration bound for the quantity
‖∇L(β∗)‖∞, i.e., γ · 1

n‖XT ε◦(γ−1)‖∞. To do this, we first need to build a tail

bound for εγ−1
i , which will differ under different distributional assumptions on

the covariates and error terms in the linear model. These assumptions on the dis-
tributional properties will come into play in verifying that the inequality and the
RSC condition hold with high probability under the prescribed sample size scal-
ing. We can then combine the tail bound results with Lemma 3.1 and Lemma 3.2
to derive full results. Below, we present tail bounds for 1

n‖XT ε◦(γ−1)‖∞ under
two different distribution assumptions on the error ε.

3.1.1. Sub-Gaussian errors

We first assume that εi follows a sub-Gaussian distribution, and we construct a
tail bound for a sub-Gaussian random variable raised to a power.

Lemma 3.3 (Tail Bound for Sub-Gaussian Raised to a Power). For
sub-Gaussian random variable Q, we have

P(|Q|γ−1 ≥ t) ≤ 2 exp

{
− t2/(γ−1)

2σ2

}
.

Under ordinary least squares, i.e. when γ = 2, we get the usual sub-Gaussian
tail bound; when γ = 3, Q2 follows a sub-exponential distribution. When γ ≥
4, as we have for the Extreme Lasso, Qγ−1 is neither sub-Gaussian nor sub-
exponential. Instead, in this situation the tail bound will follow what is known
in the literature as a sub-Weibull distribution [17, 40], which we define below.

Definition 3.1 (Sub-Weibull Variables). A random variable Z is said to be
sub-Weibull of order α > 0, denoted as sub-Weibull(α), if

‖Z‖ψα < ∞, where ψα(x) := exp (xα)− 1 for x ≥ 0.

Based on this definition, it follows that if Z is sub-Weibull (α), then

P(|Z| ≥ t) ≤ 2 exp(− tα

‖Z‖αψα

), for all t ≥ 0.

In the Extreme Lasso problem, since εi is sub-Gaussian, we have P(|εi|γ−1 ≥ t) ≤
2 exp

{
− t2/(γ−1)

2σ2

}
, which means εγ−1

i is sub-Weibull, i.e., ‖εγ−1
i ‖ψ2/(γ−1)

< ∞.

In the literature, Kuchibhotla and Chakrabortty [17] established concentration
inequalities related to sub-Weibull random variables. We apply the results and
build a tail bound for ‖

∑n
i=1 xiε

γ−1
i ‖∞/n, i.e., ‖XT ε◦(γ−1)‖∞/n by making the

substitution Z = εγ−1
i . Note that by Negahban et al. [29], restricted strong

convexity (for M-estimators) with respect to the �2-norm is equivalent to the
restricted eigenvalues condition (for the Lasso estimator).
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Lemma 3.4 (Concentration Bound for Sum of Sub-Weibull Random
Variables [17]). Consider the Lasso estimator for linear regression case. Sup-
pose there exists 0 < α ≤ 2, and γ,Kn,p > 0 such that

max

{
‖Xi‖M,ψα , ‖εi‖ψγ

}
≤ Kn,p for all 1 ≤ i ≤ n.

Also suppose n ≥ 2, k ≥ 1 and the covariance matrix Σn satisfies λmin(Σn) ≥
Kn,s. Then, with probability at least 1− 3(np)−1,∥∥∥∥∥ 1n

n∑
i

Xiεi

∥∥∥∥∥
∞

≤ 7
√
2σn,p

√
log(np)

n
+

CτK
2
n,p(log(2n))

1/τ (2 log(np))1/τ

n

where 1
τ = 1

α + 1
γ .

Theorem 3.1 (Consistency for Sub-Gaussian Error). Given the Extreme

Lasso program with regularization parameter λn = 2γ
(
7
√
2σn,p

√
log(np)

n +

CτK
2
n,p(log(2n))

1/τ (2 log(np))1/τ

n

)
, then with probability at least 1 − 3(np)−1, any

optimal solution β̂ satisfies the bounds:

‖β̂−β∗ ‖2≤
6
√
s

κL
· γ

(
7
√
2σn,p

√
log(np)

n
+
CτK

2
n,p(log(2n))

1/τ (2 log(np))1/τ

n

)
.

where τ = 2/(γ − 1).

Theorem 3.2 (Model Selection Consistency for Sub-Gaussian Error).
Consider the Extreme Lasso program with sub-Gaussian error. Assume that
the loss � satisfies Restricted Strong Convexity and covariance matrices sat-
isfy irrepresentability. Consider the family of regularization parameters λ =

4κIC

τ · γ
(
7
√
2σn,p

√
log(np)

n +
CτK

2
n,p(log(2n))

1/τ (2 log(np))1/τ

n

)
, then the following

properties holds with probability greater than 1− 3(np)−1:
(i) The Lasso has a unique solution with support contained within S, i.e.

S(β̂) ⊂ S(β∗).

(ii) If mina∈S |β∗
a| > ( τ

κIC
· 1

4 + 1) · 2
√
s

κL
· 4κIC

τ · γ
[
7
√
2σn,p

√
log(np)

n +

CτK
2
n,p(log(2n))

1/τ (2 log(np))1/τ

n

]
, the lasso estimator is also sign consistent:

sign(β̂S) = sign(β∗
S).

Applying the result of Theorem 3.1 for γ = 2, we can achieve the usual
consistency rate of

√
k log p/n for the ordinary squared error Lasso loss function
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under the constraint

Kε,r(log(np))
−1/2(log(2n))1/2 = o

(
n1/2

)
Note that the probability of the bound being satisfied approaches 1 as n →
∞, and thus the bound is proportional log(np) instead of the usual log p. By
setting the probability to be 1 − O(p−1), the usual Lasso rate

√
k log p/n can

be recovered.

3.1.2. Subbotin error

In the following section, we assume that ε follows a Subbotin distribution, i.e.,
ε ∼ Subbotin(γ). We study this particular distributional assumption as the
Extreme Lasso problem is equivalent to minimizing the negative log-likelihood
of the Subbotin distribution plus the regularization penalty. To see this, recall
the likelihood of Subbotin distribution:

fY (y;X;β) = c1

n∏
i=1

exp

[
− |yi − xT

i β |γ
]

= c1 exp

[
−

n∑
i=1

|yi − xT
i β |γ

]

Thus, the negative log-likelihood, �(xT
i β−yi) ∝

∑
i=1 |yi−xT

i β |γ , corresponds
to the loss function in the Extreme Lasso problem. Similar to before, our goal
is to build a tail bound for ‖XT ε◦(γ−1)‖∞/n. To do this, we first observe that
εγi follows a Gamma distribution.

Lemma 3.5 (Change of Variables). Suppose Z ∼ Subbotin(α), where α is
an even integer, then

Y = Zα ∼ Gamma(
1

α
, 1).

Thus, by Lemma 3.5, we have εγi ∼ Gamma( 1θ , 1). Hence, εγi follows a Gamma
distribution and can be bounded by sub-Gamma tail bounds in literature [6].
These results are stated in Lemma 3.6 and used to derive the results for Theo-
rem 3.3 and Theorem 3.4 below.

Lemma 3.6 (Concentration Bound for Sub-Gamma Random Variables
[6]). If Z ∼ Gamma(α, β), then we have:

P[Z− EZ] ≥
√
2γt+ ct] ≤ e−t

where γ = αβ2, c = β. We call that Z is sub-Gamma with (γ, c).
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Lemma 3.7 (Concentration Bound for Sum of Sub-Gamma Random
Variables). If Z ∼ Gamma(α, β), then with probability at least 1 −
c1 exp(−c2 log p), ∥∥∥∥∥ 1n

n∑
i

Xiεi

∥∥∥∥∥
∞

≤
√

log p

n

[
2

√
2

γ
+

√
log p

n

]

Theorem 3.3 (Consistency for Subbotin Error). Given the Extreme Lasso

program with regularization parameter λn = 2γ
√

log p
n

[
2
√

2
γ +

√
log p
n

]
, then

with probability at least 1 − c1 exp(−c2 log p), any optimal solution β̂ satisfies
the bounds:

‖β̂ − β∗ ‖2 ≤ 6
√
s

κL
γ(

√
log p

n

[
2

√
2

γ
+

√
log p

n

]
).

Theorem 3.4 (Model Selection Consistency for Subbotin Error). Con-
sider the Extreme Lasso program with Subbotin distributed error. Assume that
the loss � satisfies Restricted Strong Convexity and the covariance matrices sat-
isfy irrepresentability. Consider the family of regularization parameters λ =

4κIC

τ γ
√

log p
n

[
2
√

2
γ +

√
log p
n

]
, then the following properties holds with probability

greater than 1− c1 exp(−c2 log p):
(i) The Lasso has a unique solution with support contained within S, i.e.

S(β̂) ⊂ S(β∗).

(ii) If mina∈S |β∗
a| > ( τ

κIC
· 14 +1) · 2

√
s

κL
· 4κIC

τ γ
√

log p
n

[
2
√

2
γ +

√
log p
n

]
, the lasso

estimator is also sign consistent: sign(β̂S) = sign(β∗
S).

Note that Gaussian distribution is equivalent to the Subbotin distribution
when θ = 2. Thus, in the case where εi is a Gaussian random variable, we have
by Lemma 3.5 that ε2i is Gamma(12 , 1). Hence, ε2i is sub-Gamma with (12 , 1).
Suppose that ‖Xj‖∞ ≤ 1, we then have XT

j ε is a sub-Gamma(n/2, 1) random
variable. Thus, it follows from Lemma 3.6 that, in this particular case, we have:

P
(
XT

j ε− E[XT
j ε] ≥ 2

√
nt+ t

)
≤ e−t.

However, if we instead use known Lasso results for ε with sub-Gaussian tail

bounds and set t = σ
√

c log p
n , then we have:

P
(
|XT

j ε|/n ≥ t
)
≤ 2e−

nt2

2σ2 .
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In effect, the sub-Gamma tail bound has an extra term compared to the sub-
Gaussian bound. This can be seen when comparing the result of Theorem 3.3
and Theorem 3.4 to the Lasso consistency rate derived using sub-Gaussian tail
bounds. Specifically, there is an extra factor of log p

n in the consistency rate result
from Theorem 3.3 and Theorem 3.4 compared to the regular Lasso consistency
rate. This is to be expected given that the sub-Gamma is generally a weaker
distributional assumption compared to the sub-Gaussian. However, this does
show that the bound for Theorem 3.3 and Theorem 3.4 is not necessarily tight
for any particular values of θ.

3.2. Influence of extreme values

Here, we demonstrate that our Extreme Lasso estimator is better at selecting
features associated with extreme values than the regular Lasso estimator. We do
this by utilizing the concept of influence functions, which have been previously
proposed in the regression literature as a method for analyzing and quantifying
the effect of outliers in data on statistical estimators [12]. However, in previous
works, the influence functions have generally been used in order to demonstrate
the robustness of a regression estimator to the outlier observations. In our case,
we consider the opposite direction, where we show that the Extreme Lasso
estimator is more sensitive to the extreme values and hence tends to select
features associated with extreme values more. To do this, we show that the
value of influence function of the Extreme Lasso is greater than the Lasso,
suggesting that our proposed estimator is affected more by extreme values.

We follow closely the approach by Wang et al. [42]. Denote as δZ the point

mass probability distribution at a fixed point z = (x0, y0)
T ∈ R

p+1. Given
the distribution F of (x, y) in R

p+1 and proportion ε ∈ (0, 1), the mixture
distribution of F and δZ is Fε = (1− ε)F + εδZ. Let

β∗
0 = argmin

β

⎡
⎣{∫ (

‖y −XTβ‖γ
)
dF

}
+

p∑
j=1

pλj (|βj |)

⎤
⎦

and

β∗
ε = argmin

β

⎡
⎣{∫ (

‖y −XTβ‖γ
)
dFε

}
+

p∑
j=1

pλj (|βj |)

⎤
⎦ .

For the Lasso and Extreme Lasso, pλj (|βj |) = |βj |. For an exponential-type
estimator, the influence function at a point z ∈ R

p+1 is defined as

IF (z;β∗
0) = lim

ε→0+
(β∗

ε − β∗
0) /ε,

as long as the limit exists. We use this definition to derive the specific form
of the influence function for the Extreme Lasso; the result is shown below in
Theorem 3.5.
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Theorem 3.5 (Influence Function of Extreme Lasso). For the penalized
extreme value regression estimators with �γ-norm loss, the jth element of the
influence function IFj (z;β

∗
0) has the following form:

IFj (z;β
∗
0) =

{
0, if β∗

0j = 0,

−Γj

{
−γrγ−1

0 x0 + v2

}
, otherwise,

where Γj denotes the jth row of {A (γ0)−B}−1
, r0 = y0− xT

0 β
∗
0,

v2 =
{
p′λ1

(|β∗
01|) sign (β∗

01) , . . . , p
′
λd

(|β∗
0d|) sign (β∗

0d)
}T

,

B = diag
{
p′′λ1

(|β∗
01|) , . . . , p′′λd

(|β∗
0d|)

}
,

and

A(γ) =

∫
xxT γ(γ − 1)

(
y − xTβ∗

0

)γ−2 × dF (x, y).

One important implication of this result is that the Extreme Lasso with �γ
regression is more sensitive to features containing extreme values, as formally
stated below in Corollary 1.

Corollary 1. The influence function of the Extreme Lasso with γ > 2 is greater
than the influence function of Lasso.

Corollary 1 can be shown by using a direct comparison with the Lasso influence
function, i.e. the case where γ = 2. Specifically, we have:

IF
(
(x, y);TExtreme, Fβj

)
IF

(
(x, y);TLasso, Fβj

) =
γrγ−1

0 x0 − v2
2r0x0 − v2

· A(2)−B1

A(γ)−B1
.

Recall that β∗
0 is the coefficient of fitting the data without extreme values. Hence,

if x0 is an influential point, r0 = y0 − xT
0 β

∗
0 is sufficiently large, which means

in this case that rγ−1
0 � r0 for γ > 2. Hence,

IF((x,y);TExtreme,Fβj )
IF((x,y);TLasso,Fβj )

> 1, i.e., the

influence function evaluated at γ > 2 is greater than evaluated at γ = 2. Thus,
the Extreme Lasso will be more likely to select features associated with large
magnitude values of x and y compared to the ordinary Lasso regression.

4. Empirical investigations

Below, we analyze the performance of sparse extreme value linear regression
below on two sets of simulations studies and two real-world case studies.
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4.1. Linear model simulation study

We first study the performance of our method on a simulation study with data
generated from the linear model as described in Section 2, i.e. yi = Xiβ

∗ + εi.

We let ε
iid∼ Gamma(α, β) (using the rate parameterization) before centering

such that ε̄ = 0. The predictor matrices X contain n = 1000 observations and
p = 750 features. The columns of the matrix are generated as AR(1) processes
with variance 1 and a cross-correlation with one other column of ρ = 0.9. We
then add large positive extreme values to the columns at known observation
points; these are different for each column. The true parameter vector β∗ is
set to have 10 randomly selected nonzero entries. Our goal is to recover the
full non-zero support of β∗ without recovering false positives. We analyze four
different varying simulation specifications:

1. The signal to noise ratio of the extreme events relative to baseline noise,
which we denote as τ .

2. The number of extreme events added to each of the columns of X.
3. The distribution of the errors ε.
4. The number of dimensions p, holding the number of observations and

parameter sparsity level constant.

We compare the Extreme Lasso regression model, as defined in Section 3, with
the ordinary Lasso, �1 quantile regression, and Lasso regression after preprocess-
ing the data using data-driven thresholding. We fit the Extreme Lasso regression
model, as defined in Section 3, using γ = 4 and γ = 6. For �1 quantile regres-
sion, we find parameter estimates at the 0.5, 0.9, 0.99, and 0.999 quantiles.
Data-driven thresholding is done by using the adaptive CUSUM method [43] to
identify extreme values in the response variable and removing any data which
does not correspond to those observed extreme values. The number of variables
for all methods is selected via approximate oracle sparsity tuning. We use 4
replications for each scenario. The results for each of the simulations studies
are shown below using average F-1 scores along with the standard deviations
across all replications. The full results, which include F-1 scores, true positive
rates, and false positive rates for each of the simulations, as well as comparisons
with different regularization penalties for the extreme value linear regression
and ordinary linear regression models, can be found in the Appendix.

Scenario 1: magnitudes of extreme values in response
Here, we change the size of the signal to noise ratio, comparing τ = 6, 7, 11,
and 15. The results are shown in Table 1. When the signal to noise ratio of
the extreme values is not sufficiently large, none of the methods are able to
select the correct features. Similarly, if the signal to noise ratio is large enough,
all of the methods except quantile regression are able to pick out the correct
features. However, we see that there is a fairly large window of τ values in
which the Extreme Lasso is able to find the correct features while ordinary
linear regression and thresholding fail.



6012 A. Chang et al.

Table 1

Average F-1 scores, changing relative extreme value magnitudes for the linear model.

τ = 6 τ = 7 τ = 11 τ = 15
ExLasso (γ = 4) 0.196 (0.1382) 0.209 (0.1778) 0.875 (0.05) 0.938 (0.0481)
ExLasso (γ = 6) 0.296 (0.1416) 0.782 (0.0894) 0.85 (0.0577) 0.938 (0.0481)
Lasso 0.2 (0.1414) 0.225 (0.15) 0.3 (0) 0.938 (0.0481)
Median 0.149 (0.0357) 0.301 (0.2087) 0.529 (0.0626) 0.44 (0.1056)
Q0.9 0.149 (0.0357) 0.127 (0.0429) 0.185 (0.1239) 0.147 (0.0508)
Q0.99 0.095 (0.0394) 0.09 (0.0194) 0.102 (0.0355) 0.111 (0)
Q0.999 0.132 (0.1028) 0.219 (0.2222) 0.328 (0.2583) 0.321 (0.1821)
Threshold 0.028 (0.0556) 0 (0) 0 (0) 0.893 (0.1056)

Scenario 2: number of extreme events in response
We now vary the number of extreme value events E from 1 to 4, with τ = 6.
Results are shown in Table 2. As we observed above, in the case of one extreme
event at τ = 6, none of the methods do well. When there is more than one
extreme event though, the Extreme Lasso is able to pick out the correct features.
None of the other methods are able to perform nearly as well when we increase
the number of extreme value events in this case, with only a slight improvement
in performance at E = 4 compared to E = 1.

Table 2

Average F-1 scores, changing number of extreme events for the linear model.

E = 1 E = 2 E = 3 E = 4
ExLasso (γ = 4) 0.875 (0.05) 0.225 (0.05) 0.79 (0.0838) 0.913 (0.0857)
ExLasso (γ = 6) 0.85 (0.0577) 0.788 (0.2022) 0.779 (0.1447) 0.85 (0.1291)
Lasso 0.3 (0) 0.36 (0.1925) 0.339 (0.0773) 0.325 (0.05)
Median 0.529 (0.0626) 0.513 (0.059) 0.472 (0.1155) 0.457 (0.1337)
Q0.9 0.185 (0.1239) 0.301 (0.0809) 0.311 (0.157) 0.414 (0.1092)
Q0.99 0.102 (0.0355) 0.107 (0.0053) 0.099 (0.0048) 0.126 (0.0376)
Q0.999 0.328 (0.2583) 0.232 (0.0992) 0.334 (0.0793) 0.445 (0.2531)
Threshold 0 (0) 0 (0) 0 (0) 0.075 (0.15)

Scenario 3: error distributions
In this scenario, we change the distribution of the added errors by changing
the rate parameter of the pre-centered Gamma distribution from which they
are generated. By decreasing the rate parameter, we increase the variance of
the errors and thus increase the probability of the presence of added errors
with magnitudes that are approximately as large as the true extreme events
themselves. We study the cases where β = 0.33, 0.2, 0.125, and 0.083 at τ = 11.
We can see from Table 3 that, starting from the baseline scenario with β = 0.33,
the increasing rate parameter significantly affects the Extreme Lasso in terms
of accuracy compared to the other methods. This is not surprising, since we
would expect the Extreme Lasso to be more sensitive to large errors that are
not actually true signal. However, even in the scenario with the largest error
variance, the Extreme Lasso still outperform all of the others. Thus, even in the
presence of potentially large residuals, the Extreme Lasso is still a preferable
method compared to the others.
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Table 3

Average F-1 scores, changing error distribution for the linear model.

β = 0.33 β = 0.2 β = 0.125 β = 0.083
ExLasso (γ = 4) 0.875 (0.05) 0.8 (0.1155) 0.625 (0.1258) 0.275 (0.2217)
ExLasso (γ = 6) 0.85 (0.0577) 0.75 (0.1732) 0.682 (0.1284) 0.425 (0.15)
Lasso 0.3 (0) 0.2 (0.1414) 0.262 (0.1103) 0.175 (0.15)
Median 0.529 (0.0626) 0.338 (0.1134) 0.46 (0.1078) 0.403 (0.1414)
Q-0.9 0.185 (0.1239) 0.122 (0.0465) 0.121 (0.041) 0.097 (0.0071)
Q-0.99 0.102 (0.0355) 0.092 (0.0055) 0.092 (0.0096) 0.097 (0.0096)
Q-0.999 0.328 (0.2583) 0.202 (0.1506) 0.093 (0.0087) 0.093 (0.0105)
Threshold 0 (0) 0.05 (0.1) 0.073 (0.0994) 0 (0)

Scenario 4: number of dimensions
We change the number of dimensions of the model matrix to study the per-
formance of the different methods in relatively higher dimensional settings. We
let P = 750, 1500, 2250, and 3000, while we hold the number of true features
constant (thus decreasing the sparsity level as we increase P ). Table 4 shows the
results. All of the approaches do tend to decay in accuracy. In particular, the
least squares and the Extreme Lasso methods tend to show a relatively larger
decline in performance, while quantile regression at large quantiles and thresh-
olding appear to be more stable. Once again though, even when performance
decays in the higher dimensional settings, the F-1 scores for the Extreme Lasso
still exceeds any of the others.

Table 4

Average F-1 scores, changing number of dimensions of predictor matrix in the linear model.

P = 750 P = 1500 P = 2250 P = 3000
ExLasso (γ = 4) 0.875 (0.05) 0.75 (0.0577) 0.827 (0.0848) 0.627 (0.2906)
ExLasso (γ = 6) 0.85 (0.0577) 0.65 (0.1) 0.642 (0.1962) 0.55 (0.1)
Lasso 0.3 (0) 0 (0) 0 (0) 0 (0)
Median 0.529 (0.0626) 0.249 (0.0671) 0.247 (0.1579) 0.103 (0.0269)
Q-0.9 0.185 (0.1239) 0.117 (0.0553) 0.102 (0.0119) 0.103 (0.0269)
Q-0.99 0.102 (0.0355) 0.1 (0.0041) 0.089 (0.0051) 0.095 (0.0037)
Q-0.999 0.328 (0.2583) 0.117 (0.0495) 0.279 (0.2265) 0.089 (0.0051)
Threshold 0 (0) 0 (0) 0 (0) 0 (0)

4.2. Mixture model simulation study

Next, we study a case where the extreme value linear regression model is mis-
specified with respect to the data generating model, but where the data still
have extreme values. We generate data from a mixture model of the form:

yi =

K∑
k=1

1ikXiβk + εi

ε
iid∼ Gamma(α, β).

We simulate 4 different sets of predictor variables. The first set contains features
which are generated from a mean 0 Gaussian distribution with added extreme
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values at several randomly selected observation points. The second set contains
variables simulated from a Gaussian distribution with no extreme values but
which has a mean shift of 2σ2 for half of the observations. The third set con-
tains variables which exhibit cross-correlation (ρ = 0.9) to one of the variables
in the first feature set, but with different extreme value observation points. The
fourth set contains uncorrelated white noise variables. We then create a response
variable using the above mixture model with K = 2 mixture components, where
the first component is comprised of the first set of the simulated predictor vari-
ables with extreme values, and the second component is comprised of the second
set of the simulated predictor variables with mean shift. The first component
creates extreme values in the response variable because of their presence in the
first set of predictor variables, while the second component will be correlated
with the non-extreme values in the response because of the mean shift of the
corresponding predictors. Our goal is thus to recover as the support set the vari-
ables associated with the first mixture component, i.e. the ones which generate
the extreme values in the response, without selecting any variables from any of
the others.

The predictor matrices X we simulate contain n = 1000 observations and
p = 750 columns; 10 features assigned to the each of the first 3 sets of predictor
variables as described above and the rest designated as part of the last set.
As in the linear regression simulation study, we analyze four different varying
simulation specifications:

1. The signal to noise ratio of the extreme events relative to baseline noise,
τ .

2. The number of extreme events added to the variables in the first and third
components.

3. The distribution of the errors ε.
4. The number of dimensions p, holding the number of observations and

parameter sparsity level for each of the mixture components constant.

Again, we compare our method with regularized ordinary least squares regres-
sion, �1 quantile regression, and Lasso regression after thresholding; we use 4
replications for each scenario, and we compare results using average F-1 scores.
Full results can be found in the Appendix.

Scenario 1: magnitude of extreme values of response variable
We first vary the size of the signal to noise ratio between τ = 6, 7, 9, and
50. The results are shown in Table 5. The extreme value methods are able
to select the true features at a relatively smaller level of τ . The least squares
and thresholding methods are unable to select the features associated with the
extreme values until τ is astronomically large. Meanwhile, the quantile regression
methods appear to do better than many of the other methods when τ is relatively
small, but the performance does not improve much with larger values of τ .

Scenario 2: number of extreme events in response
Here, we change the number of extreme value events E from 1 to 4 for τ = 6.
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Table 5

Average F-1 scores, changing relative extreme value magnitudes for the mixture model.

τ = 6 τ = 7 τ = 9 τ = 50
ExLasso (γ = 4) 0.128 (0.0986) 0.175 (0.1708) 0.9 (0.0816) 1 (0)
ExLasso (γ = 6) 0.259 (0.3143) 0.757 (0.0963) 1 (0) 1 (0)
Lasso 0 (0) 0.075 (0.15) 0 (0) 1 (0)
Median 0.094 (0.0022) 0.185 (0.1797) 0.095 (0) 0.095 (0)
Q0.9 0.094 (0.0022) 0.14 (0.0887) 0.095 (0) 0.095 (0)
Q0.99 0.179 (0.0599) 0.098 (0.0193) 0.312 (0.1434) 0.739 (0.1504)
Q0.999 0.348 (0.0986) 0.369 (0.1994) 0.394 (0.1643) 0.474 (0.1721)
Threshold 0 (0) 0.123 (0.1798) 0.384 (0.392) 0.977 (0.0455)

Results are shown in Table 6. As we increase the number of extreme value events,
the performance of the extreme value methods steadily increases. Thresholding
and quantile regression also tend to perform slightly better with more extreme
events, although the improvement is not as drastic. The least squares regression
methods never are able to pick any of the features associated with the extreme
events.

Table 6

Average F-1 scores, changing number of extreme events for the mixture model.

E = 1 E = 2 E = 3 E = 4
ExLasso (γ = 4) 0.128 (0.0986) 0.313 (0.1514) 0.632 (0.1489) 0.836 (0.0473)
ExLasso (γ = 6) 0.259 (0.3143) 0.52 (0.0869) 0.795 (0.1527) 0.908 (0.0789)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.094 (0.0022) 0.094 (0.0022) 0.095 (0) 0.095 (0)
Q0.9 0.094 (0.0022) 0.094 (0.0022) 0.095 (0) 0.095 (0)
Q0.99 0.179 (0.0599) 0.421 (0.1032) 0.604 (0.093) 0.65 (0.1238)
Q0.999 0.348 (0.0986) 0.358 (0.0519) 0.45 (0.1935) 0.474 (0.1154)
Threshold 0 (0) 0.229 (0.1455) 0.596 (0.1489) 0.758 (0.1173)

Scenario 3: error distributions
In this scenario, we vary the distribution of the added errors by changing the
rate parameter to β = 0.33, 0.2, 0.166, and 0.125 at τ = 9. Table 7 displays the
results. Once again, an increase in the rate parameter significantly degrades the
performance the extreme value methods because of the increased presence of
large magnitude errors, while other methods are not affected nearly as much.
We do eventually see a point where the extreme value methods perform worse
than quantile or thresholding.

Scenario 4: number of dimensions
We change the number of dimensions of the model matrix to P = 750, 1500, 2250,
and 3000, with τ = 9 and holding the number of features in components 1, 2,
and 3 constant. Results are in Table 8. The performance of the extreme value
and least squares methods do not change much with the increased dimensional-
ity. The quantile regression methods actually perform slightly better with more
dimensions, while thresholding tends to do worse.
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Table 7

Average F-1 scores, changing error distribution for the mixture model.

β = 0.33 β = 0.2 β = 0.166 β = 0.125
ExLasso (γ = 4) 0.9 (0.0816) 0.875 (0.1258) 0.816 (0.0526) 0.278 (0.3587)
ExLasso (γ = 6) 1 (0) 1 (0) 0.582 (0.2852) 0.184 (0.217)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.095 (0) 0.095 (0) 0.095 (0) 0.094 (0.0022)
Q-0.9 0.095 (0) 0.095 (0) 0.095 (0) 0.094 (0.0022)
Q-0.99 0.312 (0.1434) 0.14 (0.0494) 0.249 (0.0897) 0.24 (0.0465)
Q-0.999 0.394 (0.1643) 0.299 (0.0897) 0.19 (0.0186) 0.115 (0.0505)
Threshold 0.384 (0.392) 0.05 (0.1) 0.64 (0.0773) 0.508 (0.2058)

Table 8

Average F-1 scores, changing number of dimensions of predictor matrix in the mixture
model.

P = 750 P = 1500 P = 2250 P = 3000
ExLasso (γ = 4) 0.9 (0.0816) 0.816 (0.0526) 0.922 (0.0673) 0.838 (0.0062)
ExLasso (γ = 6) 1 (0) 0.947 (0) 0.961 (0.0263) 0.947 (0)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.095 (0) 0.095 (0) 0.095 (0) 0.095 (0)
Q-0.9 0.095 (0) 0.095 (0) 0.095 (0) 0.095 (0)
Q-0.99 0.312 (0.1434) 0.238 (0.0794) 0.189 (0.0744) 0.093 (0.0262)
Q-0.999 0.394 (0.1643) 0.39 (0.0962) 0.501 (0.0663) 0.577 (0.2264)
Threshold 0.384 (0.392) 0.32 (0.1879) 0.316 (0.087) 0 (0)

4.3. Real data investigation: calcium imaging

We now study the performance of regularized extreme value linear regression
on a calcium imaging study from neuroscience, available from the Allen Brain
Atlas Brain Observatory data repository [20]. The data set contains fluorescence
traces of neuronal activity for 227 simultaneously recorded neurons in the visual
cortex of a mouse brain during periods of controlled visual stimuli. For this
study, we work with the parts of the study associated with drifting grating
movies, i.e. during time periods which the mice are shown moving black and
white gratings of various changing angles and frequencies. Our objective is to
predict the recorded fluorescence traces of each of the neurons, with a specific
focus on the large positive extreme values that represent neuron firing activity.
The predictor variables used for modeling include visual stimulus information
from a drifting grating movie, i.e. the angular orientation and frequency of black
and while drifting gratings being shown to the mouse, along with other recorded
information about the activity of the mouse, including treadmill running speed
and pupil size and location. We fit separate Lasso and 8th power Extreme Lasso
regressions to each neuron, i.e. such that neuron has its own set of selected
features, and we use the first two-thirds of the recording time as the training
set to fit each model. We then compare the chosen predictor features from each
method, as well as the predicted neuron activity traces from the corresponding
unbiased regression model fit to each test set. Hyperparameter selection for both
methods are performed via 5-fold cross validation.

In Figure 2, we compare the ordinary least squares and extreme value linear
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Fig 2. Mean absolute value of prediction error from the extreme value linear regression and
the ordinary linear regression for fluorescence trace values above a concentration threshold.
Results are averaged across models fitted on test data sets created for all 227 neurons.

regression models by showing the average absolute prediction error across all
227 neuron regression models for observations with a standardized fluorescence
trace value above a shifting threshold value. When the threshold is 0, i.e. when
we consider the full set of observations, the ordinary linear regression mod-
els have smaller average prediction error. However, as the threshold increases,
the extreme value linear regression starts to outperform the ordinary linear re-
gression; for the data set studied here, this starts to occur at around 2.5 for
standardized trace values. When the threshold is large, i.e. when we consider
only the extreme values of the fluorescence traces for all of the neurons, we see
that the extreme value linear regression has much better prediction accuracy.
In particular, for very large values of fluorescence traces that would almost cer-
tainly be considered indicators of neuron firing activity, the extreme value linear
regression appears to be substantially more accurate for prediction.

In Figure 3, we look at the results from one particular neuron. In the top of
Figure 3, we see that the prediction from the Lasso does not include any spikes;
instead, we see that the Lasso is fitting to the random baseline fluctuations in the
fluorescence trace, which are likely to be random noise or measurement artifacts
and are not especially useful for this type of data. We also see that the times of
the angular orientation stimulus feature selected by the Lasso do not correspond
with any spiking activity of the neuron, meaning that the stimuli selected by
the Lasso are not particularly scientifically meaningful in this specific context.
On the other hand, in the bottom of Figure 3, we see that the Extreme Lasso
appears to select an angular orientation stimulus feature for which spikes in the
fluorescence trace occur during the time periods where the angle is shown in
the drifting grating movie. The predictions from the Extreme Lasso reflect the
importance of the extreme values for the estimation procedure as well, with the
estimated value of the fluorescence trace being much more sensitive to the spikes
in the observed data relative to the Lasso. Additionally, we note that while the
Extreme Lasso performs much better at prediction of extreme values compared
to the regular Lasso, there are still some spikes which are not predicted by the
extreme Lasso. This is likely caused by the presence of other covariates that
can cause neurons to fire, such as auditory signals or movement of other body
parts, but which were not collected for the particular experiment and thus not
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Fig 3. Top: True (black) vs. predicted (blue) neuron trace from the Lasso on a test data
set for one particular neuron. Times of chosen angular orientation stimuli are highlighted
in color. Bottom: True (black) vs. predicted (red) neuron trace from the Extreme Lasso on
a test data set for one particular neuron. Times of chosen angular orientation stimuli are
highlighted in color.

accounted for in the model.

4.4. Real data investigation: climatology

Our second real data example comes from the field of climatology. The data
used here are available from the US EPA AQS Data Mart [1] and from the
MERRA-2 project on NASA MDISC [11]. Our goal is to predict and find fea-
tures associated with large spikes in the hourly measurements of total volatile
organic compound (TVOC) concentration in parts per billion (ppb) for a sin-
gle outdoor monitoring site in Deer Park, Texas. We use as predictor variables
for modeling the contemporaneous average hourly data of various atmospheric
weather conditions, including temperature, humidity, air pressure, ozone level,
wind speed, water vapor concentration, and dew point. From the raw weather
data, we also create new predictors using 1 day moving averages of all of the
aforementioned variables at time lags ranging from concurrent to 7 days. The
data set we look at below contains hourly observations from January 1st, 2015
to December 31st, 2017, totaling approximately 52500 total recorded measure-
ments. We split this in to a training data set which spans the first two years of
our data, and a test data set which spans the final year. For this case study, we
compare the results from Lasso regression and the 10th power Extreme Lasso
regression models. We first perform feature selection with these two methods
using the training data set; for this step, hyperparameter values are selected us-
ing cross-validation. We then fit the corresponding unbiased regression models
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to the test data set. Below, we discuss the features which were selected us-
ing the regularized regression methods on the training data set, and the model
prediction error from the unbiased models on the test data set.

In Table 9, we show the predictors selected by each of the two methods.
As we can see, the Lasso tends to select predictors which are associated with
concurrent and current 1-day average atmospheric weather conditions, such as
concurrent air humidity and wind speed and 1-day average temperature and
water vapor content. On the other hand, the Extreme Lasso mainly selects
features associated with daily average weather conditions from 5-7 days prior,
particularly with respect to precipitation. Thus, we see that the two methods
pick very different sets of predictors. Scientifically, it seems that the Lasso is
finding predictors that tend to be associated with smaller common fluctuations
in TVOCs, while the Extreme Lasso selects predictors that indicate occurrences
of large rainfall events which have been linked in previous literature to large
spikes in pollutant concentrations [2].

In Figure 4, we show the predicted TVOC concentrations from the extreme
value linear regression and ordinary linear regression models with their previous
respective selected features on the test data set; in the top row, we see these
plotted over time, and in the bottom we see the predicted and actual values
plotted against each other. As we can see, the linear regression model appears
to be solely capturing the minor fluctuations which occur regularly across time,
but does not seem to capture any of the large spikes in TVOC concentration
which occur several times over the course of a year. On the other hand, the
extreme value linear regression model, while not always accurate with respect
to the smaller value of TVOC, appears to do a much better job in predicting the
instances of extreme events where TVOC concentrations spike to irregularly high
levels. While neither model is particularly accurate with respect to predicting all
of the observed TVOC concentration values, the extreme value linear regression
model actually does predict occurrences of extreme value events, whereas the
the ordinary linear regression grossly underestimates the TVOC concentration
levels when they are above a few hundred parts per billion.

We analyze more closely the prediction accuracy of the extreme of the regres-
sion model estimate fit by both methods in Figure 5. Here, we show the average
magnitude of the prediction error from the ordinary least squares regression
and extreme value linear regression models for observations with TVOC con-

Table 9

Selected predictors from each regularized regression model.

Lasso Extreme Lasso
Concurrent hourly air humidity Concurrent hourly air pressure
Concurrent hourly vapor volume 1 day average precipitation, 5 day lag
Concurrent hourly dew point 1 day average precipitation, 6 day lag
Concurrent hourly wind speed 1 day average precipitation, 7 day lag

1 day average temperature, 0 day lag 1 day average wind speed, 6 day lag
1 day average humidity, 0 day lag
1 day average vapor, 0 day lag
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Fig 4. Top left: True (black) vs. predicted (blue) hourly TVOC concentration from the or-
dinary linear regression model. Top right: True (black) vs. predicted (red) hourly TVOC
concentration. Bottom Left: True vs. predicted hourly TVOC concentrations from the ordi-
nary linear regression. Bottom Right: True vs. predicted hourly TVOC concentrations from
the extreme value linear regression.

Fig 5. Average absolute value of prediction error from the extreme value linear regression
and the ordinary linear regression for values above a concentration threshold.

centrations above a changing threshold value. From Figure 5, we see that the
ordinary linear regression predictions are closer to the actual values on average
when we consider the entire data set, i.e. when the threshold is 0. However,
as we start looking only at data points towards the upper quantiles, we see
that the extreme value linear regression begins to outperform the ordinary lin-
ear regression in terms of prediction accuracy. For this particular example, the
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extreme value linear regression model becomes more accurate on average than
the ordinary linear regression for observations with TVOC concentration values
above 262 ppm, and the difference between the prediction accuracy of the two
models gradually increases as we consider smaller, more extreme subsets of the
observations of the response variable.

5. Discussion

In this paper, we have introduced the extreme value linear regression model, a
potential new methodological approach to linear regression for extreme values.
Our method is motivated by �γ-norm regression, which gives much more weight
to the loss for large magnitude residuals relative to ordinary least squares. This
concept has several advantages over other methods currently used in the litera-
ture, namely that it does not require using a two-step pipeline of pre-processing
the data before analysis, nor does it force the data to be binarized as either
extreme or non-extreme. Our method also does not necessitate the a priori
choice of certain model hyperparameters that may be difficult to select. Our
simulation studies provide promising results which demonstrate that, for a re-
sponse variable with rare extreme values, the extreme value linear regression
model with automatic feature selection performs better than quantile regres-
sion, thresholding, and least squares penalized regression in terms of selecting
predictors which are correlated with the extreme values in the response. We have
also shown deterministic finite sample performance guarantees for consistency
and model selection consistency of the Extreme Lasso regression model under
the assumption of a linear data generating model with different potential error
distributions, demonstrating that the estimates from the extreme value linear
regression model are reliable. The theoretical results here could also be of use
for other types of similar problems. In particular, the concentration bounds and
theory presented for the case of generalized normal distributed errors for γ > 2
could be applied to generate new theoretical results for other mathematical
statistics problems.

There are several potential areas for future work for the extreme value linear
regression. Our theoretical work has mainly focused on using a simple �1 Lasso
penalty for regularization under the linear regression data generating model;
however, the extreme values in a response variable could come from a variety of
different data generating models. Theoretical results for the variance of estima-
tors in the low-dimensional case have also not been addressed here, and could
be of interest for future study. There remains potential methodological develop-
ments for the extreme value linear regression to explore as well. Just as ordinary
regression methods are insufficient for fitting a model for the extreme values,
traditional model selection methods may not work particularly well in this con-
text. While we use regular cross-validation to select λ during model fitting in
our real data examples, we recognize that this may not be the optimal method.
The model selection problem may instead require more nuanced treatment, as
naive cross-validation methods may not work well when the extreme values are
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particularly rare. Though we have described a general approach for selecting
γ for an individual data set, additional empirical investigation may be useful
for gaining a better understanding of what values of γ are typically useful for
analyzing real-world data. Also, while we have presented a couple of potential
applications, our method has the potential to be applied broadly to a variety of
fields, such as for signal processing or for spectral domain data; explorations in
to other applications could provide new insights in these areas. In conclusion,
we develop a novel method for extreme value regression modeling that opens
many area for future research.

Appendix A: Proofs for Section 3

A.1. Lemma 3.3

For t > 0,

P(Qγ ≥ t)=P(Q ≥ t
1/γ

)=P(eλQ ≥ eλt
1/γ

)≤ eσ
2λ2/2

eλt
1/γ

=exp

{
σ2λ2/2− λt

1/γ

}
.

The right hand side is minimized by λ∗ = t1/γ

σ2 . Hence, we have

P(Qγ ≥ t) ≤ exp

{
− t2/γ

2σ2

}
.

A.2. Theorem 3.1

In the Extreme Lasso problem, by Lemma 3.3, ‖εγ−1
i ‖ψγ ≤ Kn,p where γ = 2

γ−1 .

For fixed design X, Xi’s are marginally sub-Weibull (∞) and

max
1≤i≤n

‖Xi‖M,ψ2
≤ max

1≤i≤n
‖Xi‖M,ψ∞

= max
1≤i≤n
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|Xi(j)| .

Applying Lemma 3.4 with α = ∞, we have τ = 2/(γ−1). Therefore, by choosing
λn to be

λn = 2γ
(
7
√
2σn,p

√
log(np)

n
+

CτK
2
n,p(log(2n))

1/τ (2 log(np))1/τ
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,

the Extreme Lasso estimator satisfies

‖β̂ − β∗ ‖2≤
6
√
s

κL
· γ

(
7
√
2σn,p

√
log(np)

n
+

CτK
2
n,p(log(2n))

1/τ (2 log(np))1/τ

n

)

where τ = 2/(γ − 1).

A.3. Theorem 3.2

Similar to Theorem 3.1, we prove model selection Consistency holds by applying
Lemma 3.2 with the concentration bound demonstrated in Lemma 3.4.
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A.4. Lemma 3.5

Suppose Z ∼ Subbotin(α), i.e.

fZ(z) =
α

2Γ( 1
α )

exp
[
− |z|α

]
.

Let Y = Zα, then z = ±y
1
α , | dzdy | =
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1
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1

α
y

1
α−1 =

1

Γ( 1
α )

exp[−y]y
1
α−1.

Thus, Y = Zα ∼ Gamma( 1
α , 1).

A.5. Lemma 3.7

By Lemma 3.5, we have εθi ∼ Gamma(1/θ, 1). Hence, Lemma 3.6 suggests

P
(
εθi − E[εθi ] ≥ 2

√
2
1

θ
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For ‖Xj‖∞ ≤ 1, we have XT
j ε

γ−1 is sub-Gamma with (n/θ, 1) since sum of
sub-Gamma is also sub-Gamma. From this, we find
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By using union bounds, we thus have
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Choosing t = log p, we get
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with probability at least 1− c1 exp(−c2 log p). This is equivalent to:
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with probability at least 1− c1 exp(−c2 log p).
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A.6. Theorem 3.3

By applying Lemma 3.1 with the concentration bound demonstrated in Lemma
3.7, we have the consistency result.

A.7. Theorem 3.4

By applying Lemma 3.2 with the concentration bound demonstrated in Lemma
3.7, we have the model consistency result.

A.8. Theorem 3.5

By the KKT condition as required for optimality of β∗
ε , we have:

(1− ε)

∫ [
−γ

(
y − xTβ∗

ε

)γ−1
x
]
× dF (x, y)

+ε
(
−γ

(
y0 − xT

0 β
∗
ε
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)
− v1(ε) = 0, (A.1)

where v1(ε) =
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(A.2), it can be shown that
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with

δ(x) =

{
+∞, if x = 0,

0, otherwise.

Appendix B: Full tabular results

For our full results, we also compare different regularization penalties for the
extreme value linear regression model and the linear regression model.
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B.1. Linear model simulation study

Scenario 1: Changing Magnitude of Extreme Values of Response Variable

Table 10

Average F-1 score for changing extreme value magnitude.

τ = 6 τ = 7 τ = 11 τ = 15
ExLasso (γ = 4) 0.196 (0.1382) 0.209 (0.1778) 0.875 (0.05) 0.938 (0.0481)
ExLasso (γ = 6) 0.296 (0.1416) 0.782 (0.0894) 0.85 (0.0577) 0.938 (0.0481)
ExSCAD 4th 0.196 (0.1382) 0.209 (0.1778) 0.875 (0.05) 0.938 (0.0481)
ExSCAD 6th 0.296 (0.1416) 0.782 (0.0894) 0.85 (0.0577) 0.938 (0.0481)
ExMCP 4th 0.1 (0.1155) 0.195 (0.1556) 0.888 (0.0637) 0.938 (0.0481)
ExMCP 6th 0.255 (0.0662) 0.757 (0.1606) 0.864 (0.0474) 0.938 (0.0481)
Lasso 0.2 (0.1414) 0.225 (0.15) 0.3 (0) 0.938 (0.0481)
SCAD 0.2 (0.1414) 0.225 (0.15) 0.3 (0) 0.938 (0.0481)
MCP 0.2 (0.1414) 0.225 (0.15) 0.3 (0) 0.963 (0.0477)
Median 0.149 (0.0357) 0.301 (0.2087) 0.529 (0.0626) 0.44 (0.1056)
Q0.9 0.149 (0.0357) 0.127 (0.0429) 0.185 (0.1239) 0.147 (0.0508)
Q0.99 0.095 (0.0394) 0.09 (0.0194) 0.102 (0.0355) 0.111 (0)
Q0.999 0.132 (0.1028) 0.219 (0.2222) 0.328 (0.2583) 0.321 (0.1821)
Threshold 0.028 (0.0556) 0 (0) 0 (0) 0.893 (0.1056)

Table 11

Average true positive rates for changing extreme value magnitude.

τ = 6 τ = 7 τ = 11 τ = 15
ExLasso (γ = 4) 0.193 (0.1355) 0.196 (0.1571) 0.875 (0.05) 0.927 (0.0487)
ExLasso (γ = 6) 0.293 (0.1421) 0.767 (0.1054) 0.85 (0.0577) 0.927 (0.0487)
ExSCAD 4th 0.193 (0.1355) 0.196 (0.1571) 0.875 (0.05) 0.927 (0.0487)
ExSCAD 6th 0.293 (0.1421) 0.767 (0.1054) 0.85 (0.0577) 0.927 (0.0487)
ExMCP 4th 0.1 (0.1155) 0.191 (0.1488) 0.877 (0.0517) 0.927 (0.0487)
ExMCP 6th 0.262 (0.0828) 0.764 (0.1467) 0.855 (0.053) 0.927 (0.0487)
Lasso 0.2 (0.1414) 0.225 (0.15) 0.3 (0) 0.927 (0.0487)
SCAD 0.2 (0.1414) 0.225 (0.15) 0.3 (0) 0.927 (0.0487)
MCP 0.2 (0.1414) 0.225 (0.15) 0.3 (0) 0.952 (0.0552)
Median 0.398 (0.2045) 0.318 (0.16) 0.446 (0.041) 0.435 (0.0842)
Q0.9 0.398 (0.2045) 0.164 (0.1179) 0.158 (0.1061) 0.145 (0.0449)
Q0.99 0.128 (0.1367) 0.086 (0.0384) 0.09 (0.0362) 0.125 (0)
Q0.999 0.175 (0.2165) 0.196 (0.2072) 0.303 (0.2673) 0.352 (0.2432)
Threshold 0.031 (0.0625) 0 (0) 0 (0) 0.864 (0.1174)

Table 12

Average false positive rates for changing extreme value magnitude.

τ = 6 τ = 7 τ = 11 τ = 15
ExLasso (γ = 4) 0.011 (0.0017) 0.011 (0.0014) 0.002 (7e-04) 0.001 (7e-04)
ExLasso (γ = 6) 0.01 (0.002) 0.003 (0.0017) 0.002 (8e-04) 0.001 (7e-04)
ExSCAD 4th 0.011 (0.0017) 0.011 (0.0014) 0.002 (7e-04) 0.001 (7e-04)
ExSCAD 6th 0.01 (0.002) 0.003 (0.0017) 0.002 (8e-04) 0.001 (7e-04)
ExMCP 4th 0.011 (0.0014) 0.01 (7e-04) 0.002 (7e-04) 0.001 (7e-04)
ExMCP 6th 0.01 (0.002) 0.003 (0.0017) 0.002 (8e-04) 0.001 (7e-04)
Lasso 0.011 (0.0019) 0.01 (0.002) 0.009 (0) 0.001 (7e-04)
SCAD 0.011 (0.0019) 0.01 (0.002) 0.009 (0) 0.001 (7e-04)
MCP 0.01 (8e-04) 0.01 (0.002) 0.009 (0) 0.001 (8e-04)
Median 0.004 (0.0061) 0.009 (0.0046) 0.011 (0) 0.008 (0.0013)
Q0.9 0.008 (0.0036) 0.011 (0.0045) 0.01 (0.003) 0.008 (0.0016)
Q0.99 0.017 (0.0093) 0.016 (0.0058) 0.018 (0.0059) 0.009 (0)
Q0.999 0.015 (0.0083) 0.016 (0.0055) 0.013 (0.0078) 0.008 (0.0039)
Threshold 0.009 (0.0019) 0.011 (0.0017) 0.01 (7e-04) 0.002 (0.0017)
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Scenario 2: Changing Number of Extreme Events in Response

Table 13

Average F-1 scores for changing number of extreme events.

E = 1 E = 2 E = 3 E = 4
ExLasso (γ = 4) 0.875 (0.05) 0.225 (0.05) 0.79 (0.0838) 0.913 (0.0857)
ExLasso (γ = 6) 0.85 (0.0577) 0.788 (0.2022) 0.779 (0.1447) 0.85 (0.1291)
ExSCAD 4th 0.875 (0.05) 0.225 (0.05) 0.79 (0.0838) 0.913 (0.0857)
ExSCAD 6th 0.85 (0.0577) 0.788 (0.2022) 0.779 (0.1447) 0.85 (0.1291)
ExMCP 4th 0.888 (0.0637) 0.25 (0.1) 0.788 (0.1192) 0.913 (0.0857)
ExMCP 6th 0.864 (0.0474) 0.813 (0.1555) 0.779 (0.1447) 0.89 (0.0978)
Lasso 0.3 (0) 0.36 (0.1925) 0.339 (0.0773) 0.325 (0.05)
SCAD 0.3 (0) 0.36 (0.1925) 0.339 (0.0773) 0.325 (0.05)
MCP 0.3 (0) 0.295 (0.0741) 0.339 (0.0773) 0.325 (0.05)
Median 0.529 (0.0626) 0.513 (0.059) 0.472 (0.1155) 0.457 (0.1337)
Q0.9 0.185 (0.1239) 0.301 (0.0809) 0.311 (0.157) 0.414 (0.1092)
Q0.99 0.102 (0.0355) 0.107 (0.0053) 0.099 (0.0048) 0.126 (0.0376)
Q0.999 0.328 (0.2583) 0.232 (0.0992) 0.334 (0.0793) 0.445 (0.2531)
Threshold 0 (0) 0 (0) 0 (0) 0.075 (0.15)

Table 14

Average true positive rates for changing number of extreme events.

E = 1 E = 2 E = 3 E = 4
ExLasso (γ = 4) 0.875 (0.05) 0.225 (0.05) 0.782 (0.0894) 0.902 (0.0818)
ExLasso (γ = 6) 0.85 (0.0577) 0.777 (0.1913) 0.759 (0.1297) 0.85 (0.1291)
ExSCAD 4th 0.875 (0.05) 0.225 (0.05) 0.782 (0.0894) 0.902 (0.0818)
ExSCAD 6th 0.85 (0.0577) 0.777 (0.1913) 0.759 (0.1297) 0.85 (0.1291)
ExMCP 4th 0.877 (0.0517) 0.25 (0.1) 0.777 (0.0997) 0.902 (0.0818)
ExMCP 6th 0.855 (0.053) 0.802 (0.1436) 0.759 (0.1297) 0.882 (0.1133)
Lasso 0.3 (0) 0.333 (0.1414) 0.329 (0.0583) 0.325 (0.05)
SCAD 0.3 (0) 0.333 (0.1414) 0.329 (0.0583) 0.325 (0.05)
MCP 0.3 (0) 0.291 (0.0676) 0.329 (0.0583) 0.325 (0.05)
Median 0.446 (0.041) 0.484 (0.078) 0.449 (0.0937) 0.444 (0.1012)
Q0.9 0.158 (0.1061) 0.283 (0.0754) 0.299 (0.148) 0.409 (0.1113)
Q0.99 0.09 (0.0362) 0.115 (0.0121) 0.098 (0.0096) 0.129 (0.0276)
Q0.999 0.303 (0.2673) 0.239 (0.1036) 0.322 (0.1004) 0.441 (0.2547)
Threshold 0 (0) 0 (0) 0 (0) 0.075 (0.15)

Table 15

Average false positive rates for changing number of extreme events.

E = 1 E = 2 E = 3 E = 4
ExLasso (γ = 4) 0.002 (7e-04) 0.01 (7e-04) 0.003 (0.0013) 0.001 (0.0011)
ExLasso (γ = 6) 0.002 (8e-04) 0.003 (0.0026) 0.003 (0.0017) 0.002 (0.0017)
ExSCAD 4th 0.002 (7e-04) 0.01 (7e-04) 0.003 (0.0013) 0.001 (0.0011)
ExSCAD 6th 0.002 (8e-04) 0.003 (0.0026) 0.003 (0.0017) 0.002 (0.0017)
ExMCP 4th 0.002 (7e-04) 0.01 (0.0014) 0.003 (0.0013) 0.001 (0.0011)
ExMCP 6th 0.002 (8e-04) 0.003 (0.0019) 0.003 (0.0017) 0.002 (0.0017)
Lasso 0.009 (0) 0.01 (7e-04) 0.009 (0) 0.009 (7e-04)
SCAD 0.009 (0) 0.01 (7e-04) 0.009 (0) 0.009 (7e-04)
MCP 0.009 (0) 0.01 (7e-04) 0.009 (0) 0.009 (7e-04)
Median 0.011 (0) 0.008 (0.0022) 0.008 (0.0011) 0.008 (0.0013)
Q0.9 0.01 (0.003) 0.011 (0.0016) 0.012 (0.0017) 0.009 (0.0011)
Q0.99 0.018 (0.0059) 0.01 (0.0013) 0.012 (0.0013) 0.011 (0.002)
Q0.999 0.013 (0.0078) 0.01 (0.0017) 0.01 (0.003) 0.008 (0.0036)
Threshold 0.01 (7e-04) 0.01 (7e-04) 0.009 (0) 0.01 (7e-04)
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Scenario 3: Changing Error Distribution

Table 16

Average F-1 scores for changing residual distribution.

β = 0.33 β = 0.2 β = 0.125 β = 0.083
ExLasso (γ = 4) 0.875 (0.05) 0.8 (0.1155) 0.625 (0.1258) 0.275 (0.2217)
ExLasso (γ = 6) 0.85 (0.0577) 0.75 (0.1732) 0.682 (0.1284) 0.425 (0.15)
ExSCAD 4th 0.875 (0.05) 0.8 (0.1155) 0.625 (0.1258) 0.275 (0.2217)
ExSCAD 6th 0.85 (0.0577) 0.75 (0.1732) 0.682 (0.1284) 0.425 (0.15)
ExMCP 4th 0.888 (0.0637) 0.825 (0.0957) 0.625 (0.1258) 0.275 (0.2217)
ExMCP 6th 0.864 (0.0474) 0.788 (0.166) 0.575 (0.0957) 0.425 (0.15)
Lasso 0.3 (0) 0.2 (0.1414) 0.262 (0.1103) 0.175 (0.15)
SCAD 0.3 (0) 0.2 (0.1414) 0.262 (0.1103) 0.175 (0.15)
MCP 0.3 (0) 0.2 (0.1414) 0.27 (0.1197) 0.15 (0.1732)
Median 0.529 (0.0626) 0.338 (0.1134) 0.46 (0.1078) 0.403 (0.1414)
Q-0.9 0.185 (0.1239) 0.122 (0.0465) 0.121 (0.041) 0.097 (0.0071)
Q-0.99 0.102 (0.0355) 0.092 (0.0055) 0.092 (0.0096) 0.097 (0.0096)
Q-0.999 0.328 (0.2583) 0.202 (0.1506) 0.093 (0.0087) 0.093 (0.0105)
Threshold 0 (0) 0.05 (0.1) 0.073 (0.0994) 0 (0)

Table 17

Average true positive rates for changing residual distribution.

β = 0.33 β = 0.2 β = 0.125 β = 0.083
ExLasso (γ = 4) 0.875 (0.05) 0.8 (0.1155) 0.625 (0.1258) 0.275 (0.2217)
ExLasso (γ = 6) 0.85 (0.0577) 0.75 (0.1732) 0.667 (0.1247) 0.425 (0.15)
ExSCAD 4th 0.875 (0.05) 0.8 (0.1155) 0.625 (0.1258) 0.275 (0.2217)
ExSCAD 6th 0.85 (0.0577) 0.75 (0.1732) 0.667 (0.1247) 0.425 (0.15)
ExMCP 4th 0.877 (0.0517) 0.825 (0.0957) 0.625 (0.1258) 0.275 (0.2217)
ExMCP 6th 0.855 (0.053) 0.777 (0.1526) 0.575 (0.0957) 0.425 (0.15)
Lasso 0.3 (0) 0.2 (0.1414) 0.252 (0.1013) 0.175 (0.15)
SCAD 0.3 (0) 0.2 (0.1414) 0.252 (0.1013) 0.175 (0.15)
MCP 0.3 (0) 0.2 (0.1414) 0.266 (0.1146) 0.15 (0.1732)
Median 0.446 (0.041) 0.33 (0.0991) 0.449 (0.0937) 0.385 (0.1168)
Q-0.9 0.158 (0.1061) 0.12 (0.0449) 0.117 (0.034) 0.094 (0.0136)
Q-0.99 0.09 (0.0362) 0.086 (0.0099) 0.086 (0.0176) 0.096 (0.0199)
Q-0.999 0.303 (0.2673) 0.207 (0.1615) 0.087 (0.0163) 0.088 (0.0184)
Threshold 0 (0) 0.05 (0.1) 0.072 (0.1048) 0 (0)

Table 18

Average false positive rates for changing residual distribution.

β = 0.33 β = 0.2 β = 0.125 β = 0.083
ExLasso (γ = 4) 0.002 (7e-04) 0.003 (0.0016) 0.005 (0.0017) 0.01 (0.003)
ExLasso (γ = 6) 0.002 (8e-04) 0.003 (0.0023) 0.005 (0.0017) 0.008 (0.002)
ExSCAD 4th 0.002 (7e-04) 0.003 (0.0016) 0.005 (0.0017) 0.01 (0.003)
ExSCAD 6th 0.002 (8e-04) 0.003 (0.0023) 0.005 (0.0017) 0.008 (0.002)
ExMCP 4th 0.002 (7e-04) 0.002 (0.0013) 0.005 (0.0017) 0.01 (0.003)
ExMCP 6th 0.002 (8e-04) 0.003 (0.002) 0.006 (0.0013) 0.008 (0.002)
Lasso 0.009 (0) 0.012 (0.0039) 0.011 (0.0016) 0.011 (0.002)
SCAD 0.009 (0) 0.012 (0.0039) 0.011 (0.0016) 0.011 (0.002)
MCP 0.009 (0) 0.011 (0.0019) 0.01 (0.0014) 0.011 (0.0023)
Median 0.011 (0) 0.009 (0.0019) 0.008 (0.0013) 0.009 (8e-04)
Q-0.9 0.01 (0.003) 0.012 (7e-04) 0.014 (0.0023) 0.013 (0.0013)
Q-0.99 0.018 (0.0059) 0.015 (0.0017) 0.015 (0.0029) 0.013 (0.0026)
Q-0.999 0.013 (0.0078) 0.011 (0.0033) 0.015 (0.0026) 0.015 (0.0034)
Threshold 0.01 (7e-04) 0.014 (0.0048) 0.016 (0.0045) 0.014 (0.0013)
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Scenario 4: Changing Number of Dimensions

Table 19

Average F-1 scores for changing number of dimensions.

P = 750 P = 1500 P = 2250 P = 3000
ExLasso (γ = 4) 0.875 (0.05) 0.75 (0.0577) 0.827 (0.0848) 0.627 (0.2906)
ExLasso (γ = 6) 0.85 (0.0577) 0.65 (0.1) 0.642 (0.1962) 0.55 (0.1)
ExSCAD 4th 0.875 (0.05) 0.75 (0.0577) 0.827 (0.0848) 0.627 (0.2906)
ExSCAD 6th 0.85 (0.0577) 0.65 (0.1) 0.642 (0.1962) 0.55 (0.1)
ExMCP 4th 0.888 (0.0637) 0.75 (0.0577) 0.615 (0.2091) 0.425 (0.2062)
ExMCP 6th 0.864 (0.0474) 0.664 (0.1218) 0.521 (0.1279) 0.6 (0)
Lasso 0.3 (0) 0 (0) 0 (0) 0 (0)
SCAD 0.3 (0) 0 (0) 0 (0) 0 (0)
MCP 0.3 (0) 0 (0) 0 (0) 0 (0)
Median 0.529 (0.0626) 0.249 (0.0671) 0.247 (0.1579) 0.103 (0.0269)
Q-0.9 0.185 (0.1239) 0.117 (0.0553) 0.102 (0.0119) 0.103 (0.0269)
Q-0.99 0.102 (0.0355) 0.1 (0.0041) 0.089 (0.0051) 0.095 (0.0037)
Q-0.999 0.328 (0.2583) 0.117 (0.0495) 0.279 (0.2265) 0.089 (0.0051)
Threshold 0 (0) 0 (0) 0 (0) 0 (0)

Table 20

Average true positive rates for changing number of dimensions.

P = 750 P = 1500 P = 2250 P = 3000
ExLasso (γ = 4) 0.875 (0.05) 0.75 (0.0577) 0.752 (0.0346) 0.542 (0.2378)
ExLasso (γ = 6) 0.85 (0.0577) 0.65 (0.1) 0.617 (0.1607) 0.55 (0.1)
ExSCAD 4th 0.875 (0.05) 0.75 (0.0577) 0.752 (0.0346) 0.542 (0.2378)
ExSCAD 6th 0.85 (0.0577) 0.65 (0.1) 0.617 (0.1607) 0.55 (0.1)
ExMCP 4th 0.877 (0.0517) 0.75 (0.0577) 0.663 (0.2358) 0.425 (0.2062)
ExMCP 6th 0.855 (0.053) 0.672 (0.0713) 0.544 (0.1423) 0.6 (0)
Lasso 0.3 (0) 0 (0) 0 (0) 0 (0)
SCAD 0.3 (0) 0 (0) 0 (0) 0 (0)
MCP 0.3 (0) 0 (0) 0 (0) 0 (0)
Median 0.446 (0.041) 0.229 (0.0473) 0.247 (0.1426) 0.124 (0.0845)
Q-0.9 0.158 (0.1061) 0.111 (0.0596) 0.107 (0.0266) 0.124 (0.0845)
Q-0.99 0.09 (0.0362) 0.101 (0.0083) 0.081 (0.0084) 0.091 (0.0068)
Q-0.999 0.303 (0.2673) 0.112 (0.0494) 0.267 (0.2336) 0.081 (0.0084)
Threshold 0 (0) 0 (0) 0 (0) 0 (0)

Table 21

Average false positive rates for changing number of dimensions.

P = 750 P = 1500 P = 2250 P = 3000
ExLasso (γ = 4) 0.002 (7e-04) 0.003 (8e-04) 0.004 (0) 0.008 (0.0028)
ExLasso (γ = 6) 0.002 (8e-04) 0.005 (0.0014) 0.005 (0.0019) 0.006 (0.0014)
ExSCAD 4th 0.002 (7e-04) 0.003 (8e-04) 0.004 (0) 0.008 (0.0028)
ExSCAD 6th 0.002 (8e-04) 0.005 (0.0014) 0.005 (0.0019) 0.006 (0.0014)
ExMCP 4th 0.002 (7e-04) 0.003 (8e-04) 0.004 (0.0029) 0.008 (0.0028)
ExMCP 6th 0.002 (8e-04) 0.004 (0.0013) 0.006 (0.002) 0.005 (0)
Lasso 0.009 (0) 0.015 (0.002) 0.014 (0) 0.015 (0.002)
SCAD 0.009 (0) 0.015 (0.002) 0.014 (0) 0.015 (0.002)
MCP 0.009 (0) 0.014 (0.0022) 0.013 (0.0014) 0.014 (0.0014)
Median 0.011 (0) 0.012 (0.0011) 0.01 (0.0026) 0.012 (0.0058)
Q-0.9 0.01 (0.003) 0.014 (0.0028) 0.013 (0.0028) 0.015 (0.0029)
Q-0.99 0.018 (0.0059) 0.012 (0.0011) 0.016 (0.0017) 0.014 (0.0011)
Q-0.999 0.013 (0.0078) 0.014 (0.0028) 0.012 (0.0051) 0.016 (0.0017)
Threshold 0.01 (7e-04) 0.021 (7e-04) 0.02 (0.0098) 0.016 (0.0052)
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B.2. Mixture model simulation study

Scenario 1: Changing Magnitude of Extreme Values of Response Variable

Table 22

Average F-1 scores for changing magnitude of extreme value magnitude.

τ = 6 τ = 7 τ = 9 τ = 50
ExLasso (γ = 4) 0.128 (0.0986) 0.175 (0.1708) 0.9 (0.0816) 1 (0)
ExLasso (γ = 6) 0.259 (0.3143) 0.757 (0.0963) 1 (0) 1 (0)
ExSCAD 4th 0.128 (0.0986) 0.175 (0.1708) 0.9 (0.0816) 1 (0)
ExSCAD 6th 0.259 (0.3143) 0.757 (0.0963) 1 (0) 1 (0)
ExMCP 4th 0.028 (0.0556) 0.106 (0.1222) 0.82 (0.0688) 0.972 (0.0556)
ExMCP 6th 0.105 (0.2105) 0.653 (0.1974) 0.946 (0.0454) 1 (0)
Lasso 0 (0) 0.075 (0.15) 0 (0) 1 (0)
SCAD 0 (0) 0.075 (0.15) 0 (0) 1 (0)
MCP 0 (0) 0.075 (0.15) 0 (0) 1 (0)
Median 0.094 (0.0022) 0.185 (0.1797) 0.095 (0) 0.095 (0)
Q0.9 0.094 (0.0022) 0.14 (0.0887) 0.095 (0) 0.095 (0)
Q0.99 0.179 (0.0599) 0.098 (0.0193) 0.312 (0.1434) 0.739 (0.1504)
Q0.999 0.348 (0.0986) 0.369 (0.1994) 0.394 (0.1643) 0.474 (0.1721)
Threshold 0 (0) 0.123 (0.1798) 0.384 (0.392) 0.977 (0.0455)

Table 23

Average true positive rates for changing magnitude of extreme value magnitude.

τ = 6 τ = 7 τ = 9 τ = 50
ExLasso (γ = 4) 0.131 (0.102) 0.175 (0.1708) 0.9 (0.0816) 1 (0)
ExLasso (γ = 6) 0.246 (0.2936) 0.742 (0.1067) 1 (0) 1 (0)
ExSCAD 4th 0.131 (0.102) 0.175 (0.1708) 0.9 (0.0816) 1 (0)
ExSCAD 6th 0.246 (0.2936) 0.742 (0.1067) 1 (0) 1 (0)
ExMCP 4th 0.031 (0.0625) 0.112 (0.1315) 0.842 (0.0618) 1 (0)
ExMCP 6th 0.111 (0.2222) 0.686 (0.1878) 1 (0) 1 (0)
Lasso 0 (0) 0.075 (0.15) 0 (0) 1 (0)
SCAD 0 (0) 0.075 (0.15) 0 (0) 1 (0)
MCP 0 (0) 0.075 (0.15) 0 (0) 1 (0)
Median 0.089 (0.0038) 0.172 (0.1629) 0.091 (0) 0.091 (0)
Q0.9 0.089 (0.0038) 0.131 (0.0795) 0.091 (0) 0.091 (0)
Q0.99 0.166 (0.0587) 0.1 (0.0322) 0.303 (0.1415) 0.671 (0.1675)
Q0.999 0.389 (0.1361) 0.346 (0.188) 0.373 (0.1713) 0.426 (0.1602)
Threshold 0 (0) 0.122 (0.1714) 0.353 (0.3505) 0.958 (0.0833)

Table 24

Average false positive rates for changing magnitude of extreme value magnitude.

τ = 6 τ = 7 τ = 9 τ = 50
ExLasso (γ = 4) 0.011 (0.0013) 0.011 (0.0023) 0.001 (0.0011) 0 (0)
ExLasso (γ = 6) 0.01 (0.0028) 0.004 (0.0017) 0 (0) 0 (0)
ExSCAD 4th 0.011 (0.0013) 0.011 (0.0023) 0.001 (0.0011) 0 (0)
ExSCAD 6th 0.01 (0.0028) 0.004 (0.0017) 0 (0) 0 (0)
ExMCP 4th 0.01 (8e-04) 0.01 (0.0014) 0.002 (8e-04) 0 (0)
ExMCP 6th 0.01 (0.0023) 0.004 (0.002) 0 (0) 0 (0)
Lasso 0.013 (7e-04) 0.012 (0.002) 0.014 (0) 0 (0)
SCAD 0.013 (7e-04) 0.012 (0.002) 0.014 (0) 0 (0)
MCP 0.013 (7e-04) 0.012 (0.0019) 0.013 (0.0014) 0 (0)
Median 0.014 (7e-04) 0.012 (0.002) 0.014 (0) 0.014 (0)
Q0.9 0.014 (8e-04) 0.014 (8e-04) 0.014 (0) 0.014 (7e-04)
Q0.99 0.014 (0.004) 0.014 (0.007) 0.01 (0.0026) 0.006 (0.0032)
Q0.999 0.007 (0.0032) 0.011 (0.0052) 0.01 (0.0036) 0.01 (0.0051)
Threshold 0.009 (0.0023) 0.011 (0.0019) 0.008 (0.0034) 0.001 (0.0014)
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Scenario 2: Changing Number of Extreme Events in Response

Table 25

Average F-1 scores for changing number of extreme events.

E = 1 E = 2 E = 3 E = 4
ExLasso (γ = 4) 0.128 (0.0986) 0.313 (0.1514) 0.632 (0.1489) 0.836 (0.0473)
ExLasso (γ = 6) 0.259 (0.3143) 0.52 (0.0869) 0.795 (0.1527) 0.908 (0.0789)
ExSCAD 4th 0.128 (0.0986) 0.313 (0.1514) 0.632 (0.1489) 0.836 (0.0473)
ExSCAD 6th 0.259 (0.3143) 0.52 (0.0869) 0.795 (0.1527) 0.908 (0.0789)
ExMCP 4th 0.028 (0.0556) 0.164 (0.136) 0.559 (0.2802) 0.743 (0.1306)
ExMCP 6th 0.105 (0.2105) 0.239 (0.2046) 0.697 (0.2623) 0.83 (0.0989)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
SCAD 0 (0) 0 (0) 0 (0) 0 (0)
MCP 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.094 (0.0022) 0.094 (0.0022) 0.095 (0) 0.095 (0)
Q0.9 0.094 (0.0022) 0.094 (0.0022) 0.095 (0) 0.095 (0)
Q0.99 0.179 (0.0599) 0.421 (0.1032) 0.604 (0.093) 0.65 (0.1238)
Q0.999 0.348 (0.0986) 0.358 (0.0519) 0.45 (0.1935) 0.474 (0.1154)
Threshold 0 (0) 0.229 (0.1455) 0.596 (0.1489) 0.758 (0.1173)

Table 26

Average true positive rates for changing number of extreme events.

E = 1 E = 2 E = 3 E = 4
ExLasso (γ = 4) 0.131 (0.102) 0.328 (0.1627) 0.667 (0.1571) 0.847 (0.0547)
ExLasso (γ = 6) 0.246 (0.2936) 0.542 (0.0949) 0.817 (0.1599) 0.944 (0.0642)
ExSCAD 4th 0.131 (0.102) 0.328 (0.1627) 0.667 (0.1571) 0.847 (0.0547)
ExSCAD 6th 0.246 (0.2936) 0.542 (0.0949) 0.817 (0.1599) 0.944 (0.0642)
ExMCP 4th 0.031 (0.0625) 0.182 (0.144) 0.599 (0.2817) 0.837 (0.0834)
ExMCP 6th 0.111 (0.2222) 0.259 (0.2049) 0.761 (0.2223) 0.937 (0.0745)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
SCAD 0 (0) 0 (0) 0 (0) 0 (0)
MCP 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.089 (0.0038) 0.089 (0.0038) 0.091 (0) 0.091 (0)
Q0.9 0.089 (0.0038) 0.089 (0.0038) 0.091 (0) 0.091 (0)
Q0.99 0.166 (0.0587) 0.397 (0.0874) 0.588 (0.1032) 0.691 (0.0929)
Q0.999 0.389 (0.1361) 0.369 (0.0525) 0.479 (0.2206) 0.479 (0.1158)
Threshold 0 (0) 0.234 (0.1401) 0.653 (0.1768) 0.767 (0.1054)

Table 27

Average false positive rates for changing number of extreme events.

E = 1 E = 2 E = 3 E = 4
ExLasso (γ = 4) 0.011 (0.0013) 0.008 (0.0023) 0.004 (0.0019) 0.002 (8e-04)
ExLasso (γ = 6) 0.01 (0.0028) 0.006 (0.0013) 0.002 (0.002) 0.001 (8e-04)
ExSCAD 4th 0.011 (0.0013) 0.008 (0.0023) 0.004 (0.0019) 0.002 (8e-04)
ExSCAD 6th 0.01 (0.0028) 0.006 (0.0013) 0.002 (0.002) 0.001 (8e-04)
ExMCP 4th 0.01 (8e-04) 0.008 (7e-04) 0.004 (0.0028) 0.002 (7e-04)
ExMCP 6th 0.01 (0.0023) 0.008 (0.0013) 0.002 (0.002) 0.001 (8e-04)
Lasso 0.013 (7e-04) 0.013 (7e-04) 0.013 (7e-04) 0.013 (7e-04)
SCAD 0.013 (7e-04) 0.013 (7e-04) 0.013 (7e-04) 0.013 (7e-04)
MCP 0.013 (7e-04) 0.012 (0.0013) 0.012 (0.0019) 0.012 (0.0019)
Median 0.014 (7e-04) 0.014 (7e-04) 0.014 (0) 0.014 (0)
Q0.9 0.014 (8e-04) 0.014 (0) 0.014 (0.0014) 0.014 (8e-04)
Q0.99 0.014 (0.004) 0.009 (0.0013) 0.006 (0.0023) 0.004 (0.0013)
Q0.999 0.007 (0.0032) 0.008 (0.0011) 0.007 (0.0038) 0.007 (0.0026)
Threshold 0.009 (0.0023) 0.009 (0.0011) 0.004 (0.0022) 0.003 (0.0013)
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Scenario 3: Changing Error Distribution

Table 28

Average F-1 scores for changing residual distribution.

β = 0.33 β = 0.2 β = 0.166 β = 0.125
ExLasso (γ = 4) 0.9 (0.0816) 0.875 (0.1258) 0.816 (0.0526) 0.278 (0.3587)
ExLasso (γ = 6) 1 (0) 1 (0) 0.582 (0.2852) 0.184 (0.217)
ExSCAD 4th 0.9 (0.0816) 0.875 (0.1258) 0.816 (0.0526) 0.278 (0.3587)
ExSCAD 6th 1 (0) 1 (0) 0.582 (0.2852) 0.184 (0.217)
ExMCP 4th 0.82 (0.0688) 0.818 (0.0819) 0.735 (0.1126) 0.288 (0.3796)
ExMCP 6th 0.946 (0.0454) 0.917 (0.0556) 0.693 (0.1714) 0.144 (0.1744)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
SCAD 0 (0) 0 (0) 0 (0) 0 (0)
MCP 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.095 (0) 0.095 (0) 0.095 (0) 0.094 (0.0022)
Q-0.9 0.095 (0) 0.095 (0) 0.095 (0) 0.094 (0.0022)
Q-0.99 0.312 (0.1434) 0.14 (0.0494) 0.249 (0.0897) 0.24 (0.0465)
Q-0.999 0.394 (0.1643) 0.299 (0.0897) 0.19 (0.0186) 0.115 (0.0505)
Threshold 0.384 (0.392) 0.05 (0.1) 0.64 (0.0773) 0.508 (0.2058)

Table 29

Average true positive rates for changing residual distribution.

β = 0.33 β = 0.2 β = 0.166 β = 0.125
ExLasso (γ = 4) 0.9 (0.0816) 0.875 (0.1258) 0.861 (0.0556) 0.281 (0.358)
ExLasso (γ = 6) 1 (0) 1 (0) 0.589 (0.2837) 0.194 (0.2291)
ExSCAD 4th 0.9 (0.0816) 0.875 (0.1258) 0.861 (0.0556) 0.281 (0.358)
ExSCAD 6th 1 (0) 1 (0) 0.589 (0.2837) 0.194 (0.2291)
ExMCP 4th 0.842 (0.0618) 0.869 (0.1245) 0.893 (0.1368) 0.307 (0.3857)
ExMCP 6th 1 (0) 1 (0) 0.821 (0.1798) 0.17 (0.209)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
SCAD 0 (0) 0 (0) 0 (0) 0 (0)
MCP 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.091 (0) 0.091 (0) 0.091 (0) 0.089 (0.0038)
Q-0.9 0.091 (0) 0.091 (0) 0.091 (0) 0.089 (0.0038)
Q-0.99 0.303 (0.1415) 0.133 (0.0438) 0.251 (0.0829) 0.232 (0.0391)
Q-0.999 0.373 (0.1713) 0.277 (0.0854) 0.182 (0.0343) 0.107 (0.0505)
Threshold 0.353 (0.3505) 0.05 (0.1) 0.689 (0.092) 0.517 (0.2134)

Table 30

Average false positive rates for changing residual distribution.

β = 0.33 β = 0.2 β = 0.166 β = 0.125
ExLasso (γ = 4) 0.001 (0.0011) 0.002 (0.0017) 0.002 (7e-04) 0.009 (0.0045)
ExLasso (γ = 6) 0 (0) 0 (0) 0.005 (0.0038) 0.01 (0.0032)
ExSCAD 4th 0.001 (0.0011) 0.002 (0.0017) 0.002 (7e-04) 0.009 (0.0045)
ExSCAD 6th 0 (0) 0 (0) 0.005 (0.0038) 0.01 (0.0032)
ExMCP 4th 0.002 (8e-04) 0.002 (0.0017) 0.001 (0.0013) 0.007 (0.0033)
ExMCP 6th 0 (0) 0 (0) 0.002 (0.0017) 0.009 (0.0026)
Lasso 0.014 (0) 0.014 (0) 0.014 (0) 0.013 (7e-04)
SCAD 0.014 (0) 0.014 (0) 0.014 (0) 0.013 (7e-04)
MCP 0.013 (0.0014) 0.013 (7e-04) 0.012 (0.0016) 0.012 (0.0019)
Median 0.014 (0) 0.014 (0) 0.014 (0) 0.014 (7e-04)
Q-0.9 0.014 (0) 0.015 (7e-04) 0.013 (0.0014) 0.013 (0.0023)
Q-0.99 0.01 (0.0026) 0.013 (0.002) 0.01 (0.0023) 0.011 (0.0013)
Q-0.999 0.01 (0.0036) 0.011 (0.0017) 0.012 (0.0028) 0.015 (0.002)
Threshold 0.008 (0.0034) 0.011 (7e-04) 0.004 (0.0013) 0.006 (0.003)
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Scenario 4: Changing Number of Dimensions

Table 31

Average F-1 scores for changing number of dimensions.

P = 750 P = 1500 P = 2250 P = 3000
ExLasso (γ = 4) 0.9 (0.0816) 0.816 (0.0526) 0.922 (0.0673) 0.838 (0.0062)
ExLasso (γ = 6) 1 (0) 0.947 (0) 0.961 (0.0263) 0.947 (0)
ExSCAD 4th 0.9 (0.0816) 0.816 (0.0526) 0.922 (0.0673) 0.838 (0.0062)
ExSCAD 6th 1 (0) 0.947 (0) 0.961 (0.0263) 0.947 (0)
ExMCP 4th 0.82 (0.0688) 0.782 (0.0708) 0.765 (0.0679) 0.683 (0.134)
ExMCP 6th 0.946 (0.0454) 0.854 (0.0619) 0.961 (0.0263) 0.885 (0.0876)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
SCAD 0 (0) 0 (0) 0 (0) 0 (0)
MCP 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.095 (0) 0.095 (0) 0.095 (0) 0.095 (0)
Q-0.9 0.095 (0) 0.095 (0) 0.095 (0) 0.095 (0)
Q-0.99 0.312 (0.1434) 0.238 (0.0794) 0.189 (0.0744) 0.093 (0.0262)
Q-0.999 0.394 (0.1643) 0.39 (0.0962) 0.501 (0.0663) 0.577 (0.2264)
Threshold 0.384 (0.392) 0.32 (0.1879) 0.316 (0.087) 0 (0)

Table 32

Average true positive rates for changing number of dimensions.

P = 750 P = 1500 P = 2250 P = 3000
ExLasso (γ = 4) 0.9 (0.0816) 0.861 (0.0556) 0.947 (0.0611) 0.802 (0.1235)
ExLasso (γ = 6) 1 (0) 1 (0) 1 (0) 1 (0)
ExSCAD 4th 0.9 (0.0816) 0.861 (0.0556) 0.947 (0.0611) 0.802 (0.1235)
ExSCAD 6th 1 (0) 1 (0) 1 (0) 1 (0)
ExMCP 4th 0.842 (0.0618) 0.853 (0.0524) 0.929 (0.0825) 0.795 (0.1136)
ExMCP 6th 1 (0) 1 (0) 1 (0) 1 (0)
Lasso 0 (0) 0 (0) 0 (0) 0 (0)
SCAD 0 (0) 0 (0) 0 (0) 0 (0)
MCP 0 (0) 0 (0) 0 (0) 0 (0)
Median 0.091 (0) 0.091 (0) 0.091 (0) 0.091 (0)
Q-0.9 0.091 (0) 0.091 (0) 0.091 (0) 0.091 (0)
Q-0.99 0.303 (0.1415) 0.207 (0.0762) 0.18 (0.0684) 0.092 (0.0468)
Q-0.999 0.373 (0.1713) 0.371 (0.1244) 0.486 (0.0278) 0.567 (0.2974)
Threshold 0.353 (0.3505) 0.344 (0.1929) 0.335 (0.0958) 0 (0)

Table 33

Average false positive rates for changing number of dimensions.

P = 750 P = 1500 P = 2250 P = 3000
ExLasso (γ = 4) 0.001 (0.0011) 0.002 (7e-04) 0.001 (8e-04) 0.003 (0.0029)
ExLasso (γ = 6) 0 (0) 0 (0) 0 (0) 0 (0)
ExSCAD 4th 0.001 (0.0011) 0.002 (7e-04) 0.001 (8e-04) 0.003 (0.0029)
ExSCAD 6th 0 (0) 0 (0) 0 (0) 0 (0)
ExMCP 4th 0.002 (8e-04) 0.002 (7e-04) 0.001 (8e-04) 0.002 (0.001)
ExMCP 6th 0 (0) 0 (0) 0 (0) 0 (0)
Lasso 0.014 (0) 0.013 (8e-04) 0.013 (8e-04) 0.013 (0.001)
SCAD 0.014 (0) 0.013 (8e-04) 0.013 (8e-04) 0.013 (0.001)
MCP 0.013 (0.0014) 0.011 (0.0013) 0.012 (0.0017) 0.013 (0.001)
Median 0.014 (0) 0.014 (0) 0.014 (0) 0.014 (0)
Q-0.9 0.014 (0) 0.017 (0.0013) 0.015 (0.0026) 0.014 (0.001)
Q-0.99 0.01 (0.0026) 0.017 (0.0078) 0.012 (0.0019) 0.016 (0.0086)
Q-0.999 0.01 (0.0036) 0.01 (0.0045) 0.007 (0.0014) 0.007 (0.0067)
Threshold 0.008 (0.0034) 0.007 (0.0017) 0.008 (0.0016) 0.012 (0.0019)
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