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In this aricle, the author considers mathematical formulation and numerical solutions
of distributed and Neumann boundary optimal control problems associated with the
stationary Bénard problem. The solution of the optimal control problem is obtained
by controlling of the source term of the equations and/or Neumann boundary conditions.
Then the author considers the approximation, by finite element methods, of the optimality
system and derive optimal error estimates. The convergence of a simple gradient method
is proved and some numerical results are given.
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1. Introduction

Rayleigh—Bénard convection is a convective flow when a stagnant flow layer is
heated from below such that its low side is hotter than its upper. This problem
involves buoyancy driven flow in a cavity. In this article, a stabilization of two
dimensional Rayleigh-Bénard type convection is considered. The boundary con-
dition for the problem involved two horizontal walls which differ in temperature
leading to a thermal gradient across the solution domain. The flow is heated from
a part (I'1) of the bottom boundary. The boundary conditions for the problem are
described in Fig. 1. In the present investigation, we consider methods suppressing
the natural convection by adjusting heat flux distribution at a part (I'y) of the
bottom or adjusting heat source on the flow domain f2.

In past years, considerable progress has been made in mathematical analy-
ses and computations of optimal control problems for viscous flows; see [2, 4, 5,
9, 11, 12, 13, 14, 18, 19, 20, 21, 22, 26, 27] and references therein. Optimal con-
trol problems for the thermally coupled incompressible Navier—-Stokes equation by
Neumann and Diriclet boundary heat controls were considered in [18, 22]. Also,
optimal control problems for the time dependent optimal control problems for the
Bénard problem and related problems were considered in [5, 9, 26] and references
therein. Exact controllability of the Boussinesq problem and related problems were
considered in [14].

For the Navier—Stokes cases, many computational methods such as SQP,
Newton-type second order methods, trust-region methods, and the conjugate gra-
dient method were proposed in [3, 10, 15, 23, 24] and references therein. Even
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Fig. 1. Computational domain.

though the gradient type methods are slow in convergence, it is still convenient to
use because of its simplicity and stability, especially for the complex system. Of
course, the fast second-order schemes have some drawbacks such as stability and
complexity.

The problem we consider is a Bénard problem whose system is governed by the
Boussinesq equations. We now write the 2-D nondimensional Boussinesq equations
as follows:

—PrAu+ (u-V)u=—-Vp+RPrTj in £,
V-u=0 in £, (1.1)
—AT+ (u-V)T=Q in {2

with boundary conditions

u=0 ondf2, T=gp only, T=0 on I,

or or (1.2)
- =gn on Wy, n =0 on et U Tighe,

on
where the computational domain 2 = (0,1) x (0,1) C R?, with Lipschitz boundary
082 = T'iop U Thottom U Lot UL vight. Here Thoptom =11 UL 'y; see Fig. 1. In (1.1)-(1.2),
u, p and T denote the velocity, pressure and temperature fields, respectively, gp a
given function, and @ and gy controls. The vector j is a unit vector in the direc-
tion of gravitational acceleration. The dimensionless variables are defined by the
following relations, where the superscript asterisk denotes dimensional quantities:

x* y* dyu* TH = T4 5
€T dm7 y dy’ u K ) ag KU y’
T:T*fTé ,_:d?/p*
’ T — T pr2’

(1.3)
Pr=

EIAN
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where £ > 0 the thermal conductivity parameter, p the density parameter, d, the
half width of the cavity, d, the half depth of the domain, T}, the nominal bottom
temperature, T the temperature at the top boundary, R the Rayleigh number, Pr
the Prandtl number, « the thermal expansion coefficient, v the kinematic viscosity
and g the gravitational constant. In this paper we consider, for the simplicity, the
case of constant x and constant v. The vector n denotes the outward unit normal
to 2. The modified pressure p is given by

3
p=P — (T} - Tr’;f);gagy, (1.4)

where T7%; is the reference temperature given by

* 1 * *
ref = §(TH +T¢). (1.5)
Next, we introduce the functionals
1 2 B 2 i 2
2(1 0 2 o} 2 I'n

and

1
JQ(u,T,pr,gN):f/|u—Ud|2dw+§/lQl2dw+l/ lgn[*ds. (1.7)
20( o} 2 ] 2 r

N

The positive penalty parameters «, 8 and v can be used to change the relative
importance of the three terms appearing in the definitions of the functionals. They
can also be used as regularization parameters. The optimal control problems we
consider are to seek state variables (u,T,p), and controls @ and gy such that the
functional (1.6) or (1.7) is minimized subject to (1.1)—(1.2) where U is some desired
velocity field. The functional (1.6) measures the vorticity of the flow. The control
of vorticity has significant applications in science and engineering such as control of
turbulence and control of crystal growth process. The first term in the functional
(1.7) measures the L2-distance between the candidate flow and the desired flow.
Thus, the physical objective of this minimization problem is to match a desired
flow field (in the L?-sense) by adjusting the distributed control @ or the boundary
temperature flux gn. The real goal of optimization is to minimize the first term
appearing in the definition (1.6)—(1.7). The second and third terms in the cost
functionals (1.6)—(1.7) are added to limit the cost of controls.

The plan of the paper is as follows. In §1.1 of this section we introduce the nota-
tion that will be used throughout the paper. In §2, we introduce a weak formulation
of mathematical problem and derive the optimality system of the optimal control
problem. Then, we introduce finite element approximations and derive optimal
error estimates. In §3, a gradient method for the solution of the discrete optimal
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control problem is introduced and the convergence of the gradient method is proved.
Finally in §4, the results of some computational experiments are presented. The
computational results show that our method is very efficient and feasible.

1.1. Notation

We introduce some function spaces and their norms, along with some related
notations used in subsequent sections; for details see [1].

Let 2 be a bounded domain of R? with a Lipschitz boundary 042. Let L?(£2) be
the space of real-valued square integrable functions defined on 2, and let || - [|z2(g)
be the norm in this space. We define the Sobolev space H™({2) for the nonnegative
integer m by

H™(2) ={u € L*(2) | D € L*(2), for 0 < |a| < m},

where D is the weak (or distributional) partial derivative, a is a multi-index. The
norm || - || gm (@) associated with H™(£2) is given by

lllfmay = D IDullZ2(g)-

la]<m

Note that H°(§2) = L?(£2). For the vector-valued functions, we define the Sobolev
space H™({2) (in all cases, boldface indicates vector-valued) by

H™(2) ={u= (u1,u2) | u; € H™(2), for i = 1,2}
and its associated norm || - || gm (o) is given by
2
lalFrm o) = D luillfim (o)
i=1
We also define particular subspaces:

13(2) = {f e I2(2)

/ fdz = 0}, H{(2)={uc H'(2)|u=0o0n I},
Q
and
HH(2)={Se€ H(2)|S=0on I'p},
where I'p = Iy U I, We also define the solenoidal space

V={ucH\N) |V -u=0}
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2. Preliminaries

2.1. A weak formulation of the equations
We introduce the following bilinear and trilinear forms, for all uw, v and w €
H'(02),T,S € H(2) and q € L3(2),
ap(u,v) :/ Vu:Vode, a(T,5) :/ VT -VSdx,
Q Q
co(u, w,v) = / (u-Vw-vde, ¢ (u,T,5)= / (u-V)T'Sdex,
Q Q
and

b(v,q):—/gqv-vd:c, d(T,v):RPr/QTj~vd:B.

We first note that the bilinear forms ag( -, - ) and a1( -, - ) are clearly con-
tinuous, i.e.,

lao(w, v)| < Cllul[gr (o) [0l H1(2), (2.1)
|a1(T', 5)| < C||T || () 15N 12 2y, (2.2)

and
b(v, ) < Cllvlla () llglli2(o)- (2:3)

We have the coercivity relations associated with ao( -, -) and as( -, -):

ao(u,u) = |Vul|Z2 (o) > Cillultp o) Vu € Hy(R) (2.4)

and
ar(T,T) = IVT|720) = Coll Tl 0y VT € Hp(£2), (2.5)

which are direct consequences of Poincaré inequality.

LEMMA 2.1.  For every w,v,v € H'(2) and every T,S € H'(R) there are
constants C1 and Cy such that

co(u, v,v)| < Ctl|ull g o)V a (@) 1V (2) (2.6)
co(u,v,v) =0 f ueV, (2.7)
le1(w, T, )| < Collull g )| T (@) Sl 12 VueV, (2.8)
and
AW, T,T) =0 if ueV. (2.9)

Proof. These follow from the Cauchy—Schwarz inequality, Holder’s inequality,
and various embedding results, in particular the continuous embeddings of H L into
L* and L? and H! into L* and L2, respectively. O
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The weak form of the constraint equations (1.1)—(1.2) is then given as follows:
seek u € H)(2), p € LE(2) and T € H'(2) such that

Prag(u,v) + co(u,uw,v) + b(v,p) = d(T,v) Yve H)(2), (2.10)
b(u,q) =0 Vg e Lj(£2), (2.11)
al(T7S)+Cl(u7T7S):<Q75>_<gNaS>FN VSEHE(‘Q% (212)

and
T=gp onli, T=0 on iy, (2.13)

where (-, -) and (-, - ), denote duality pairing on {2 and I'y, respectively.
The analysis for Neumann boundary and distributed optimal control problems
was studied in [28].

PROPOSITION 2.2 (Modification of Proposition 2.3 in [28]). For every gn €
L?(I'y) and Q € L*(2) with gp = 0, the Boussinesq equations (2.10)—(2.12) have
a soultion (u,T,p) € V x HY(2) x L3(2). Moreover, if (u,T,p) is a solution to
(2.10)-(2.12), then (u,T,p) € VN H?(2) x H*(2) x L3(2)NHY () (1<s<3)
and there is a continuous function Ps for each s such that

lwll o) + 1Pl (2) + 1T B (2) < Ps(1QllL2(2) + lgn L2 (ra))- (2.14)

We describe the optimal control problem involving the functional (1.6) and
state the optimality system. In the same way, one can study the optimal control
problems for the functional (1.7) with the same distributed and Neumann boundary
temperature control.

We look for a (u,T,p,Q,gn) € H(2) x H(2) x LE(2) x L*(2) x V such
that the cost functional

1
T, T,p, Qr gn) = —/ IV % uf?dz + 5/ QP da + 1/ oxPds  (2.15)
20{ 0 2 0 2 'y

is minimized subject to the constraints

Prag(u,v) + co(u,u,v) + b(v,p) = d(T,v) Yv € H}(2), (2.16)
b(u,q) =0 Vqe Lj(2), (2.17)

ar(T,8) +c1(w,T,8) = (Q,S) — (gn, S)ry VS € HLH(D), (2.18)
T=gp onli, T=0 on [ip, (2.19)

where V is a nonempty, closed and convex subset of L?(I'y).
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Using the Lagrange multiplier method, the optimality system can be obtained
as follows: find (u,T,p, &, @,0) € H(2) x HY(2) x L3(2) x Hy(2) x HH(2) x
L3(£2) such that
Prag(u,v) + co(u,u,v) + b(v,p) = d(T,v) Yv € H(2),
b(u,q) =0 Vg€ L(%2),

ai(T,S) +c1(u, T, S) = _<Q5

P
Sy —(—,8 VS € Ht 2),
4] > <7 >FN p(®)
T=gp only, T=0 on I,
Pr 00(9,5) + CO(avuaE) + C()(’U/,e,g) + b(e,O')

(2.20)

=$(V><u,Vx0)—c1(9,T,qs) Vo € H(0),
bEr) =0 Ve L3(9),
G;l(é,(ﬂ) _Cl(uvwv ¢) :d(@,f) v@ € HB(‘Q)

2.2. Finite element approximation and error estimates
In this section we investigate a finite element discretization of the optimality
system and the error estimates of the approximation solutions. First we choose a
family of the finite dimensional subspaces V" ¢ H'(R2), V* ¢ H'(2), O" ¢ L*(2).
Welet Vi = VN H(R2), VE=V"NHL(2) and O} = O"NL3(R). These families
are parameterized by a parameter h that tends to zero; commonly, h is chosen to be
some measure of the grid size. These finite-dimensional function spaces are defined
on an approximate domain (2,. For simplicity we will state our results in this
section by assuming (2, = (2. We assume that these finite element spaces satisfy
the following approximation properties: there exist an integer k£ and a constant C,
independent of h, such that
,,higf,h”” = "m0y S CH™ o] gmirg) Yo € H™H(R), 1<m <k, (2.21)
qhig(fjhﬂq — " 12(0) < Ch™||gllgm(o) Vg€ H™(R2), 1<m <k, (2.22)

it T =T (g < CH™ Tl amoiay VT € H™ (@), 1<m < k. (228)
€ v

Here we may choose any pair of subspaces Vh, V" and O" such that Vg , Vg and
Ol can be used for finding finite element approximations of solutions of Boussinesq
equations. Thus we make the following standard assumptions, which are exactly
those employed in well-known finite element methods for the Navier—Stokes equa-
tions and the energy equation. Next, we assume the inf-sup condition: there exists
a constant C, independent of h, such that

b(v",q")

inf sup 3 ? >C.
04" €0} grurevi 1V (@)lld" |22 (0)
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This condition assures the stability of finite element discretizations of the
Navier-Stokes equations and also that of the optimality system (2.20). The ref-
erences [8, 16, 17, 32] may also be consulted for a catalogue of finite element sub-
spaces that meet the requirements of the above approximation properties and the
inf-sup condition. Once the approximating subspaces have been chosen, we seek
(uh,Th,ph,£h, oh oM e Vg x VI x O x Vg x VI x O} by solving the discrete
optimality system of equations:

Prag(u”,v") + co(u”, u”, ") + b(v", p") = d(T" 0") Vo' € V],
b(u",¢") =0 Vg" € Of,

Pl o
ar (T", S") + ¢y (u”, T", S") = <,Sh> - <,Sh> vsh e Vi,
B v I'n

T"=gp only, T"=0 on Iy,

Prag(0™,€") 4 co (6", u", €M) + co(u, 0", £") + b(w", o)
= é(v xul V x 0"y —c (0", T" o") ve" e VI
b(g", ") =0 V" €O,

ar (9", ") — ¢y (ul, S, o) = d(S", ") vSh e VA

(2.24)

We concern ourselves with questions related to the accuracy of finite element ap-
proximations in this section. The error estimate makes use of the results of [7] and
[20] concerning the approximation of a class of nonlinear problems.

Here for the sake of completeness, we will state the relevant results specialized
to our needs. The nonlinear problems considered in [7] and [16] are of the type

F(\ ) = + LG\ ) =0, (2.25)

where L € L(Y;X), G is a C? mapping from A x X into Y, where X and Y are
Banach spaces and 4 is a compact interval of R. We say that {(X,¥(\)) | A € A}
is a branch of solutions of (2.25) if A — () is a continuous function from 4 into
X such that F(A,¢(\)) = 0. The branch is called a nonsingular branch if we also
have that Dy F(X,9(\)) is an isomorphism from X into X for all A € A. Here, Dy
denotes the Frechet derivative with respect to ). Approximations are defined by
introducing a subspace X" C X and an approximating operator L" € £(Y; X").
Then we seek " € X" such that

FhO\ M) = " + LhG(\, ") = 0. (2.26)

We will assume that there exists another Banach space Z, contained in Y, with
continuous imbedding such that

DyG(\¥) € L(X; Z), VA€ A, Vi) € X. (2.27)
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Concerning the operator L", we assume the approximation properties
Jim[|(L" = L)ylx =0 vyev (2.28)

and
tim |1~ Ll = 0. (2.29)

Note that (2.27) and (2.29) imply that the operator D, G(\,¢) € L(X, X) is com-
pact. Moreover, (2.29) follows from (2.28) whenever the imbedding Z C Y is
compact.

Now we can state the first result of [7] and [16] that used in the sequel.

THEOREM 2.3. Let X and Y be Banach spaces and A a compact subset of
R. Assume that G is a C? mapping from A x X into Y and that D?>G is bounded
on all sets of Ax X (D?G represents second Fréchet derivative of G). Assume that
(2.27)—(2.29) hold and {(N\,(N)) | A € A} is a branch of nonsingular solutions of
(2.25). Then, there exists a neighborhood O of the origin in X and for h < hy small
enough, a unique C? function X € A — Y"(\) € X" such that {(\,¢¥"(N\)) | A € A}
is a branch of nonsingular solutions of (2.26) and ¥"(\) —¥(\) € O for all \.
Moreover, there exists a constant C > 0, independent of h and A, such that

1" () =¥ (Wllx < CIEL" = LGN YN)lx YA€ A. (2.30)

For the second result, we have to introduce two other Banach spaces H and
W, such that W C X C H, with continuous imbeddings and assume that

for all w € W the operator DyG(A, w) may be

. (2.31)
extended as a linear operator of L(H;Y),
and the mapping w — Dy G(A, w) is continuous from W onto L(H;Y).
We also suppose that
lim | ~ Ll v,y = . (2.32)

Then we may state the following additional result.
THEOREM 2.4. Assume the hypotheses of Theorem 2.3 and also assume that
(2.31) and (2.32) hold. Assume in addition that

for each A € A, (X)) € W and the function

‘ ‘ ) (2.33)
A — (A) is continuous from A into W

and
for each A € A, Dy F (X, (X)) is an isomorphism of H. (2.34)

Then, for h < hy, sufficiently small, there exists a constant C, independent of h
and X, such that

19" () = W)l < CIEL" = LGN PO [ + [9"(N) —v(V]lx VA€ A
(2.35)
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We begin by recasting the optimality system (2.20) and its discretization (2.24)

into a form that fits into the frame work. Let A\ = P%« and let

X = Hy(2) x H'(2) x L§(2) x Hy(£2) x Hp(2) x L§(£2),
Y=H'2)x HY2)x H () x H (1),
Z=L3(2)x L?(0) x L?(2) x L?(N),
Xh=VixVhxOh x Vi xVhxOp.
Note that Z C Y with a compact imbedding. The operator L € L(Y; X) is de-
fined by
L(z,0,n,P)=(u,T,p,& ¢,0) € X

where, for (£,0,n,p) in Y, (u,T,p, & @,0) in X is defined by the solution of the
following system:

ao(u,v) + b(v,p) = (5,v) Vv e H}(2),

b(u,q) =0 Vg € L§(12),

a1 (T,8) =(6,5) VS e Hy(N),

T=gp onli, T=0 on I, (2.36)
ao(v,€) + b(v,0) = (n,v) Yv e HY(N),

b(€,q) =0 Vqe L§(%),

a1(9,9) = (P,S) VS € HLH(N).

Note that the system is weakly coupled. Analogously, the operator L" € £L(Y; X")
is defined by

L"(Z,0,n,P) = (u",T" p",&", ", ") € X",
where (uh,Th,ph,Eh, " o) in X" is defined by the solutions of the following
system:
ao(ul, ") + (", p) = (Z,0") Wl € Vi,
bu",q") =0 V" e S},
ay (T", 8"y = (@,8") vsh e v},
T"=gp only, T"=0 on Iy, (2.37)
ao(v", €M) + b(w", o") = (n,0") W' e Vg,
b(Sh,qh) =0 V¢"e S’éﬂ
ay (", 8"y = (P, S") vsh e VE

This system is weakly coupled in the same sense as the system (2.36).
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Let A denote a compact subset of R. Next we define the nonlinear map-
ping G: A x X — Y as follows: G(\, (u,T,p,&, &,0)) = (2,0,n,P) for A € A,
(u,T,p, &, P,0) € X where (Z,0,n, P) €Y is defined as follows:

(5,v) = Aeo(u, u,v) — Md(T,v) Vv € Hy(2),
o o

ﬁ,S> + <7,S>FN VS € Hp(92),

< > = )\Co(’U,'ll,, ) + ACO(“?”?&) - )‘cl (vav é) (238)

(6, 5) :cl(u,T,S)—<

E(V x (V xu),v) ve HyR2),

(P,S) =ci(u,S, ) —d(S,&) VS e Hp(Q2).

It is easily seen that the optimality system (2.20) is equivalent to
(u, T, Ap, &, D, Mo) + LG\, (u, T, Ap, &, ,A0)) =0 (2.39)
and that the discrete optimality system (2.24) is equivalent to
(u", 7" \p" €", 0" Ao") + LPG(N, (u", T Np", €7, d" Ao")) = 0. (2.40)
Thus we have recast our continuous and discrete optimality problems into a form

that enables us to apply Theorems 2.3 and 2.4.

PROPOSITION 2.5.  The problem (2.36) has a unique solution belonging to X .
Assume that (2.21)—(2.23) hold. Then, the problem (2 37) has a unique solution
belonging to X". Let (a,T,p,€, &,6) and (a",T" p", €", ", ") denotes the so-
lution of (2.36) and (2.37), respectively. Then we also have that

& —a" || g () + 15— 5" |22y + 1T = T" |11
=+ ||£— é’hHHl(Q) + ||5‘ — 6'hHL2(Q) + ||¢Z — éh||H1(Q) — 0 as h, — 0. (2.41)
If, in addition, (@, T,p,€, ,5)e HI TN (Q)x H™ 1 (02)x H"NLZ(2)x HI 1 (2) %
H™ Q) x H™NLE(12), then there exists a constant C, independent of h, such that
& — @"|| g1 () + 15 — D" l2c0) + 1T = Tl 1)
+ 1€ = "z () + 16 — " Ml12(2) + 18 — 8" [|111 ()
< Ch™([|@l g (o) + 1Bl @) + 1T mss ()
+ €]l zrmsr 2y + 1Bl (2 + 16] msr ()
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Proof.  First, it is well known [7] that the two Stokes problems in (2.36) have
unique solutions (@, p) and (£, ) belonging to H{(2) x L2(£2), respectively. Also,
the discrete Stokes problems in (2.37) have unique solutions (ﬁh,ﬁh) and (éh, ¢~>h)
belonging to Vg x O&, respectively. Moreover, we have that

@ — ﬁ'h”Hl(()) + 15 = "l L2(2) — 0
and
1€ — €Ml ey + 116 — 6" (| 12(2) — O

as h — 0, and if in addition, (@,p) € Hy ™ (2)x H"NL(2) and (€,5) €
HJH(0) x H™ N LE(2), we have that

18— &" | g () + 15 — 5"l 222y < CR™ (8]l grmr () + 1Bl (2))

and

1€ — €l e () + 116 — " 12(0) < Chm(”é”H’"“(Q) + 1G] zm(2))-

Next, it is also well known that the two second order elliptic problems (the third
and last equations in (2.36)) have unique solutions 7' and ¢ belonging to H'(£2),
respectively. From the Babuska’s theory, the discrete second order elliptic problems
(the third and last equations in (2.37)) have unique solutions 7" and &" belonging
to V", respectively. Moreover, we have that

|T—T"|gro) =0 ash—0 (2.42)

and

HQg— QthHl(Q) —0 ash—0, (2.43)

and if, in addition, T € H™+(2) and & € H™(2), we have that

T = T"|[ 1 (2) < CH™ [T s (), (2.44)
|® — &"|| g1 () < Ch™|| B grm+1)- (2.45)
O

THEOREM 2.6. Assume that A is a compact interval of R and that there
exists a branch {(\,¥(N) := (u,T,p,& ,0)) € A x X} of nonsingular solutions
of the optimality system (2.20). Assume that the finite elements spaces vh o,
Vh O satisfy the condition (2.21)~(2.23). Then, there exists a neighborhood O
of the origin in X and, for h < hg, small enough, a unique branch {(\,¢¥"(\) :=



Optimal Control for 2-D Rayleih—-Bénard Type Convection 105

(uh, Th ph ", " o")) € A x X"} of solutions of the discrete optimality system
(2.20) such that Y"(\) —(X\) € O for all X € A. Moreover,
19" (A) = »(N)[lx
= Ju) = u" Mm@ + [P ="Mz + 1T = TV 12
+HIEN) = €" W) + o) = " NlL2@) + [12A) = 8" (V)| m1(2) — 0
(2.46)

as h — 0, uniformly in A € A. If, in addition, (u,T,p,&, ¢,0) € H0m+1((2) X
H™Y(02) x L2(2) N H™ x HJH Q) x H™ () x L3(2) N H™ for A € A, then
there exists a constant C, independent of h, such that
[u(A) = w" (Nl 2) + 1) = 2" Nllz2(0) + 1T = TNl a1 ()
+[[E(N) — ¢ M) +llo(A) - UhO‘)HLZ(Q) + [ P(A) — ‘ﬁh()\)HHl(n)
< CR"([uN)[| gm0y + [P [ 5m (2) + 1T M) zm+1 (2
FNEM N zzm+1 2y + oM zm(2) + 12N [ m+1(02)) (2.47)

)
(

uniformly in A € A.

Proof. Clearly, G is a C*° polynomial map from A x X into Y. Therefore,
using (2.1)-(2.3), (2.6), and (2.8), it is easily shown that D?G(X, -) is bounded
on all bounded sets of X. Now, given (u,T,p, &, ®,0) € X, a direct computation
yields that (=, @,7, P) € Y satisfies

(£,6,i,P) = DyG(\, (u,T,p,& ®,0))(@T,p& &,0)
for (@, T,p, &, ®,5) € X if and only if
(E,v) = Aeo(u, @, v) + Ao, u,v) — Md(T,v) Yo € HY(R),
(6.8) = er(@.T,8) + er(u.T. ) — <§,s> - <f,s>FN VS € Hh(),

<ﬁ7 ’U> = )\C()(’U, ﬁa E) + )\Co(’l), w, 5_) + )‘C()(ﬁv v, 5) + )‘CO(uv v, E)

— A1 (v, T, ®) — Aey (v, T, &) — 3(v x (V xu),v) Yve Hy2),
(6%

(P,S) =ci(a,S, ®) + c1(u, S, &) — d(S,&) VS € Hp(2).

Thus, it follows from (2.1)-(2.3), (2.6), and (2.8) that DyG(A, (u,T,p,&, §,0)) €
L(X,Y). On the other hand, since (u, T,p, &, ®,0) € X and (a0, T,p, €, ,5) € X, by
the Sobolev imbedding theorem, T, @, T, and ¢ € L9(12), and u, £, and @, € € L°(R2)

and g;‘ , 38;’], 08;‘ , 59;’ € L*(Q) for j =1,2. Then it follows that (Z,7,Q, 0,P) € Z
and that, for (u,T,p,t,&, &,0) € X, DyG(X, (u,T,p, &, ,0)) € L(X,Z). Next, we
turn to the approximation properties of the operator 7. From Proposition 2.5, we
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have that (2.28) holds. Since the imbedding of Z into Y is compact, (2.29) follows
from (2.28), and the (2.46) follows from Theorem 2.3. Also from Proposition 2.5,
we may conclude that there exists a constant C, independent of h, such that

I~ IGO0l < CH™ (g ay + [Pl cey + [Tl s
+ 1€l mmr o) + ol am2) + | @l mmer).
Then (2.47) follows from Theorem 2.3. O

Now, we derive an estimate for the error of u" and £h, T", ®" in the L?-norm.
Since G(\,1()\)) does not depend on p, or o, we redefine X = H'(2) x H () x
H'(Q)x HY(2) and X" = V" x VP x V" x V" Y and Z remain as before.

THEOREM 2.7. Assume the hypotheses of Theorem 2.6. Then there exists a
constant C, independent of h such that

[u"(A) = u(N)22) + IT"(A) = TN |20

+ Hﬁh()\) —&N)lL22) + [®"(\) — (M2

< Ch™  (lu(N) | gm+1(a) + P L (@) + 1T M gm0
FNEMrm+12) + loMllam o) + 1P |+ (2))- (2.48)

Proof. 'We must verify that (2.31)—(2.34) hold in our setting; then the ap-
proximation properties (2.21) and the results of Theorems 2.4 and 2.6 easily lead
to the conclusion. In similar methods with [19], we can verify (2.31)—(2.34). O

A consequence of Theorems 2.6 and 2.7 is the following corollary that gives
estimates for the error in the approximation of the controls.

COROLLARY 2.8. Define the approzimate control by

@h
Qh:i? mn .Q,
@h
95{{ = _7 on I'y,

and assume the hypotheses of Theorem 2.6. Then, for h < hg sufficiently small,
there exists a constant C, independent of h such that

1Q" = QI (2) < CR™(|[w(M) | grm+1 0y + 1PV mm (@) + 1T m+1(02)

FNEM N Ermsr(2) + oMl (@) + 12N mme(2)
(2.49)

and
gk — Il 3 (pyy = CP (e LEms () + e[z (@) + 1T ) [m1(0)

FEM N am+1(2) + loM) [ zm @) + 12N [ Em+r(2))-
(2.50)
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In addition the hypotheses of Theorem 2.7 hold, then, for h < hy sufficiently small,
there exists a constant C, independent of h such that

1Q" — Qll2(2) < CE™ T (lw(N) || grm+1 () + I lzm 2y + TN g2
I EM N am+1(2) + loN) [ zm @) + 12N || m+r(2))
(2.51)

and

lgk —gllz2(ryy < CH™ 2w | s ) + PO m (@) + IT ) s )

&M zm+1 () + oM zm (2) + 1PN [ 7rm+1(2))-
(2.52)

Proof. Recall that Q" =—¢"/~ in 2 and g% =—&"/y on I'y. Then, (2.49) and
(2.51) easily follow from (2.47) and (2.48), respectivley; (2.50) follows from (2.47)
and the trace theorem (see [1]), i.e., ||g% —gn] . 1 < C||@" — || y1 (). Finally,

H2(I'n) —
(2.52) follows from (2.47), (2.48) and the well-known inequality ||gh — gn|lr2(ry) <
Clel|®" — @ 1(0) + (1/€)]|@" — D] 12(0)] with the choice e = h'/2, O

3. The gradient method

The discrete optimality system of equations (2.24) consists of three groups
of equations: the state equations for (uh7ph,Th), the adjoint state equations for
(£h, " M), and the optimality conditions for ¢” and Q". We may construct an
iterative method, i.e., to iterate among the three groups of equations so that at
each iteration we are dealing with a smaller size system of equations. Actually
(u”(k), p"(k)) and (&"(k), 0" (k)) are solved with T"(k) and &"(k) computed from
the heat equation with w”(k—1) and §h(k — 1) at each state equations respectively.

In this section, we consider the case of vorticity minimization problem with
a distributed control. The other cases, such as a vorticity minimization problem
with a Neumann boundarry control and a matching problem with a distributed or
Neumann boundary control, may be studied in the same manner.

The gradient method for minimizing a functional 7 (Q"):=7 (u(Q"),T(Q"),Q")
on a Hilbert space O" may be described as follows:

Algorithm 3.1. Gradient algorithm
Set k = 0 and choose Q"(0).
Set 6Q" = —R%Qh(k)), and compute p(k) = argmin ., 7(Q" (k) + psQ").
Set Q"(k +1) = Q" (k) + £&26Q".
Set k =k + 1 and go to 2.

- w b=

Here R is the Riesz map from the dual space of O to O" and p(k) is a sequence
of positive step lengths.
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Using Fréchet derivative, one can obtain the optimality system and relations
between controls and adjoint variables. Thus, by the similar argument one can
have the following gradient method, refer to [22]. A gradient method for a vorticity
minization problem with a distributed control with variable step lengths {p(k)} is
given as follows. The Riesz map on O" can be taken as 17!, i.e., the identity map.
(1) Choose an initial guess Q"(0).

(2) For each k > 1,
(a) solve for (u"(k),T"(k),p"(k)) from the state equation with Q"(k — 1),
for VS" € VI, Yol € Vi and V¢" € O,

ar(T"(k), S") +c1 (u" (k—1), T"(k), ") = (Q" (k—1), 5"),
Th(k:):gD on I, Th(k):() on Iiop,
Prag(u”(k), v") + co(u" (k), u" (k), v") + b(v", p) —d(T" (k),v") =0,
b(u"(k),q") = 0.

(3.1)

(b) solve (¢"(k), #"(k),o"(k)) from the adjoint state equation with
(uh(k), T"(k), p"(k)), Yo" € VL, ¥8" € VI and ¥r € OF,

ar (8" (k), ") + cr(u(k), ", " (k) = d(¢", £" (k — 1)),
®"(k)=0 on I'p,

Prag(6",&" (k) + co(6",u" (k), " (k) + co(u” (k), 0", €" (k))
+b(0", 0" (k)) = é(v x ul(k),V x ") — ¢, (6", T"(k), &"(k)),
b€ (k),r") = 0.

(3.2)
(c) solve for Q" (k) from the optimality condition

Qh<k>=<1—p<k>>czh<k—1>—’)g‘:)@h(m onQ  (33)

The convergence property of the above algorithm is given in the following
result. The convergence of the conjugate gradient algorithm can be proved in the
similar fashion.

THEOREM 3.1.  Let (u"(k),p"(k),T"(k),&" (k)" (k), 8" (k),Q"(k)) be the so-
lution of the gradient algorithm and (u h ph T €h b, o QM) the solution of (2.24)

with <%h,5’h>FN =0VS" € VA Then if p(k) >0, is sufficiently small, Q"(k) —
Q" and thus, (u”(k),p"(k), T"(k),&" (k), " (k), " (k)) — (u",p", T",&", ", &")

as k — oo.
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Proof. 'We will make use of the following classical result; see, e.g., [8]. Let X
be a Hilbert space with norm || - ||x and scalar product (-, - )x. Let 7(-) be a
real valued function on X. Suppose that 7(-) is of class C?, that it has a local
minimum at ) € X and that there exist two real numbers M, n and a ball B C X
centered at Q such that for all Q € B and all §Q1,Qs € X we have that

T"(Q) - (6Q1,6Q2) < M[[6Q1|x]|10Q2]x and  ml|6Q1[% < T"(Q) - (5Q1, Q1)

(3.4)
where T7(Q) - (0Q1,0Q5) is the bilinear form associated with the second Fréchet
derivatives of 7(-). Suppose that p(k) is chosen so that

. _ 2m
0<ps <plk)<p"< e for all k& (3.5)

for some positive numbers p, and p*. Then the iterates of the algorithm
Q"(k) = Q"(k — 1) — p(B)T(Q"(k — 1)), n=1,2,..., (3.6)

converges to Q" for any initial guess Q’L(O) € B.
Now, let X = O". For each Q" € O", the second Fréchet derivative T”(Qh) .
(6Q%,6Q%) may be computed by

T"(QM) - (5Q%,6Q8) = B(5QY, 6Q8) + (wa1,V><w2) (qu YV x 2,

(3.7)
where @" € V! is the solution of
Prag(@”,v") + co(@”, a", v") + b(v", p*) = d(T", v") Vo' € V],
b@a",q") =0 vq" €O,
(@, q") = ; .

al(T'zS )+ (@, T, shy = (Q", sh)y  vSst e Vi,
Th=gp only, T"=0 on Iiop,

the first variations @ and @} are solutions of

Prao( )+CO( ?,ﬁh vh)
+ co(@", ", v") + b(v", ) = d(Al ") Vol e V],
b(’sz »q ) =0 Vq € 007 (39)

(],1(14?7Sh) + Cl(w?afhash) +Cl(ﬁ’h’A?,Sh) = <5Q?a5h> VSh € V[})Lv

A =0 on I'p,
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for i = 1, 2, respectively, the second variation 2" is the solution of

Prao(ih,'vh) +co(2h,'&h,vh)

+ co(@", wh,v") + b(v", 5" = d(B",v") Vo' e VI,
b(z",q") =0 vq" €0y,

ar (B, ™) + ¢y (z", T, S™)

+ ey (wh, A ST 4 ey (wh, AP Shy =0 VST e Vi,
B"=0 on I'p.

(3.10)

Let Q" be the initial guess in the ball of radius ¢, i.e., HQh — QhH = p < (. Now,
we need to show that there exists a ¢ such that Vp < ¢, (3.4) is satisfied for some
M and m.

From (2.14), we have with continuous function f; and a constant K that

" [+ 17" < A(IQ" — Q™| + K1) (3.11)

By the same way in the proof of Proposition 2.1, we have that there is a continuous
function fy and f3 such that

@7 1 < f(1Q" — Q"D 16QF | (3.12)
fori=1,2, and
1211 < f5(1Q" — QN 1ISQY I 15Q5]| (3.13)

for i« = 1,2. Then using (3.11), (3.12) and (3.13) in (3.4), we have that, for some
constant Ko > 0,

7" (@"(Q")), Q")) - (5Q%, 6Q%)|
< (54 2R0Q" - Q'+ T2ANQ - @1+ K0 AGQ" - QD)
< 164 | 1541 (3.14)
and
7" (@"(Q")), Q")) - (5Q%,6Q})|
> (5 B20000" - @1+ KORIQ" - QD )IsQtP. (319
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Now, from the continuity of fi, fo and f3 we have that for every posi-
tive € there exists a ¢ such that if |Q" — Q" < ¢ then f;(]|Q" — Q"||) < e for
i=1,2,3. Thus,

7@ 0@} 0Q) < (54 2 (2e+ K ) 164 19Q51 = MIoQL 1o}

(3.16)
and
- K
7@ - (546001 = (8- E2 e+ Ke) 164 = mllsQiP, (347
where
K K.
M=p+ —2(26+K1) and m:ﬁ——z(e—l—Kl)e.
a
If € is chosen such that (— (6+K1)e > 0 then there exists a ¢ such that
Q" — QM| = p < ¢, (3.16) and (3.17) imply the inequalities in (3.4). O

Now we discuss the numerical solution of the optimal control problem. To carry
out the computation we discretized the problem using the finite element method.
We use the Taylor-Hood finite element, that is, the piecewise quadratic element
for the velocity and the temperature and piecewise linear element for the pressure
defined on a triangle mesh.

In the equations (3.1), the Navier-Stokes equations are coupled with heat
equation. Since we want to use the existent tcodes for Navier—Stokes equations and
heat equation, we use the block Gauss—Seidel iteration. Equations (3.2) are also
solved using the block Gauss—Seidel iteration.

Since the Navier-Stokes equations in (3.1) are nonlinear, we use Newton’s
method based on exact Jacobian. At each Newton’s iteration, we solve the linear
system of equations by Gaussian eliminations for sparse matrices. Since quadratic
convergence of Newton’s method is valid only within a contraction ball, we normally
first perform a few (usually 3 or 4 times) simple successive iterations and then switch
to the Newton’s method. The simple successive iterations are defined by

Prag(u”(k),v") + co(u” (k — 1), u" k), v")
+b(v",p") — d( "(k),v") =0 W' e Vg,
b(u"(k),q") =0 Vq" € Og.

In the case of the uncontrolled Navier—Stokes equations, the solution is unique
for a small Reynolds number and the simple successive approximations converges
globally and linearly (See [17]).

In the same way, one can study the optimal control problems for the functional
(1.7) with the same distributed and Neumann boundary temperature control.
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To decide p(k), one can solve a optimization problem 2 in Algorithm 3.1.
Since this optimization problem is nonlinear, one can approximate this problem
to a linearized optimization problem using Taylor series. Also, one can let p = 1
and choose the prescribed tolerance 7 and perform the following steps in each
iteration k =1,...,

(1) if T(Q"(k)) > T(Q"(k —1)), set p(k) =1 x p(k — 1) and go to the beginning
of the iterations; otherwise, go to next step;
(2) I |T(Q"(k)) — T(Q"(k = 1)I/IT(Q"(K))| > T, set p(k) = m x p(k —1) and go

to beginning of the iterations; otherwise, stop where [ < 1 and m > 1.

In our problem, we find that the convergence is extremely senstive with p(k).
The above algorithm is used to find an approximation of p(k). Then we fix the step
length p/f for each problem.

4. Computational results

In this section we test two examples involving the functionals (1.6)—(1.7) with
distributed and Neumann boundary controls using the gradient algorithm studied in
Section 3. Let us consider that the domain (2 is the unit square (0,1) x (0,1) C R2.

The state variables satisfy the following Boussinesq equations:

—Au+ (u-V)u+Vp=98Tj in (2,
V-u=0 in {2, (4.1)
AT+ (w- V)T =Q in 9.

In our computation, we take the Prandtl number to be 1. We also take a = 1.

Since the distributed control and the Neumann control are equally effective
in our computational experiments, we are not going to consider the case of both
controls are applied. Thus, # = 0 in the case of Neumann boundary control problem
and, of course, 7 = 0 in the distributed control problem. The stopping criterion for
the gradient method is as follows: if

T(Q"(K) - T(Q"(k —1))|

TQr k)] < fol

then stop for the distributed control problem and if

T (gx (k) = T(gh(k—1))]
1T (g5 (k)]

< tol,

then stop for the Neumann boundary control problem. We set tol = 1076 for all
tests in this section.

To stabilize the convection flow, we test both vorticity minimization and
matching problems.
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4.1. Vorticity minimization
First, let us consider the vorticity minimization problem. Minimize the follow-
ing functional

1
T Tp.@ =5 [|Vxufde+ ] [ (0P de (12)
2 /g 2 Jo
for the case of distributed control or
1 2 Y 2
J(w,T,p,g) =5 [ IVxulde+ 5 [ |gn|"ds (4.3)
2 /o 2 Jry

for the Neumann boundary control subject to (4.1) with boundary conditions

u=0 ondf2,

oT
—— =0 on lep U Tvight, T'=0 on Ii,,, T =10 on I7,

on
oT
=gNn On FN7
on

where e = {(0,y) [y € (0,1)}, Fignt = {1y |ye(0,1)}, I ={(2,0)[z€(0,0.2)},
Iiop ={(x,1) |2 € (0,1)}, I'n ={(2,0) |z €(0.2,1)}, see Fig. 1. When gy =0, Q@ =0,
we say that this problem is the uncontrolled problem. The numerical solution of
the uncontrolled problem is shown in Fig. 2. Our uncontrolled system is generated
by only a Dirichlet boundary condition and thus optimal states can not be easily
achieved from distributed and/or Neumann boundary controls in geneal.

1 1

_—
0.90909

0.8

—— 2725

0.6
>.0.5\QN >
I G
. \ 0.4
)
Era A %

Fig. 2. Uncontrolled temperature field (left) and velocity field (right) (Q = 0 and
gy =0).

In a distributed control problem, the control is the distributed temperature
source Q. Of course, we set gy = 0 in this case. Table 1 shows that the vorticity
of u decrease as the value of 3 goes to 0. We choose the size of step % = 100 in the

simple gradient method. The value of |V x u]| is reduced 96.0 % when 3 = 1075.
The controlled temperature field and velocity field are plotted in Fig. 3.
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Table 1. Costs for vorticity minimization with distributed control, time step (:= %) =100.

B [V xul 1<l J(u,p,T,Q)
Uncontrolled | 0.4291090153E+00 | 0.0000000000E+00 | 0.9206727351E —01
1072 0.3351268557E 400 | 0.1862048373E+01 | 0.7349112541E —01
1073 0.1392299614E4-00 | 0.5719345338E+-01 | 0.2604794663E — 01
10~4 0.5279644311E—01 | 0.8873134440E401 | 0.5330357942E — 02
10-° 0.1651178240E—01 | 0.1176825243E+02 | 0.8287783047E — 03
Table 2. Costs for vorticity minimization, with Neumann control, time step (:= 5) = 50.
gl [V xul llgll J(u,p.T,g)
Uncontrolled | 0.4291090153E 400 | 0.0000000000E+00 | 0.9206727351E —01
102 0.3265086000E4-00 | 0.2284611847E+01 | 0.7940118941E —01
1073 0.1033243147E400 | 0.6676982954E4-01 | 0.2762900769E — 01
1074 0.1797341718E—01 | 0.8418176486E+01 | 0.3704806630E — 02
10—° 0.2187092979E —02 | 0.8837571617TE+01 | 0.3929050483E — 03
Table 3. CPU time in seconds (with number of iterations).
0 or v | Distributed control | Neumann control
1072 32.117 (16) 24.475 (14)
1073 97.067 (42) 117.399 (71)
1074 278.649 (166) 213.765 (126)
10° 714.049 (412) 323.254 (214)
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In a Neumann boundary control problem, the control is the heat flux g5 along
the boundary I'y. Of course, we set @ = 0 in this case. Table 2 shows that the
vorticity of w decrease as the value of v goes to 0. We choose the size of step % =50
in the simple gradient method.

The value of ||V x u| is reduced 99.0 % when v = 10~°. The controlled tem-
perature field and velocity field are plotted in Fig. 4.

Table 3 shows CPU time in seconds for vorticity minimization problem. We
use MacBook Pro having 2.16 GHz Intel Core 2 Duo CPU and Intel Fortran com-
piler V10.
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