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In this aricle, the author considers mathematical formulation and numerical solutions
of distributed and Neumann boundary optimal control problems associated with the
stationary Bénard problem. The solution of the optimal control problem is obtained
by controlling of the source term of the equations and/or Neumann boundary conditions.
Then the author considers the approximation, by finite element methods, of the optimality
system and derive optimal error estimates. The convergence of a simple gradient method
is proved and some numerical results are given.
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1. Introduction

Rayleigh–Bénard convection is a convective flow when a stagnant flow layer is
heated from below such that its low side is hotter than its upper. This problem
involves buoyancy driven flow in a cavity. In this article, a stabilization of two
dimensional Rayleigh–Bénard type convection is considered. The boundary con-
dition for the problem involved two horizontal walls which differ in temperature
leading to a thermal gradient across the solution domain. The flow is heated from
a part (Γ1) of the bottom boundary. The boundary conditions for the problem are
described in Fig. 1. In the present investigation, we consider methods suppressing
the natural convection by adjusting heat flux distribution at a part (ΓN ) of the
bottom or adjusting heat source on the flow domain Ω .

In past years, considerable progress has been made in mathematical analy-
ses and computations of optimal control problems for viscous flows; see [2, 4, 5,
9, 11, 12, 13, 14, 18, 19, 20, 21, 22, 26, 27] and references therein. Optimal con-
trol problems for the thermally coupled incompressible Navier–Stokes equation by
Neumann and Diriclet boundary heat controls were considered in [18, 22]. Also,
optimal control problems for the time dependent optimal control problems for the
Bénard problem and related problems were considered in [5, 9, 26] and references
therein. Exact controllability of the Boussinesq problem and related problems were
considered in [14].

For the Navier–Stokes cases, many computational methods such as SQP,
Newton-type second order methods, trust-region methods, and the conjugate gra-
dient method were proposed in [3, 10, 15, 23, 24] and references therein. Even
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Fig. 1. Computational domain.

though the gradient type methods are slow in convergence, it is still convenient to
use because of its simplicity and stability, especially for the complex system. Of
course, the fast second-order schemes have some drawbacks such as stability and
complexity.

The problem we consider is a Bénard problem whose system is governed by the
Boussinesq equations. We now write the 2-D nondimensional Boussinesq equations
as follows: ⎧⎪⎪⎨

⎪⎪⎩

−PrΔu + (u · ∇)u = −∇p+RPr Tj in Ω ,

∇ · u = 0 in Ω ,

−ΔT + (u · ∇)T = Q in Ω

(1.1)

with boundary conditions
⎧⎨
⎩

u = 0 on ∂Ω , T = gD on Γ1, T = 0 on Γtop,

∂T

∂n
= gN on ΓN ,

∂T

∂n
= 0 on Γleft ∪ Γright,

(1.2)

where the computational domain Ω = (0, 1)× (0, 1) ⊂ R
2, with Lipschitz boundary

∂Ω =Γtop∪Γbottom∪Γleft∪Γright. Here Γbottom =Γ1∪ΓN ; see Fig. 1. In (1.1)–(1.2),
u, p and T denote the velocity, pressure and temperature fields, respectively, gD a
given function, and Q and gN controls. The vector j is a unit vector in the direc-
tion of gravitational acceleration. The dimensionless variables are defined by the
following relations, where the superscript asterisk denotes dimensional quantities:

x =
x∗

dx
, y =

y∗

dy
, u =

dyu
∗

κ
, R = αg

T ∗
H − T ∗

C

κν
d3
y,

Pr =
ν

κ
, T =

T ∗ − T ∗
C

T ∗
H − T ∗

C

, P ′ :=
d2
yp

∗

ρκ2
,

(1.3)



Optimal Control for 2-D Rayleih–Bénard Type Convection 95

where κ > 0 the thermal conductivity parameter, ρ the density parameter, dx the
half width of the cavity, dy the half depth of the domain, T ∗

H the nominal bottom
temperature, T ∗

C the temperature at the top boundary, R the Rayleigh number, Pr
the Prandtl number, α the thermal expansion coefficient, ν the kinematic viscosity
and g the gravitational constant. In this paper we consider, for the simplicity, the
case of constant κ and constant ν. The vector n denotes the outward unit normal
to Ω . The modified pressure p is given by

p = P ′ − (T ∗
C − T ∗

ref)
d3
y

κ2
αgy, (1.4)

where T ∗
ref is the reference temperature given by

T ∗
ref =

1
2
(T ∗
H + T ∗

C). (1.5)

Next, we introduce the functionals

J1(u, T, p,Q, gN ) =
1
2α

∫
Ω

|∇ × u|2 dx +
β

2

∫
Ω

|Q|2 dx +
γ

2

∫
ΓN

|gN |2 ds (1.6)

and

J2(u, T, p,Q, gN ) =
1
2α

∫
Ω

|u − Ud|2 dx +
β

2

∫
Ω

|Q|2 dx +
γ

2

∫
ΓN

|gN |2 ds. (1.7)

The positive penalty parameters α, β and γ can be used to change the relative
importance of the three terms appearing in the definitions of the functionals. They
can also be used as regularization parameters. The optimal control problems we
consider are to seek state variables (u, T, p), and controls Q and gN such that the
functional (1.6) or (1.7) is minimized subject to (1.1)–(1.2) where Ud is some desired
velocity field. The functional (1.6) measures the vorticity of the flow. The control
of vorticity has significant applications in science and engineering such as control of
turbulence and control of crystal growth process. The first term in the functional
(1.7) measures the L2-distance between the candidate flow and the desired flow.
Thus, the physical objective of this minimization problem is to match a desired
flow field (in the L2-sense) by adjusting the distributed control Q or the boundary
temperature flux gN . The real goal of optimization is to minimize the first term
appearing in the definition (1.6)–(1.7). The second and third terms in the cost
functionals (1.6)–(1.7) are added to limit the cost of controls.

The plan of the paper is as follows. In §1.1 of this section we introduce the nota-
tion that will be used throughout the paper. In §2, we introduce a weak formulation
of mathematical problem and derive the optimality system of the optimal control
problem. Then, we introduce finite element approximations and derive optimal
error estimates. In §3, a gradient method for the solution of the discrete optimal
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control problem is introduced and the convergence of the gradient method is proved.
Finally in §4, the results of some computational experiments are presented. The
computational results show that our method is very efficient and feasible.

1.1. Notation
We introduce some function spaces and their norms, along with some related

notations used in subsequent sections; for details see [1].
Let Ω be a bounded domain of R

2 with a Lipschitz boundary ∂Ω . Let L2(Ω) be
the space of real-valued square integrable functions defined on Ω , and let ‖ · ‖L2(Ω)

be the norm in this space. We define the Sobolev space Hm(Ω) for the nonnegative
integer m by

Hm(Ω) = {u ∈ L2(Ω) | Dau ∈ L2(Ω), for 0 ≤ |a| ≤ m},

where Da is the weak (or distributional) partial derivative, a is a multi-index. The
norm ‖ · ‖Hm(Ω) associated with Hm(Ω) is given by

‖u‖2
Hm(Ω) =

∑
|a|≤m

‖Dau‖2
L2(Ω).

Note that H0(Ω) = L2(Ω). For the vector-valued functions, we define the Sobolev
space Hm(Ω) (in all cases, boldface indicates vector-valued) by

Hm(Ω) = {u = (u1, u2) | ui ∈ Hm(Ω), for i = 1, 2}

and its associated norm ‖ · ‖Hm(Ω) is given by

‖u‖2
Hm(Ω) =

2∑
i=1

‖ui‖2
Hm(Ω).

We also define particular subspaces:

L2
0(Ω) =

{
f ∈ L2(Ω)

∣∣∣∣
∫
Ω

f dx = 0
}
, H1

0(Ω) = {u ∈ H1(Ω) | u = 0 on Γ},

and

H1
D(Ω) = {S ∈ H1(Ω) | S = 0 on ΓD},

where ΓD = Γ1 ∪ Γtop. We also define the solenoidal space

V = {u ∈ H1
0(Ω) | ∇ · u = 0}.
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2. Preliminaries

2.1. A weak formulation of the equations
We introduce the following bilinear and trilinear forms, for all u, v and w ∈

H1(Ω), T, S ∈ H1(Ω) and q ∈ L2
0(Ω),

a0(u,v) =
∫
Ω

∇u : ∇v dx, a1(T, S) =
∫
Ω

∇T · ∇S dx,

c0(u,w,v) =
∫
Ω

(u · ∇)w · v dx, c1(u, T, S) =
∫
Ω

(u · ∇)TS dx,

and

b(v, q) = −
∫
Ω

q∇ · v dx, d(T,v) = RPr
∫
Ω

Tj · v dx.

We first note that the bilinear forms a0( · , · ) and a1( · , · ) are clearly con-
tinuous, i.e.,

|a0(u,v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω), (2.1)

|a1(T, S)| ≤ C‖T‖H1(Ω)‖S‖H1(Ω), (2.2)

and

|b(v, q)| ≤ C‖v‖H1(Ω)‖q‖L2(Ω). (2.3)

We have the coercivity relations associated with a0( · , · ) and a1( · , · ):

a0(u,u) = ‖∇u‖2
L2(Ω) ≥ C1‖u‖2

H1(Ω) ∀u ∈ H1
0(Ω) (2.4)

and

a1(T, T ) = ‖∇T‖2
L2(Ω) ≥ C2‖T‖2

H1(Ω) ∀T ∈ H1
D(Ω), (2.5)

which are direct consequences of Poincaré inequality.

Lemma 2.1. For every u,v,v ∈ H1(Ω) and every T, S ∈ H1(Ω) there are
constants C1 and C2 such that

|c0(u,v,v)| ≤ C1‖u‖H1(Ω)‖v‖H1(Ω)‖v‖H1(Ω), (2.6)

c0(u,v,v) = 0 if u ∈ V , (2.7)

|c1(u, T, S)| ≤ C2‖u‖H1(Ω)‖T‖H1(Ω)‖S‖H1(Ω) ∀u ∈ V , (2.8)

and

c1(u, T, T ) = 0 if u ∈ V . (2.9)

Proof. These follow from the Cauchy–Schwarz inequality, Hölder’s inequality,
and various embedding results, in particular the continuous embeddings of H1 into
L4 and L2 and H1 into L4 and L2, respectively. �
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The weak form of the constraint equations (1.1)–(1.2) is then given as follows:
seek u ∈ H1

0(Ω), p ∈ L2
0(Ω) and T ∈ H1(Ω) such that

Pr a0(u,v) + c0(u,u,v) + b(v, p) = d(T,v) ∀v ∈ H1
0(Ω), (2.10)

b(u, q) = 0 ∀q ∈ L2
0(Ω), (2.11)

a1(T, S) + c1(u, T, S) = 〈Q,S〉 − 〈gN , S〉ΓN
∀S ∈ H1

D(Ω), (2.12)

and

T = gD on Γ1, T = 0 on Γtop, (2.13)

where 〈 · , · 〉 and 〈 · , · 〉ΓN
denote duality pairing on Ω and ΓN , respectively.

The analysis for Neumann boundary and distributed optimal control problems
was studied in [28].

Proposition 2.2 (Modification of Proposition 2.3 in [28]). For every gN ∈
L2(ΓN ) and Q ∈ L2(Ω) with gD = 0, the Boussinesq equations (2.10)–(2.12) have
a soultion (u, T, p) ∈ V ×H1(Ω) × L2

0(Ω). Moreover, if (u, T, p) is a solution to
(2.10)–(2.12), then (u, T, p) ∈ V ∩H2(Ω)×Hs(Ω)×L2

0(Ω)∩H1(Ω) ( 1 ≤ s < 3
2)

and there is a continuous function Ps for each s such that

‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖T‖Hs(Ω) ≤ Ps(‖Q‖L2(Ω) + ‖gN‖L2(ΓN )). (2.14)

We describe the optimal control problem involving the functional (1.6) and
state the optimality system. In the same way, one can study the optimal control
problems for the functional (1.7) with the same distributed and Neumann boundary
temperature control.

We look for a (u, T, p,Q, gN ) ∈ H1
0(Ω) × H1(Ω) × L2

0(Ω) × L2(Ω) × V such
that the cost functional

J1(u, T, p,Q, gN ) =
1
2α

∫
Ω

|∇ × u|2 dx +
β

2

∫
Ω

|Q|2 dx +
γ

2

∫
ΓN

|gN |2 ds (2.15)

is minimized subject to the constraints

Pr a0(u,v) + c0(u,u,v) + b(v, p) = d(T,v) ∀v ∈ H1
0(Ω), (2.16)

b(u, q) = 0 ∀q ∈ L2
0(Ω), (2.17)

a1(T, S) + c1(u, T, S) = 〈Q,S〉 − 〈gN , S〉ΓN
∀S ∈ H1

D(Ω), (2.18)

T = gD on Γ1, T = 0 on Γtop, (2.19)

where V is a nonempty, closed and convex subset of L2(ΓN ).
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Using the Lagrange multiplier method, the optimality system can be obtained
as follows: find (u, T, p, ξ,Φ, σ) ∈ H1

0(Ω) ×H1(Ω) × L2
0(Ω) × H1

0(Ω) ×H1
D(Ω) ×

L2
0(Ω) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr a0(u,v) + c0(u,u,v) + b(v, p) = d(T,v) ∀v ∈ H1
0(Ω),

b(u, q) = 0 ∀q ∈ L2
0(Ω),

a1(T, S) + c1(u, T, S) = −
〈

Φ
β
, S

〉
−

〈
Φ
γ
, S

〉
ΓN

∀S ∈ H1
D(Ω),

T = gD on Γ1, T = 0 on Γtop,

Pr a0(θ, ξ) + c0(θ,u, ξ) + c0(u,θ, ξ) + b(θ, σ)

=
1
α

(∇× u,∇× θ) − c1(θ, T,Φ) ∀θ ∈ H1(Ω),

b(ξ, r) = 0 ∀r ∈ L2
0(Ω),

a1(Φ, ϕ) − c1(u, ϕ,Φ) = d(ϕ, ξ) ∀ϕ ∈ H1
D(Ω).

(2.20)

2.2. Finite element approximation and error estimates
In this section we investigate a finite element discretization of the optimality

system and the error estimates of the approximation solutions. First we choose a
family of the finite dimensional subspaces V h ⊂ H1(Ω), V h ⊂H1(Ω), Oh ⊂ L2(Ω).
We let V h

0 = V h∩H1
0(Ω), V hD = V h∩H1

D(Ω) and Oh0 =Oh∩L2
0(Ω). These families

are parameterized by a parameter h that tends to zero; commonly, h is chosen to be
some measure of the grid size. These finite-dimensional function spaces are defined
on an approximate domain Ωh. For simplicity we will state our results in this
section by assuming Ωh = Ω . We assume that these finite element spaces satisfy
the following approximation properties: there exist an integer k and a constant C,
independent of h, such that

inf
vh∈V h

‖v − vh‖H1(Ω) ≤ Chm‖v‖Hm+1(Ω) ∀v ∈ Hm+1(Ω), 1 ≤ m ≤ k, (2.21)

inf
qh∈Oh

‖q − qh‖L2(Ω) ≤ Chm‖q‖Hm(Ω) ∀q ∈ Hm(Ω), 1 ≤ m ≤ k, (2.22)

inf
Th∈V h

‖T − Th‖H1(Ω) ≤ Chm‖T‖Hm+1(Ω) ∀T ∈ Hm+1(Ω), 1 ≤ m ≤ k. (2.23)

Here we may choose any pair of subspaces V h, V h and Oh such that V h
0 , V hD and

Oh0 can be used for finding finite element approximations of solutions of Boussinesq
equations. Thus we make the following standard assumptions, which are exactly
those employed in well-known finite element methods for the Navier–Stokes equa-
tions and the energy equation. Next, we assume the inf-sup condition: there exists
a constant C, independent of h, such that

inf
0 �=qh∈Oh

0

sup
0 �=vh∈V h

0

b(vh, qh)
‖vh‖H1(Ω)‖qh‖L2(Ω)

≥ C.
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This condition assures the stability of finite element discretizations of the
Navier–Stokes equations and also that of the optimality system (2.20). The ref-
erences [8, 16, 17, 32] may also be consulted for a catalogue of finite element sub-
spaces that meet the requirements of the above approximation properties and the
inf-sup condition. Once the approximating subspaces have been chosen, we seek
(uh, Th, ph, ξh,Φh, σh) ∈ V h

0 × V h × Oh0 × V h
0 × V hD × Oh0 by solving the discrete

optimality system of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr a0(uh,vh) + c0(uh,uh,vh) + b(vh, ph) = d(Th,vh) ∀vh ∈ V h
0 ,

b(uh, qh) = 0 ∀qh ∈ Oh0 ,

a1(Th, Sh) + c1(uh, Th, Sh) = −
〈

Φh

β
, Sh

〉
−

〈
Φh

γ
, Sh

〉
ΓN

∀Sh ∈ V hD ,

Th = gD on Γ1, Th = 0 on Γtop,

Pr a0(θh, ξh) + c0(θh,uh, ξh) + c0(uh,θh, ξh) + b(wh, σh)

=
1
α

(∇× uh,∇× θh) − c1(θh, Th,Φh) ∀θh ∈ V h,

b(ξh, rh) = 0 ∀rh ∈ Oh0 ,

a1(Φh, Sh) − c1(uh, Sh,Φh) = d(Sh, ξh) ∀Sh ∈ V hD .

(2.24)

We concern ourselves with questions related to the accuracy of finite element ap-
proximations in this section. The error estimate makes use of the results of [7] and
[20] concerning the approximation of a class of nonlinear problems.

Here for the sake of completeness, we will state the relevant results specialized
to our needs. The nonlinear problems considered in [7] and [16] are of the type

F (λ, ψ) ≡ ψ + LG(λ, ψ) = 0, (2.25)

where L ∈ L(Y ;X), G is a C2 mapping from Λ × X into Y , where X and Y are
Banach spaces and Λ is a compact interval of R. We say that {(λ, ψ(λ)) | λ ∈ Λ}
is a branch of solutions of (2.25) if λ → ψ(λ) is a continuous function from Λ into
X such that F (λ, ψ(λ)) = 0. The branch is called a nonsingular branch if we also
have that DψF (λ, ψ(λ)) is an isomorphism from X into X for all λ ∈ Λ. Here, Dψ

denotes the Frechet derivative with respect to ψ. Approximations are defined by
introducing a subspace Xh ⊂ X and an approximating operator Lh ∈ L(Y ;Xh).
Then we seek ψh ∈ Xh such that

Fh(λ, ψh) ≡ ψh + LhG(λ, ψh) = 0. (2.26)

We will assume that there exists another Banach space Z, contained in Y , with
continuous imbedding such that

DψG(λ, ψ) ∈ L(X;Z), ∀λ ∈ Λ, ∀ψ ∈ X. (2.27)
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Concerning the operator Lh, we assume the approximation properties

lim
h→0

‖(Lh − L)y‖X = 0 ∀y ∈ Y (2.28)

and

lim
h→0

‖Lh − L‖L(Z;X) = 0. (2.29)

Note that (2.27) and (2.29) imply that the operator DψG(λ, ψ) ∈ L(X,X) is com-
pact. Moreover, (2.29) follows from (2.28) whenever the imbedding Z ⊂ Y is
compact.

Now we can state the first result of [7] and [16] that used in the sequel.

Theorem 2.3. Let X and Y be Banach spaces and Λ a compact subset of
R. Assume that G is a C2 mapping from Λ×X into Y and that D2G is bounded
on all sets of Λ×X (D2G represents second Fréchet derivative of G). Assume that
(2.27)–(2.29) hold and {(λ, ψ(λ)) | λ ∈ Λ} is a branch of nonsingular solutions of
(2.25). Then, there exists a neighborhood O of the origin in X and for h ≤ h0 small
enough, a unique C2 function λ ∈ Λ → ψh(λ) ∈ Xh such that {(λ, ψh(λ)) | λ ∈ Λ}
is a branch of nonsingular solutions of (2.26) and ψh(λ) − ψ(λ) ∈ O for all λ.
Moreover, there exists a constant C > 0, independent of h and λ, such that

‖ψh(λ) − ψ(λ)‖X ≤ C‖(Lh − L)G(λ, ψ(λ))‖X ∀λ ∈ Λ. (2.30)

For the second result, we have to introduce two other Banach spaces H and
W , such that W ⊂ X ⊂ H, with continuous imbeddings and assume that

for all w ∈W the operator DψG(λ,w) may be
extended as a linear operator of L(H;Y ),

(2.31)

and the mapping w → DψG(λ,w) is continuous from W onto L(H;Y ).
We also suppose that

lim
h→0

‖Lh − L‖L(Y ;H) = 0. (2.32)

Then we may state the following additional result.

Theorem 2.4. Assume the hypotheses of Theorem 2.3 and also assume that
(2.31) and (2.32) hold. Assume in addition that

for each λ ∈ Λ, ψ(λ) ∈W and the function
λ→ ψ(λ) is continuous from Λ into W

(2.33)

and

for each λ ∈ Λ, DψF (λ, ψ(λ)) is an isomorphism of H. (2.34)

Then, for h ≤ h1, sufficiently small, there exists a constant C, independent of h

and λ, such that

‖ψh(λ) − ψ(λ)‖H ≤ C‖(Lh − L)G(λ, ψ(λ))‖H + ‖ψh(λ) − ψ(λ)‖X ∀λ ∈ Λ.
(2.35)
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We begin by recasting the optimality system (2.20) and its discretization (2.24)
into a form that fits into the frame work. Let λ = 1

Pr and let

X = H1
0(Ω) ×H1(Ω) × L2

0(Ω) × H1
0(Ω) ×H1

D(Ω) × L2
0(Ω),

Y = H−1(Ω) ×H−1(Ω) × H−1(Ω) ×H−1(Ω),

Z = L
3
2 (Ω) × L

3
2 (Ω) × L

3
2 (Ω) × L

3
2 (Ω),

Xh = V h
0 × V h ×Oh0 × V h

0 × V h ×Oh0 .

Note that Z ⊂ Y with a compact imbedding. The operator L ∈ L(Y ;X) is de-
fined by

L(Ξ ,Θ , η, P ) = (u, T, p, ξ,Φ, σ) ∈ X

where, for (Ξ ,Θ , η, ρ) in Y , (u, T, p, ξ,Φ, σ) in X is defined by the solution of the
following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0(u,v) + b(v, p) = 〈Ξ ,v〉 ∀v ∈ H1
0(Ω),

b(u, q) = 0 ∀q ∈ L2
0(Ω),

a1(T, S) = 〈Θ , S〉 ∀S ∈ H1
D(Ω),

T = gD on Γ1, T = 0 on Γtop,

a0(v, ξ) + b(v, σ) = 〈η,v〉 ∀v ∈ H1
0(Ω),

b(ξ, q) = 0 ∀q ∈ L2
0(Ω),

a1(Φ, S) = 〈P, S〉 ∀S ∈ H1
D(Ω).

(2.36)

Note that the system is weakly coupled. Analogously, the operator Lh ∈ L(Y ;Xh)
is defined by

Lh(Ξ ,Θ , η, P ) = (uh, Th, ph, ξh,Φh, σh) ∈ Xh,

where (uh, Th, ph, ξh,Φh, σh) in Xh is defined by the solutions of the following
system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0(uh,vh) + b(vh, ph) = 〈Ξ ,vh〉 ∀vh ∈ V h
0 ,

b(uh, qh) = 0 ∀qh ∈ Sh0 ,

a1(Th, Sh) = 〈Θ , Sh〉 ∀Sh ∈ V hD ,

Th = gD on Γ1, Th = 0 on Γtop,

a0(vh, ξh) + b(vh, σh) = 〈η,vh〉 ∀vh ∈ V h
0 ,

b(ξh, qh) = 0 ∀qh ∈ Sh0 ,

a1(Φh, Sh) = 〈P, Sh〉 ∀Sh ∈ V hD .

(2.37)

This system is weakly coupled in the same sense as the system (2.36).
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Let Λ denote a compact subset of R. Next we define the nonlinear map-
ping G : Λ × X → Y as follows: G(λ, (u, T, p, ξ,Φ, σ)) = (Ξ ,Θ , η, P ) for λ ∈ Λ,
(u, T, p, ξ,Φ, σ) ∈ X where (Ξ ,Θ , η, P ) ∈ Y is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Ξ ,v〉 = λc0(u,u,v) − λd(T,v) ∀v ∈ H1
0(Ω),

〈Θ , S〉 = c1(u, T, S) −
〈

Φ
β
, S

〉
+

〈
Φ
γ
, S

〉
ΓN

∀S ∈ H1
D(Ω),

〈η,v〉 = λc0(v,u, ξ) + λc0(u,v, ξ) − λc1(v, T,Φ)

− λ

α
(∇× (∇× u),v) v ∈ H1

0(Ω),

〈P, S〉 = c1(u, S,Φ) − d(S, ξ) ∀S ∈ H1
D(Ω).

(2.38)

It is easily seen that the optimality system (2.20) is equivalent to

(u, T, λp, ξ,Φ, λσ) + LG(λ, (u, T, λp, ξ,Φ, λσ)) = 0 (2.39)

and that the discrete optimality system (2.24) is equivalent to

(uh, Th, λph, ξh,Φh, λσh) + LhG(λ, (uh, Th, λph, ξh,Φh, λσh)) = 0. (2.40)

Thus we have recast our continuous and discrete optimality problems into a form
that enables us to apply Theorems 2.3 and 2.4.

Proposition 2.5. The problem (2.36) has a unique solution belonging to X.
Assume that (2.21)–(2.23) hold. Then, the problem (2.37) has a unique solution
belonging to Xh. Let (ũ, T̃ , p̃, ξ̃, Φ̃, σ̃) and (ũh, T̃h, p̃h, ξ̃h, Φ̃h, σ̃h) denotes the so-
lution of (2.36) and (2.37), respectively. Then we also have that

‖ũ − ũh‖H1(Ω) + ‖p̃− p̃h‖L2(Ω) + ‖T̃ − T̃h‖H1(Ω)

+ ‖ξ̃ − ξ̃h‖H1(Ω) + ‖σ̃ − σ̃h‖L2(Ω) + ‖Φ̃ − Φ̃h‖H1(Ω) → 0 as h→ 0. (2.41)

If, in addition, (ũ, T̃ , p̃, ξ̃, Φ̃, σ̃)∈Hm+1
0 (Ω)×Hm+1(Ω)×Hm∩L2

0(Ω)×Hm+1
0 (Ω)×

Hm+1(Ω)×Hm∩L2
0(Ω), then there exists a constant C, independent of h, such that

‖ũ − ũh‖H1(Ω) + ‖p̃− p̃h‖L2(Ω) + ‖T̃ − T̃h‖H1(Ω)

+ ‖ξ̃ − ξ̃h‖H1(Ω) + ‖σ̃ − σ̃h‖L2(Ω) + ‖Φ̃ − Φ̃h‖H1(Ω)

≤ Chm(‖ũ‖Hm+1(Ω) + ‖p̃‖Hm(Ω) + ‖T̃‖Hm+1(Ω)

+ ‖ξ̃‖Hm+1(Ω) + ‖φ̃‖Hm(Ω) + ‖θ̃‖Hm+1(Ω)).
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Proof. First, it is well known [7] that the two Stokes problems in (2.36) have
unique solutions (ũ, p̃) and (ξ̃, φ̃) belonging to H1

0(Ω)×L2
0(Ω), respectively. Also,

the discrete Stokes problems in (2.37) have unique solutions (ũh, p̃h) and (ξ̃h, φ̃h)
belonging to V h

0 ×Oh0 , respectively. Moreover, we have that

‖ũ − ũh‖H1(Ω) + ‖p̃− p̃h‖L2(Ω) → 0

and

‖ξ̃ − ξ̃h‖H1(Ω) + ‖σ̃ − σ̃h‖L2(Ω) → 0

as h → 0, and if in addition, (ũ, p̃) ∈ Hm+1
0 (Ω) ×Hm ∩ L2

0(Ω) and (ξ̃, σ̃) ∈
Hm+1

0 (Ω) ×Hm ∩ L2
0(Ω), we have that

‖ũ − ũh‖H1(Ω) + ‖p̃− p̃h‖L2(Ω) ≤ Chm(‖ũ‖Hm+1(Ω) + ‖p̃‖Hm(Ω))

and

‖ξ̃ − ξ̃h‖H1(Ω) + ‖σ̃ − σ̃h‖L2(Ω) ≤ Chm(‖ξ̃‖Hm+1(Ω) + ‖σ̃‖Hm(Ω)).

Next, it is also well known that the two second order elliptic problems (the third
and last equations in (2.36)) have unique solutions T̃ and Φ̃ belonging to H1(Ω),
respectively. From the Babuska’s theory, the discrete second order elliptic problems
(the third and last equations in (2.37)) have unique solutions T̃h and Φ̃h belonging
to V h, respectively. Moreover, we have that

‖T̃ − T̃h‖H1(Ω) → 0 as h→ 0 (2.42)

and

‖Φ̃ − Φ̃h‖H1(Ω) → 0 as h→ 0, (2.43)

and if, in addition, T̃ ∈ Hm+1(Ω) and Φ̃ ∈ Hm+1(Ω), we have that

‖T̃ − T̃h‖H1(Ω) ≤ Chm‖T̃‖Hm+1(Ω), (2.44)

‖Φ̃ − Φ̃h‖H1(Ω) ≤ Chm‖Φ̃‖Hm+1(Ω). (2.45)

�

Theorem 2.6. Assume that Λ is a compact interval of R and that there
exists a branch {(λ, ψ(λ) := (u, T, p, ξ,Φ, σ)) ∈ Λ ×X} of nonsingular solutions
of the optimality system (2.20). Assume that the finite elements spaces V h, Oh,
V h, Oh satisfy the condition (2.21)–(2.23). Then, there exists a neighborhood O
of the origin in X and, for h ≤ h0, small enough, a unique branch {(λ, ψh(λ) :=
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(uh, Th, ph, ξh,Φh, σh)) ∈ Λ ×Xh} of solutions of the discrete optimality system
(2.20) such that ψh(λ) − ψ(λ) ∈ O for all λ ∈ Λ. Moreover,

‖ψh(λ) − ψ(λ)‖X
= ‖u(λ) − uh(λ)‖H1(Ω) + ‖p(λ) − ph(λ)‖L2(Ω) + ‖T (λ) − Th(λ)‖H1(Ω)

+ ‖ξ(λ) − ξh(λ)‖H1(Ω) + ‖σ(λ) − σh(λ)‖L2(Ω) + ‖Φ(λ) − Φh(λ)‖H1(Ω) → 0
(2.46)

as h → 0, uniformly in λ ∈ Λ. If, in addition, (u, T, p, ξ,Φ, σ) ∈ Hm+1
0 (Ω) ×

Hm+1(Ω) × L2
0(Ω) ∩Hm × Hm+1

0 (Ω) ×Hm+1(Ω) × L2
0(Ω) ∩Hm for λ ∈ Λ, then

there exists a constant C, independent of h, such that

‖u(λ) − uh(λ)‖H1(Ω) + ‖p(λ) − ph(λ)‖L2(Ω) + ‖T (λ) − Th(λ)‖H1(Ω)

+ ‖ξ(λ) − ξh(λ)‖H1(Ω) + ‖σ(λ) − σh(λ)‖L2(Ω) + ‖Φ(λ) − Φh(λ)‖H1(Ω)

≤ Chm(‖u(λ)‖Hm+1(Ω) + ‖p(λ)‖Hm(Ω) + ‖T (λ)‖Hm+1(Ω)

+ ‖ξ(λ)‖Hm+1(Ω) + ‖σ(λ)‖Hm(Ω) + ‖Φ(λ)‖Hm+1(Ω)) (2.47)

uniformly in λ ∈ Λ.

Proof. Clearly, G is a C∞ polynomial map from Λ × X into Y . Therefore,
using (2.1)–(2.3), (2.6), and (2.8), it is easily shown that D2G(λ, · ) is bounded
on all bounded sets of X. Now, given (u, T, p, ξ,Φ, σ) ∈ X, a direct computation
yields that (Ξ̃ , Θ̃ , η̃, P̃ ) ∈ Y satisfies

(Ξ̄ , Θ̄ , η̄, P̄ ) = DψG(λ, (u, T, p, ξ,Φ, σ))(ū, T̄ , p̄, ξ̄, Φ̄, σ̄)

for (ū, T̄ , p̄, ξ̄, Φ̄, σ̄) ∈ X if and only if

〈Ξ̄,v〉 = λc0(u, ū,v) + λc0(ū,u,v) − λd(T̄ ,v) ∀v ∈ H1
0(Ω),

〈Θ̄ , S〉 = c1(ū, T, S) + c1(u, T̄ , S) −
〈

Φ̄
β
, S

〉
−

〈
Φ̄
γ
, S

〉
ΓN

∀S ∈ H1
D(Ω),

〈η̄,v〉 = λc0(v, ū, ξ) + λc0(v,u, ξ̄ ) + λc0(ū,v, ξ) + λc0(u,v, ξ̄ )

− λc1(v, T̄ ,Φ) − λc1(v, T, Φ̄) − λ

α
(∇× (∇× u),v) ∀v ∈ H1

0(Ω),

〈P̄ , S〉 = c1(ū, S,Φ) + c1(u, S, Φ̄) − d(S, ξ̄ ) ∀S ∈ H1
D(Ω).

Thus, it follows from (2.1)–(2.3), (2.6), and (2.8) that DψG(λ, (u, T, p, ξ,Φ, σ)) ∈
L(X,Y ). On the other hand, since (u, T, p, ξ,Φ, σ)∈X and (ū, T̄ , p̄, ξ̄, Φ̄, σ̄)∈X, by
the Sobolev imbedding theorem, T , Φ, T̄ , and Φ̄∈L6(Ω), and u, ξ, and ū, ξ̄∈L6(Ω)
and ∂u

∂xj
, ∂v
∂xj

, ∂ū
∂xj

, ∂v̄
∂xj

∈ L2(Ω) for j = 1, 2. Then it follows that (Ξ̄ , η̄, Q̄, Θ̄ , P̄ ) ∈ Z
and that, for (u, T, p, t, ξ,Φ, σ) ∈X, DψG(λ, (u, T, p, ξ,Φ, σ)) ∈ L(X,Z). Next, we
turn to the approximation properties of the operator T . From Proposition 2.5, we
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have that (2.28) holds. Since the imbedding of Z into Y is compact, (2.29) follows
from (2.28), and the (2.46) follows from Theorem 2.3. Also from Proposition 2.5,
we may conclude that there exists a constant C, independent of h, such that

‖(L− Lh)G(λ, ψ(λ))‖X ≤ Chm(‖u‖Hm+1(Ω) + ‖p‖Hm(Ω) + ‖T‖Hm+1

+ ‖ξ‖Hm+1(Ω) + ‖σ‖Hm(Ω) + ‖Φ‖Hm+1).

Then (2.47) follows from Theorem 2.3. �

Now, we derive an estimate for the error of uh and ξh, Th, Φh in the L2-norm.
Since G(λ, ψ(λ)) does not depend on p, or σ, we redefine X = H1(Ω) ×H1(Ω) ×
H1(Ω) ×H1(Ω) and Xh = V h × V h × V h × V h, Y and Z remain as before.

Theorem 2.7. Assume the hypotheses of Theorem 2.6. Then there exists a
constant C, independent of h such that

‖uh(λ) − u(λ)‖L2(Ω) + ‖Th(λ) − T (λ)‖L2(Ω)

+ ‖ξh(λ) − ξ(λ)‖L2(Ω) + ‖Φh(λ) − Φ(λ)‖L2(Ω)

≤ Chm+1(‖u(λ)‖Hm+1(Ω) + ‖p(λ)‖Hm(Ω) + ‖T (λ)‖Hm+1(Ω)

+ ‖ξ(λ)‖Hm+1(Ω) + ‖σ(λ)‖Hm(Ω) + ‖Φ(λ)‖Hm+1(Ω)). (2.48)

Proof. We must verify that (2.31)–(2.34) hold in our setting; then the ap-
proximation properties (2.21) and the results of Theorems 2.4 and 2.6 easily lead
to the conclusion. In similar methods with [19], we can verify (2.31)–(2.34). �

A consequence of Theorems 2.6 and 2.7 is the following corollary that gives
estimates for the error in the approximation of the controls.

Corollary 2.8. Define the approximate control by

Qh = −Φh

β
in Ω,

ghN = −Φh

γ
on ΓN ,

and assume the hypotheses of Theorem 2.6. Then, for h ≤ h0 sufficiently small,
there exists a constant C, independent of h such that

‖Qh −Q‖H1(Ω) ≤ Chm(‖u(λ)‖Hm+1(Ω) + ‖p(λ)‖Hm(Ω) + ‖T (λ)‖Hm+1(Ω)

+ ‖ξ(λ)‖Hm+1(Ω) + ‖σ(λ)‖Hm(Ω) + ‖Φ(λ)‖Hm+1(Ω))
(2.49)

and

‖ghN − gN‖
H

1
2 (ΓN )

≤ Chm(‖u(λ)‖Hm+1(Ω) + ‖p(λ)‖Hm(Ω) + ‖T (λ)‖Hm+1(Ω)

+ ‖ξ(λ)‖Hm+1(Ω) + ‖σ(λ)‖Hm(Ω) + ‖Φ(λ)‖Hm+1(Ω)).
(2.50)
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In addition the hypotheses of Theorem 2.7 hold, then, for h ≤ h1 sufficiently small,
there exists a constant C, independent of h such that

‖Qh −Q‖L2(Ω) ≤ Chm+1(‖u(λ)‖Hm+1(Ω) + ‖p(λ)‖Hm(Ω) + ‖T (λ)‖Hm+1(Ω)

+ ‖ξ(λ)‖Hm+1(Ω) + ‖σ(λ)‖Hm(Ω) + ‖Φ(λ)‖Hm+1(Ω))
(2.51)

and

‖ghN −gN‖L2(ΓN ) ≤ Chm+1/2(‖u(λ)‖Hm+1(Ω) +‖p(λ)‖Hm(Ω) +‖T (λ)‖Hm+1(Ω)

+‖ξ(λ)‖Hm+1(Ω) +‖σ(λ)‖Hm(Ω) +‖Φ(λ)‖Hm+1(Ω)).
(2.52)

Proof. Recall thatQh=−Φh/γ in Ω and ghN =−Φh/γ on ΓN . Then, (2.49) and
(2.51) easily follow from (2.47) and (2.48), respectivley; (2.50) follows from (2.47)
and the trace theorem (see [1]), i.e., ‖ghN − gN‖

H
1
2 (ΓN )

≤C‖Φh−Φ‖H1(Ω). Finally,

(2.52) follows from (2.47), (2.48) and the well-known inequality ‖ghN −gN‖L2(ΓN ) ≤
C[ε‖Φh − Φ‖H1(Ω) + (1/ε)‖Φh − Φ‖L2(Ω)] with the choice ε = h1/2. �

3. The gradient method

The discrete optimality system of equations (2.24) consists of three groups
of equations: the state equations for (uh, ph, Th), the adjoint state equations for
(ξh,Φh, σh), and the optimality conditions for gh and Qh. We may construct an
iterative method, i.e., to iterate among the three groups of equations so that at
each iteration we are dealing with a smaller size system of equations. Actually
(uh(k), ph(k)) and (ξh(k), σh(k)) are solved with Th(k) and Φh(k) computed from
the heat equation with uh(k−1) and ξh(k−1) at each state equations respectively.

In this section, we consider the case of vorticity minimization problem with
a distributed control. The other cases, such as a vorticity minimization problem
with a Neumann boundarry control and a matching problem with a distributed or
Neumann boundary control, may be studied in the same manner.

The gradient method for minimizing a functional T (Qh):=J (u(Qh),T (Qh),Qh)
on a Hilbert space Oh may be described as follows:

Algorithm 3.1. Gradient algorithm

1. Set k = 0 and choose Qh(0).

2. Set δQh := −R dT (Qh(k))
dQ , and compute ρ(k) = arg minρ>0 T (Qh(k) + ρδQh).

3. Set Qh(k + 1) = Qh(k) + ρ(k)
β δQh.

4. Set k = k + 1 and go to 2.

Here R is the Riesz map from the dual space of Oh to Oh and ρ(k) is a sequence
of positive step lengths.
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Using Fréchet derivative, one can obtain the optimality system and relations
between controls and adjoint variables. Thus, by the similar argument one can
have the following gradient method, refer to [22]. A gradient method for a vorticity
minization problem with a distributed control with variable step lengths {ρ(k)} is
given as follows. The Riesz map on Oh can be taken as I−1, i.e., the identity map.
(1) Choose an initial guess Qh(0).
(2) For each k ≥ 1,

(a) solve for (uh(k), Th(k), ph(k)) from the state equation with Qh(k − 1),
for ∀Sh ∈ V h, ∀vh ∈ V h

0 and ∀qh ∈ Oh0 ,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1(Th(k), Sh)+c1(uh(k−1), Th(k), Sh) = 〈Qh(k−1), Sh〉,
Th(k) = gD on Γ1, Th(k) = 0 on Γtop,

Pr a0(uh(k),vh)+c0(uh(k),uh(k),vh)+b(vh, ph)−d(Th(k),vh) = 0,

b(uh(k), qh) = 0.
(3.1)

(b) solve (ξh(k),Φh(k), σh(k)) from the adjoint state equation with
(uh(k), Th(k), ph(k)), ∀ϕh ∈ V hD , ∀θh ∈ V h

0 and ∀rh ∈ Oh0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1(Φh(k), ϕh) + c1(uh(k), ϕh,Φh(k)) = d(ϕh, ξh(k − 1)),

Φh(k) = 0 on ΓD,

Pr a0(θh, ξh(k)) + c0(θh,uh(k), ξh(k)) + c0(uh(k),θh, ξh(k))

+ b(θh, σh(k)) =
1
α

(∇× uh(k),∇× θh) − c1(θh, Th(k),Φh(k)),

b(ξh(k), rh) = 0.
(3.2)

(c) solve for Qh(k) from the optimality condition

Qh(k) = (1 − ρ(k))Qh(k − 1) − ρ(k)
β

Φh(k) on Ω . (3.3)

The convergence property of the above algorithm is given in the following
result. The convergence of the conjugate gradient algorithm can be proved in the
similar fashion.

Theorem 3.1. Let (uh(k),ph(k),Th(k),ξh(k),ψh(k),Φh(k),Qh(k)) be the so-
lution of the gradient algorithm and (uh,ph,Th,ξh,ψh,Φh,Qh) the solution of (2.24)
with

〈
Φh

γ , S
h
〉
ΓN

= 0 ∀Sh ∈ V hD. Then if ρ(k) > 0, is sufficiently small, Qh(k) →
Qh and thus, (uh(k), ph(k), Th(k), ξh(k), ψh(k),Φh(k)) → (uh, ph, Th, ξh, ψh,Φh)
as k → ∞.
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Proof. We will make use of the following classical result; see, e.g., [8]. Let X
be a Hilbert space with norm ‖ · ‖X and scalar product ( · , · )X . Let T ( · ) be a
real valued function on X . Suppose that T ( · ) is of class C2, that it has a local
minimum at Q ∈ X and that there exist two real numbers M , n and a ball B ⊂ X
centered at Q such that for all Q̃ ∈ B and all δQ1, δQ2 ∈ X we have that

T ′′(Q̃) · (δQ1, δQ2) ≤M‖δQ1‖X‖δQ2‖X and m‖δQ1‖2
X ≤ T ′′(Q̃) · (δQ1, δQ1)

(3.4)
where T ′′(Q̃) · (δQ1, δQ2) is the bilinear form associated with the second Fréchet
derivatives of T ( · ). Suppose that ρ(k) is chosen so that

0 < ρ∗ ≤ ρ(k) ≤ ρ∗ <
2m
M2

for all k (3.5)

for some positive numbers ρ∗ and ρ∗. Then the iterates of the algorithm

Qh(k) = Qh(k − 1) − ρ(k)T (Qh(k − 1)), n = 1, 2, . . . , (3.6)

converges to Qh for any initial guess Qh(0) ∈ B.
Now, let X = Oh. For each Q̃h ∈ Oh, the second Fréchet derivative T ′′(Q̃h) ·

(δQh1 , δQ
h
2 ) may be computed by

T ′′(Q̃h) · (δQh1 , δQh2 ) = β(δQh1 , δQ
h
2 )+

1
α

(∇× w̃h
1 ,∇× w̃h

2 )+
1
α

(∇× ũh,∇× z̃h),

(3.7)
where ũh ∈ V h

0 is the solution of

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Pr a0(ũh,vh) + c0(ũh, ũh,vh) + b(vh, p̃h) = d(T̃h,vh) ∀vh ∈ V h
0 ,

b(ũh, qh) = 0 ∀qh ∈ Oh0 ,

a1(T̃h, Sh) + c1(ũh, T̃h, Sh) = 〈Q̃h, Sh〉 ∀Sh ∈ V hD ,

T̃h = gD on Γ1, T̃h = 0 on Γtop,

(3.8)

the first variations w̃h
1 and w̃h

2 are solutions of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr a0(w̃h
i ,v

h) + c0(w̃h
i , ũ

h,vh)

+ c0(ũh, w̃h
i ,v

h) + b(vh, r̃hi ) = d(Ãhi ,v
h) ∀vh ∈ V h

0 ,

b(w̃h
i , q

h) = 0 ∀qh ∈ Oh0 ,

a1(Ãhi , S
h) + c1(w̃h

i , T̃
h, Sh) + c1(ũh, Ãhi , S

h) = 〈δQhi , Sh〉 ∀Sh ∈ V hD ,

Ãhi = 0 on ΓD,

(3.9)
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for i = 1, 2, respectively, the second variation z̃h is the solution of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr a0(z̃h,vh) + c0(z̃h, ũh,vh)

+ c0(w̃h
1 , w̃

h
2 ,v

h) + b(vh, s̃h) = d(B̃h,vh) ∀vh ∈ V h
0 ,

b(z̃h, qh) = 0 ∀qh ∈ Oh0 ,

a1(B̃h, Sh) + c1(z̃h, T̃h, Sh)

+ c1(w̃h
1 , Ã

h
2 , S

h) + c1(w̃h
2 , Ã

h
1 , S

h) = 0 ∀Sh ∈ V hD ,

B̃h = 0 on ΓD.

(3.10)

Let Q̂h be the initial guess in the ball of radius ζ, i.e., ‖Q̃h − Q̂h‖ = ρ ≤ ζ. Now,
we need to show that there exists a ζ such that ∀ρ ≤ ζ, (3.4) is satisfied for some
M and m.

From (2.14), we have with continuous function f1 and a constant K that

‖ũh‖1 + ‖T̃h‖1 ≤ f1(‖Q̃h − Q̂h‖ +K1). (3.11)

By the same way in the proof of Proposition 2.1, we have that there is a continuous
function f2 and f3 such that

‖w̃h
i ‖1 ≤ f2(‖Q̃h − Q̂h‖)‖δQhi ‖ (3.12)

for i = 1, 2, and

‖z̃h‖1 ≤ f3(‖Q̃h − Q̂h‖)‖δQh1‖ ‖δQh2‖ (3.13)

for i = 1, 2. Then using (3.11), (3.12) and (3.13) in (3.4), we have that, for some
constant K2 > 0,

|T ′′(ũh(Q̃h)), Q̃h)) · (δQh1 , δQh2 )|

≤
(
β +

K2

α
f2
2 (‖Q̃h − Q̂h‖) +

K2

α
(f1(‖Q̃h − Q̂h‖ +K1)f3(‖Q̃h − Q̂h‖)

)

× ‖δQh1‖ ‖δQh2‖ (3.14)

and

|T ′′(ũh(Q̃h)), Q̃h)) · (δQh1 , δQh1 )|

≥
(
β − K2

α
(f1(‖Q̃h − Q̂h‖ +K1)f3(‖Q̃h − Q̂h‖)

)
‖δQh1‖2. (3.15)
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Now, from the continuity of f1, f2 and f3 we have that for every posi-
tive ε there exists a ζ such that if ‖Q̃h − Q̂h‖ < ζ then fi(‖Q̃h − Q̂h‖) ≤ ε for
i = 1, 2, 3. Thus,

|T ′′(Q̃h) · (δQh1 , δQh2 )| ≤
(
β +

K2

α
(2ε+K1)ε

)
‖δQh1‖ ‖δQh2‖ = M‖δQh1‖ ‖δQh2‖

(3.16)
and

|T ′′(Q̃h) · (δQh1 , δQh1 )| ≥
(
β − K2

α
(ε+K1)ε

)
‖δQh1‖2 = m‖δQh1‖2, (3.17)

where

M = β +
K2

α
(2ε+K1)ε and m = β − K2

α
(ε+K1)ε.

If ε is chosen such that β − K2
α (ε+K1)ε ≥ 0 then there exists a ζ such that

‖Q̃h − Q̂h‖ = ρ ≤ ζ, (3.16) and (3.17) imply the inequalities in (3.4). �

Now we discuss the numerical solution of the optimal control problem. To carry
out the computation we discretized the problem using the finite element method.
We use the Taylor–Hood finite element, that is, the piecewise quadratic element
for the velocity and the temperature and piecewise linear element for the pressure
defined on a triangle mesh.

In the equations (3.1), the Navier–Stokes equations are coupled with heat
equation. Since we want to use the existent tcodes for Navier–Stokes equations and
heat equation, we use the block Gauss–Seidel iteration. Equations (3.2) are also
solved using the block Gauss–Seidel iteration.

Since the Navier–Stokes equations in (3.1) are nonlinear, we use Newton’s
method based on exact Jacobian. At each Newton’s iteration, we solve the linear
system of equations by Gaussian eliminations for sparse matrices. Since quadratic
convergence of Newton’s method is valid only within a contraction ball, we normally
first perform a few (usually 3 or 4 times) simple successive iterations and then switch
to the Newton’s method. The simple successive iterations are defined by

⎧⎪⎪⎨
⎪⎪⎩

Pr a0(uh(k),vh) + c0(uh(k − 1),uh(k),vh)

+ b(vh, ph) − d(Th(k),vh) = 0 ∀vh ∈ V h
0 ,

b(uh(k), qh) = 0 ∀qh ∈ Oh0 .

In the case of the uncontrolled Navier–Stokes equations, the solution is unique
for a small Reynolds number and the simple successive approximations converges
globally and linearly (See [17]).

In the same way, one can study the optimal control problems for the functional
(1.7) with the same distributed and Neumann boundary temperature control.
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To decide ρ(k), one can solve a optimization problem 2 in Algorithm 3.1.
Since this optimization problem is nonlinear, one can approximate this problem
to a linearized optimization problem using Taylor series. Also, one can let ρ = 1
and choose the prescribed tolerance τ and perform the following steps in each
iteration k = 1, . . . ,
(1) if T (Qh(k)) ≥ T (Qh(k − 1)), set ρ(k) = l × ρ(k − 1) and go to the beginning

of the iterations; otherwise, go to next step;
(2) if |T (Qh(k))−T (Qh(k− 1))|/|T (Qh(k))| > τ , set ρ(k) = m× ρ(k− 1) and go

to beginning of the iterations; otherwise, stop where l < 1 and m > 1.
In our problem, we find that the convergence is extremely senstive with ρ(k).

The above algorithm is used to find an approximation of ρ(k). Then we fix the step
length ρ/β for each problem.

4. Computational results

In this section we test two examples involving the functionals (1.6)–(1.7) with
distributed and Neumann boundary controls using the gradient algorithm studied in
Section 3. Let us consider that the domain Ω is the unit square (0, 1)× (0, 1) ⊂ R

2.
The state variables satisfy the following Boussinesq equations:

⎧⎪⎪⎨
⎪⎪⎩

−Δu + (u · ∇)u + ∇p = 9.8Tj in Ω ,

∇ · u = 0 in Ω ,

−ΔT + (u · ∇)T = Q in Ω .

(4.1)

In our computation, we take the Prandtl number to be 1. We also take α = 1.
Since the distributed control and the Neumann control are equally effective

in our computational experiments, we are not going to consider the case of both
controls are applied. Thus, β = 0 in the case of Neumann boundary control problem
and, of course, γ = 0 in the distributed control problem. The stopping criterion for
the gradient method is as follows: if

|T (Qh(k)) − T (Qh(k − 1))|
|T (Qh(k))| < tol ,

then stop for the distributed control problem and if

|T (ghN (k)) − T (ghN (k − 1))|
|T (ghN (k))| < tol ,

then stop for the Neumann boundary control problem. We set tol = 10−6 for all
tests in this section.

To stabilize the convection flow, we test both vorticity minimization and
matching problems.
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4.1. Vorticity minimization
First, let us consider the vorticity minimization problem. Minimize the follow-

ing functional

J (u, T, p,Q) =
1
2

∫
Ω

|∇ × u|2 dx +
β

2

∫
Ω

|Q|2 dx (4.2)

for the case of distributed control or

J (u, T, p, g) =
1
2

∫
Ω

|∇ × u|2 dx +
γ

2

∫
ΓN

|gN |2 ds (4.3)

for the Neumann boundary control subject to (4.1) with boundary conditions

u = 0 on ∂Ω ,

∂T

∂n
= 0 on Γleft ∪ Γright, T = 0 on Γtop, T = 10 on Γ1,

∂T

∂n
= gN on ΓN ,

where Γleft = {(0, y) | y∈ (0,1)}, Γright = {(1, y) | y∈ (0,1)}, Γ1 = {(x,0) |x∈ (0,0.2)},
Γtop = {(x,1) |x∈ (0,1)}, ΓN = {(x,0) |x∈ (0.2,1)}, see Fig. 1. When gN =0, Q=0,
we say that this problem is the uncontrolled problem. The numerical solution of
the uncontrolled problem is shown in Fig. 2. Our uncontrolled system is generated
by only a Dirichlet boundary condition and thus optimal states can not be easily
achieved from distributed and/or Neumann boundary controls in geneal.

Fig. 2. Uncontrolled temperature field (left) and velocity field (right) (Q = 0 and

gN = 0).

In a distributed control problem, the control is the distributed temperature
source Q. Of course, we set gN = 0 in this case. Table 1 shows that the vorticity
of u decrease as the value of β goes to 0. We choose the size of step ρ

β = 100 in the
simple gradient method. The value of ‖∇ × u‖ is reduced 96.0% when β = 10−5.
The controlled temperature field and velocity field are plotted in Fig. 3.
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Fig. 3. For vorticity minimization with distributed control, controlled temperature field
(left) and velocity field (right), β = 10−2, 10−3, 10−4, 10−5 from the top.



Optimal Control for 2-D Rayleih–Bénard Type Convection 115

Table 1. Costs for vorticity minimization with distributed control, time step (:= ρ
β
)=100.

β ‖∇×u‖ ‖Q‖ J (u, p, T,Q)
Uncontrolled 0.4291090153E+00 0.0000000000E+00 0.9206727351E−01

10−2 0.3351268557E+00 0.1862048373E+01 0.7349112541E−01
10−3 0.1392299614E+00 0.5719345338E+01 0.2604794663E−01
10−4 0.5279644311E−01 0.8873134440E+01 0.5330357942E−02
10−5 0.1651178240E−01 0.1176825243E+02 0.8287783047E−03

Table 2. Costs for vorticity minimization, with Neumann control, time step (:= ρ
γ
) = 50.

γ ‖∇×u‖ ‖g‖ J (u, p, T, g)
Uncontrolled 0.4291090153E+00 0.0000000000E+00 0.9206727351E−01

10−2 0.3265086000E+00 0.2284611847E+01 0.7940118941E−01
10−3 0.1033243147E+00 0.6676982954E+01 0.2762900769E−01
10−4 0.1797341718E−01 0.8418176486E+01 0.3704806630E−02
10−5 0.2187092979E−02 0.8837571617E+01 0.3929050483E−03

Table 3. CPU time in seconds (with number of iterations).

β or γ Distributed control Neumann control
10−2 32.117 (16) 24.475 (14)
10−3 97.067 (42) 117.399 (71)
10−4 278.649 (166) 213.765 (126)
10−5 714.049 (412) 323.254 (214)

In a Neumann boundary control problem, the control is the heat flux gN along
the boundary ΓN . Of course, we set Q = 0 in this case. Table 2 shows that the
vorticity of u decrease as the value of γ goes to 0. We choose the size of step ρ

γ = 50
in the simple gradient method.

The value of ‖∇ × u‖ is reduced 99.0% when γ = 10−5. The controlled tem-
perature field and velocity field are plotted in Fig. 4.

Table 3 shows CPU time in seconds for vorticity minimization problem. We
use MacBook Pro having 2.16 GHz Intel Core 2 Duo CPU and Intel Fortran com-
piler V10.
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Fig. 4. For vorticity minimization with Neumann control, controlled temperature field
(left) and velocity field (right), γ = 10−2, 10−3, 10−4, 10−5 from the top.
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4.2. Stablizaiton via velocity matching problem
Let us consider the velocity matching problem. Minimize the following

functional

J (u, T, p,Q) =
1
2

∫
Ω

|u − Ud|2 dx +
β

2

∫
Ω

|Q|2 dx (4.4)

for the case of distributed control or

J (u, T, p, gN ) =
1
2

∫
Ω

|u − Ud|2 dx +
γ

2

∫
ΓN

|gN |2 ds (4.5)

for the Neumann boundary control subject to (4.1) with boundary conditions

u = 0 on ∂Ω ,

∂T

∂n
= 0 on Γleft ∪ Γright, T = 0 on Γtop, T = 10 on Γ1,

∂T

∂n
= gN on ΓN .

In this case, we set Ud = 0 which is the special case of temperature tracking prob-
lem. Table 4 shows that the value of ‖u‖ decreases as the value of β goes to 0. We
choose the size of step ρ

β = 10000 in the simple gradient method. The value of ‖u‖
is reduced 97.0% when β = 10−7. The controlled temperature field and velocity
field are plotted in Fig. 5.

Table 4. Costs for velcocity matching problem with distributed control, time step

(:= ρ
β
) = 10000.

β ‖u−Ud‖ ‖Q‖ J (u, p, T,Q)
Uncontrolled 0.5414021543E−01 0.0000000000E+00 0.1465581463E−02

10−4 0.3537005264E−01 0.2646210885E+01 0.9756419143E−03
10−5 0.1214415941E−01 0.6071283264E+01 0.2580427062E−03
10−6 0.4763565779E−02 0.8511036407E+01 0.4756464983E−04
10−7 0.1529331139E−02 0.1095148889E+02 0.7166182309E−05

In a Neumann boundary control problem, the control is the heat flux gN along
the boundary ΓN . Of course, we set Q = 0 in this case. Table 5 shows that the
value of ‖u‖ decreases as the value of γ goes to 0. We choose the size of step
ρ
γ = 5000 in the simple gradient method.

The value of ‖u‖ is reduced 99.6% when γ=10−5. The controlled temperature
field and velocity field are plotted in Fig. 6.

Table 6 shows CPU time in seconds for velocity matching problem.
We should note that, as seen in Tables 3 and 6, Neumann control is more

effective than the distributed one from the computational points of view, especially
when β and γ are relatively small.
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Fig. 5. For velcocity matching problem with distributed control, controlled temperature
field (left) and velocity field (right), β = 10−4, 10−5, 10−6, 10−7 from the top.
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Fig. 6. For velcocity matching problem with Neumann control, controlled temperature
field (left) and velocity field (right), γ = 10−4, 10−5, 10−6, 10−7 from the top.
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Table 5. Costs for velcocity matching problem with Neumann control, time step

(:= ρ
γ
) = 5000.

γ ‖u−Ud‖ ‖gN‖ J (u, p, T, gN )
Uncontrolled 0.5414021543E−01 0.0000000000E+00 0.1465581463E−02

10−4 0.3532286012E−01 0.2920747642E+01 0.1050390563E−02
10−5 0.8904758594E−02 0.7032880992E+01 0.2869544380E−03
10−6 0.1959647560E−02 0.8355395057E+01 0.3682642255E−04
10−7 0.2288944106E−03 0.8831095340E+01 0.3925608571E−05

Table 6. CPU time in seconds (with number of iterations).

β or γ Distributed control Neumann control
10−4 47.833 (26) 27.647 (16)
10−5 94.124 (51) 83.971 (50)
10−6 319.688 (174) 111.461 (65)
10−7 818.377 (554) 314.689 (206)
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