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Abstract

In this paper, we investigate some new existence results for nonlinear fractional
differential equations of order q ∈ (1,2] with four-point nonlocal integral boundary
conditions by applying standard fixed point theorems and Leray-Schauder degree the-
ory. Our results are new in the sense that the nonlocal parameters in four-point integral
boundary conditions for the problem appear in the integral part of the conditions in
contrast to the available literature on four-point fractional boundary value problems
which deals with the four-point boundary conditions restrictions on the solution or
gradient of the solution of the problem. Some illustrative examples are presented.
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1 Introduction

Boundary value problems for nonlinear fractional differential equations have recently been
studied by several researchers. Fractional derivatives provide an excellent tool for the de-
scription of memory and hereditary properties of various materials and processes. These
characteristics of the fractional derivatives make the fractional-order models more realis-
tic and practical than the classical integer-order models. As a matter of fact, fractional
differential equations arise in many engineering and scientific disciplines such as physics,
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chemistry, biology, economics, control theory, signal and image processing, biophysics,
blood flow phenomena, aerodynamics, fitting of experimental data, etc. [16, 18, 19, 20].
Some recent work on boundary value problems of fractional order can be found in [1, 2, 3,
4, 7, 8, 9, 10, 11, 12, 13, 15, 21, 22] and the references therein.

In this paper, we consider a boundary value problem of nonlinear fractional differential
equations of order q ∈ (1,2] with four-point integral boundary conditions given by

cDqx(t) = f (t,x(t)), 0 < t < 1, 1 < q ≤ 2,

x(0) = α

Z
ξ

0
x(s)ds, x(1) = β

Z
η

0
x(s)ds, 0 < ξ, η < 1,

(1.1)

where cDq denotes the Caputo fractional derivative of order q, f : [0,1]×X → X is continu-
ous and α,β∈R. Here, (X ,‖·‖) is a Banach space and C = C([0,1],X) denotes the Banach
space of all continuous functions from [0,1]→ X endowed with a topology of uniform con-
vergence with the norm denoted by ‖ · ‖.

Integral boundary conditions have various applications in applied fields such as blood
flow problems, chemical engineering, thermoelasticity, underground water flow, population
dynamics, etc. For a detailed description of the integral boundary conditions, we refer the
reader to the papers [5, 6, 14] and references therein. It has been observed that the limits of
integration in the integral part of the boundary conditions are taken to be fixed, for instance,
from 0 to 1 in case the independent variable belongs to the interval [0,1]. In the present
study, we have introduced a nonlocal type of integral boundary conditions with limits of
integration involving the parameters 0 < ξ, η < 1. It is imperative to note that the available
literature on nonlocal boundary conditions is confined to the nonlocal parameters involve-
ment in the solution or gradient of the solution of the problem.

The aim of our paper is to present some existence results for the problem (1.1). The
first result relies on the Banach contraction principle. In the second result, we apply a fixed
point theorem due to Krasnoselskii, while the third result is based on nonlinear alternative
of Leray-Schauder type. The methods used are standard, however their exposition in the
framework of problem (1.1) is new.

2 Preliminaries

Let us recall some basic definitions of fractional calculus [16, 18, 20].

Definition 2.1. For a continuous function g : [0,∞)→R, the Caputo derivative of fractional
order q is defined as

cDqg(t) =
1

Γ(n−q)

Z t

0
(t− s)n−q−1g(n)(s)ds, n−1 < q < n,n = [q]+1,

where [q] denotes the integer part of the real number q.
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Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ(q)

Z t

0

g(s)
(t− s)1−q ds, q > 0,

provided the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order q for a continuous
function g(t) is defined by

Dqg(t) =
1

Γ(n−q)

(
d
dt

)n Z t

0

g(s)
(t− s)q−n+1 ds, n = [q]+1,

provided the right hand side is pointwise defined on (0,∞).

Lemma 2.4. ([16]) For q > 0, the general solution of the fractional differential equation
cDqx(t) = 0 is given by

x(t) = c0 + c1t + c2t2 + . . .+ cn−1tn−1,

where ci ∈ R, i = 0,1,2, . . . ,n−1 (n = [q]+1).

In view of Lemma 2.4, it follows that

Iq cDqx(t) = x(t)+ c0 + c1t + c2t2 + ...+ cn−1tn−1, (2.1)

for some ci ∈ R, i = 0,1,2, ...,n−1 (n = [q]+1).

Lemma 2.5. Let g : [0,1] → R be a given continuous function. Then a unique solution of
the boundary value problem

cDqx(t) = g(t), 0 < t < 1, 1 < q ≤ 2,

x(0) = α

Z
ξ

0
x(s)ds, x(1) = β

Z
η

0
x(s)ds, 0 < ξ, η < 1,

(2.2)

is given by

x(t) =
1

Γ(q)

Z t

0
(t− s)q−1g(s)ds

+
α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)Z
ξ

0

(Z s

0
(s−m)q−1g(m)dm

)
ds

+
β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)Z
η

0

(Z s

0
(s−m)q−1g(m)dm

)
ds (2.3)

− 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)Z 1

0
(1− s)q−1g(s)ds,

where
γ =

1
2
[(αξ−1)(βη

2−2)−αξ
2(βη−1)] , 0.
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Proof. In view of Lemma 2.4, for some constants c0,c1 ∈ R, we have

x(t) = Iqg(t)− c0− c1t =
Z t

0

(t− s)q−1

Γ(q)
g(s)ds− c0− c1t. (2.4)

Using the boundary conditions for (2.2), we find that

(αξ−1)c0 +α
ξ2

2
c1 = αA, (2.5)

(βη−1)c0 +
(

βη2

2
−1
)

c1 = βB−C, (2.6)

where

A =
1

Γ(q)

Z
ξ

0

(Z s

0
(s−m)q−1g(m)dm

)
ds,

B =
1

Γ(q)

Z
η

0

(Z s

0
(s−m)q−1g(m)dm

)
ds,

C =
1

Γ(q)

Z 1

0
(1− s)q−1g(s)ds.

Solving (2.5) and (2.6) for c0 and c1, we have that

c0 =
1
γ

[(
αβη2

2
−α

)
A− αβξ2

2
B+

αξ2

2
C
]

and
c1 =

1
γ

[β(αξ−1)B− (αξ−1)C−α(βη−1)A] .

Substituting the values of c0 and c1 in (2.4), we obtain (2.3). �

In view of Lemma 2.5, we define an operator F : C → C by

(Fx)(t) =
1

Γ(q)

Z t

0
(t− s)q−1 f (s,x(s))ds

+
α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)Z
ξ

0

(Z s

0
(s−m)q−1 f (m,x(m))dm

)
ds

+
β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)Z
η

0

(Z s

0
(s−m)q−1 f (m,x(m))dm

)
ds

− 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)Z 1

0
(1− s)q−1 f (s,x(s))ds, t ∈ [0,1].

For the sequel, we need the following assumptions:

(A1) ‖ f (t,x)− f (t,y)‖ ≤ L‖x− y‖,∀t ∈ [0,1], L > 0, x,y ∈ X ;

(A2) ‖ f (t,x)‖ ≤ µ(t), ∀(t,x) ∈ [0,1]×X , and µ ∈ L1([0,1],R+).
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For convenience, let us set

Λ =
1

Γ(q+1)

(
1+

Λ1 +Λ2

2|γ|(q+1)

)
, (2.7)

where
Λ1 = |α|(|2−βη

2|+2|βη−1|)ξq+1,

and
Λ2 = (|α|ξ2 +2|1−ξα|)(|β|ηq+1 +q+1).

3 Existence results in Banach space

Theorem 3.1. Assume that f : [0,1]×X → X is a jointly continuous function and satisfies
the assumption (A1) with L < 1/Λ, where Λ is given by (2.7). Then the boundary value
problem (1.1) has a unique solution.

Proof. Setting supt∈[0,1] | f (t,0)|= M and choosing r≥ ΛM
1−LΛ

, we show that FBr ⊂Br,

where Br = {x ∈ C : ‖x‖ ≤ r}. For x ∈ Br, we have:

‖(Fx)(t)‖

≤ 1
Γ(q)

Z t

0
(t− s)q−1‖ f (s,x(s))‖ds

+
∣∣∣∣ α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)∣∣∣∣Z ξ

0

(Z s

0
(s−m)q−1‖ f (m,x(m))‖dm

)
ds

+
∣∣∣∣ β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z η

0

(Z s

0
(s−m)q−1‖ f (m,x(m))‖dm

)
ds

+
∣∣∣∣ 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z 1

0
(1− s)q−1‖ f (s,x(s))‖ds

≤ 1
Γ(q)

Z t

0
(t− s)q−1(‖ f (s,x(s))− f (s,0)‖+‖ f (s,0)‖)ds

+
∣∣∣∣ α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)∣∣∣∣Z ξ

0

(Z s

0
(s−m)q−1(‖ f (m,x(m))− f (m,0)‖

+‖ f (m,0)‖)dm
)

ds

+
∣∣∣∣ β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z η

0

(Z s

0
(s−m)q−1(‖ f (m,x(m))− f (m,0)‖

+‖ f (m,0)‖)dm
)

ds

+
∣∣∣∣ 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z 1

0
(1− s)q−1(‖ f (s,x(s))− f (s,0)‖+‖ f (s,0)‖)ds

≤ (Lr +M)
[ 1

Γ(q)

Z t

0
(t− s)q−1ds

+
∣∣∣∣ α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)∣∣∣∣Z ξ

0

(Z s

0
(s−m)q−1dm

)
ds
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+
∣∣∣∣ β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z η

0

(Z s

0
(s−m)q−1dm

)
ds

+
∣∣∣∣ 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z 1

0
(1− s)q−1ds

]
≤ (Lr +M)

Γ(q+1)

(
1+

Λ1 +Λ2

2|γ|(q+1)

)
= (Lr +M)Λ ≤ r.

Now, for x,y ∈ C and for each t ∈ [0,1], we obtain

‖(Fx)(t)− (Fy)(t)‖

≤ 1
Γ(q)

Z t

0
(t− s)q−1‖ f (s,x(s))− f (s,y(s))‖ds

+
∣∣∣∣ α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)∣∣∣∣Z ξ

0

(Z s

0
(s−m)q−1‖ f (m,x(m))− f (m,y(m))‖dm

)
ds

+
∣∣∣∣ β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z η

0

(Z s

0
(s−m)q−1‖ f (m,x(m))− f (m,y(m))‖dm

)
ds

+
∣∣∣∣ 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z 1

0
(1− s)q−1‖ f (s,x(s))− f (s,y(s))‖ds

≤ L‖x− y‖
[ 1

Γ(q)

Z t

0
(t− s)q−1ds

+
∣∣∣∣ α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)∣∣∣∣Z ξ

0

(Z s

0
(s−m)q−1dm

)
ds

+
∣∣∣∣ β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z η

0

(Z s

0
(s−m)q−1dm

)
ds

+
∣∣∣∣ 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z 1

0
(1− s)q−1ds

]
≤ L

Γ(q+1)

(
1+

Λ1 +Λ2

2|γ|(q+1)

)
‖x− y‖

= LΛ‖x− y‖,

where Λ is given by (2.7). Observe that Λ depends only on the parameters involved in the
problem. As L < 1/Λ, therefore F is a contraction. Thus, the conclusion of the theorem
follows by the contraction mapping principle (Banach fixed point theorem). �

Our next existence result is based on Krasnoselskii’s fixed point theorem [17].

Theorem 3.2. (Krasnoselskii’s fixed point theorem). Let M be a closed convex and nonempty
subset of a Banach space X . Let A,B be the operators such that (i) Ax +By ∈ M whenever
x,y ∈ M; (ii) A is compact and continuous; (iii) B is a contraction mapping. Then there
exists z ∈ M such that z = Az+Bz.

Theorem 3.3. Let f : [0,1]×X → X be a jointly continuous function mapping bounded
subsets of [0,1]×X into relatively compact subsets of X , and the assumptions (A1) and
(A2) hold with

L
Γ(q+1)

(
Λ1 +Λ2

2|γ|(q+1)

)
< 1. (3.1)
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Then the boundary value problem (1.1) has at least one solution on [0,1].

Proof. Letting supt∈[0,1] |µ(t)|= ‖µ‖, we fix

r ≥ ‖µ‖
Γ(q+1)

(
1+

Λ1 +Λ2

2|γ|(q+1)

)
,

and consider Br = {x ∈ C : ‖x‖ ≤ r}. We define the operators P and Q on Br as

(P x)(t) =
Z t

0

(t− s)q−1

Γ(q)
f (s,u(s))ds,

(Q x)(t) =
α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)Z
ξ

0

(Z s

0
(s−m)q−1 f (m,x(m))dm

)
ds

+
β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)Z
η

0

(Z s

0
(s−m)q−1 f (m,x(m))dm

)
ds

− 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)Z 1

0
(1− s)q−1 f (s,x(s))ds.

For x,y ∈ Br, we find that

‖P x+Q y‖ ≤ ‖µ‖
Γ(q+1)

(
1+

Λ1 +Λ2

2|γ|(q+1)

)
≤ r.

Thus, P x + Q y ∈ Br. It follows from the assumption (A1) together with (3.1) that Q is a
contraction mapping. Continuity of f implies that the operator P is continuous. Also, P is
uniformly bounded on Br as

‖P x‖ ≤ ‖µ‖
Γ(q+1)

.

Now we prove the compactness of the operator P .
In view of (A1), we define sup(t,x)∈[0,1]×Br

| f (t,x)|= f , and consequently we have

‖(P x)(t1)− (P x)(t2)‖ =
∥∥∥∥ 1

Γ(q)

Z t1

0
[(t2− s)q−1− (t1− s)q−1] f (s,x(s))ds

+
Z t2

t1
(t2− s)q−1 f (s,x(s))ds

∥∥∥∥
≤ f

Γ(q+1)
|2(t2− t1)q + tq

1 − tq
2 |,

which is independent of x. Thus, P is equicontinuous. Using the fact that f maps bounded
subsets into relatively compact subsets, we have that P (A)(t) is relatively compact in X for
every t, where A is a bounded subset of C . So P is relatively compact on Br. Hence, by the
Arzelá-Ascoli Theorem, P is compact on Br. Thus all the assumptions of Theorem 3.2 are
satisfied. So the conclusion of Theorem 3.2 implies that the boundary value problem (1.1)
has at least one solution on [0,1]. �
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4 Existence of solution via Leray-Schauder degree theory

Theorem 4.1. Let f : [0,1]×R→ R. Assume that there exist constants 0≤ κ < 1
Λ
, where Λ

is given by (2.7) and M > 0 such that | f (t,x)| ≤ κ|x|+M for all t ∈ [0,1],x ∈C[0,1]. Then
the boundary value problem (1.1) has at least one solution.

Proof. Lets us define an operator z : C[0,1]→C[0,1] as

x = z(x), (4.1)

where

(zx)(t) =
1

Γ(q)

Z t

0
(t− s)q−1 f (s,x(s))ds

+
α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)Z
ξ

0

(Z s

0
(s−m)q−1 f (m,x(m))dm

)
ds

+
β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)Z
η

0

(Z s

0
(s−m)q−1 f (m,x(m))dm

)
ds

− 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)Z 1

0
(1− s)q−1 f (s,x(s))ds.

In view of the fixed point problem (4.1), we just need to prove the existence of at least one
solution x ∈C[0,1] satisfying (4.1). Define a suitable ball BR ⊂C[0,1] with radius R > 0 as

BR =
{

x ∈C[0,1] : max
t∈[0,1]

|x(t)|< R
}

,

where R will be fixed later. Then, it is sufficient to show that z : BR →C[0,1] satisfies

x , λzx, ∀ x ∈ ∂BR and ∀ λ ∈ [0,1]. (4.2)

Let us set
H(λ,x) = λzx, x ∈C(R) λ ∈ [0,1].

Then, by the Arzelá-Ascoli Theorem, hλ(x) = x−H(λ,x) = x−λzx is completely continu-
ous. If (4.2) is true, then the following Leray-Schauder degrees are well defined and by the
homotopy invariance of topological degree, it follows that

deg(hλ,BR,0) = deg(I−λz,BR,0) = deg(h1,BR,0)
= deg(h0,BR,0) = deg(I,BR,0) = 1 , 0, 0 ∈ Br,

where I denotes the identity operator. By the nonzero property of Leray-Schauder degree,
h1(t) = x−λzx = 0 for at least one x ∈ BR. In order to prove (4.2), we assume that x = λzx
for some λ ∈ [0,1] and for all t ∈ [0,1] so that

|x(t)| = |λ(zx)(t)|

≤ 1
Γ(q)

Z t

0
(t− s)q−1| f (s,x(s))|ds
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+
∣∣∣∣ α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)∣∣∣∣Z ξ

0

(Z s

0
(s−m)q−1| f (m,x(m))|dm

)
ds

+
∣∣∣∣ β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z η

0

(Z s

0
(s−m)q−1| f (m,x(m))|dm

)
ds

+
∣∣∣∣ 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z 1

0
(1− s)q−1| f (s,x(s))|ds

≤ (κ|x|+M)
[ 1

Γ(q)

Z t

0
(t− s)q−1ds

+
∣∣∣∣ α

γΓ(q)

(
2−βη2

2
+(βη−1)t

)∣∣∣∣Z ξ

0

(Z s

0
(s−m)q−1dm

)
ds

+
∣∣∣∣ β

γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z η

0

(Z s

0
(s−m)q−1dm

)
ds

+
∣∣∣∣ 1
γΓ(q)

(
αξ2

2
+(1−ξα)t

)∣∣∣∣Z 1

0
(1− s)q−1ds

]
≤ κ|x|+M

Γ(q+1)

(
1+

Λ1 +Λ2

2|γ|(q+1)

)
= (κ|x|+M)Λ,

which, on taking norm (supt∈[0,1] |x(t)|= ‖x‖) and solving for ‖x‖, yields

‖x‖ ≤ MΛ

1−κΛ
.

Letting R =
MΛ

1−κΛ
+1, (4.2) holds. This completes the proof. �

5 Examples

Example 5.1. Consider the following four-point integral fractional boundary value problem
cD3/2x(t) =

1
(t +9)2

‖x‖
1+‖x‖

, t ∈ [0,1],

x(0) =
1
2

Z 1/4

0
x(s)ds, x(1) =

Z 3/4

0
x(s)ds.

(5.1)

Here, q = 3/2, α = 1/2, β = 1, ξ = 1/4, η = 3/4, and f (t,x) =
1

(t +2)2
‖x‖

1+‖x‖
. As

‖ f (t,x)− f (t,y)‖ ≤ 1
4
‖x−y‖, therefore, (A1) is satisfied with L =

1
4
. Further, γ = 81/128,

and

LΛ =
L

Γ(q+1)

(
1+

Λ1 +Λ2

2|γ|(q+1)

)
=

1
180

√
π

(
19
√

3+
7831
27

)
= 0.50611188 < 1.

Thus, by the conclusion of Theorem 3.1, the boundary value problem (5.1) has a unique
solution on [0,1].



38 B. Ahmad and S.K. Ntouyas

Example 5.2. Consider the following boundary value problem
cD3/2x(t) =

1
(4π)

sin(2πx)+
|x|

1+ |x|
, t ∈ [0,1],

x(0) =
Z 1/3

0
x(s)ds, x(1) =

Z 2/3

0
x(s)ds.

(5.2)

Here, q = 3/2, α = β = 1,ξ = 1/3, η = 2/3, γ = 29/54, and∣∣∣ f (t,x)∣∣∣= ∣∣∣∣ 1
(4π)

sin(2πx)+
|x|

1+ |x|

∣∣∣∣≤ 1
2
‖x‖+1.

Clearly M = 1 and

κ =
1
2

<
1
Λ

=

[
4

3
√

π

(
1+

6
145

(
65
2

+
20+52

√
2

9
√

3

))]−1

= 0.5126401766.

Thus, all the conditions of Theorem 4.1 are satisfied and consequently the problem (5.2)
has at least one solution.

References

[1] R. P. Agarwal, M. Benchohra, S. Hamani, Boundary value problems for fractional
differential equations, Georgian Math. J. 16 (2009), 401-411.

[2] R. P. Agarwal, B. Ahmad, Existence of solutions for impulsive anti-periodic boundary
value problems of fractional semilinear evolution equations, Dyn. Contin. Discrete
Impuls. Syst., Ser. A, Math. Anal., to appear.

[3] B. Ahmad, S. Sivasundaram, Existence and uniqueness results for nonlinear boundary
value problems of fractional differential equations with separated boundary condi-
tions, Commun. Appl. Anal. 13 (2009), 121-228.

[4] B. Ahmad, J.J. Nieto, Existence of solutions for nonlocal boundary value problems of
higher order nonlinear fractional differential equations, Abstr. Appl. Anal. 2009, Art.
ID 494720, 9 pp.

[5] B. Ahmad, J.J. Nieto, Existence results for nonlinear boundary value problems of frac-
tional integrodifferential equations with integral boundary conditions, Bound. Value
Probl. 2009, Art. ID 708576, 11 pp.

[6] B. Ahmad, A. Alsaedi, B. Alghamdi, Analytic approximation of solutions of the
forced Duffing equation with integral boundary conditions, Nonlinear Anal. Real
World Appl. 9 (2008), 1727-1740.

[7] B. Ahmad, J.J. Nieto, Existence results for a coupled system of nonlinear fractional
differential equations with three-point boundary conditions, Comput. Math. Appl. 58
(2009) 1838-1843.



Four-Point Nonlocal BVP for Fractional Differential Equations 39

[8] B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of
nonlinear integro-differential equations of fractional order, Appl. Math. Comput. 217
(2010), 480-487.

[9] B. Ahmad, Existence of solutions for irregular boundary value problems of nonlinear
fractional differential equations, Appl. Math. Lett. 23 (2010), 390-394.

[10] B. Ahmad, Existence of solutions for fractional differential equations of order q ∈
(2,3] with anti-periodic boundary conditions, J. Appl. Math. Comput. 34 (2010), 385-
391.

[11] Z. Bai, H. Liu, Positive solutions for boundary value problem of nonlinear fractional
differential equation, J. Math. Anal. Appl. 311 (2005), 495-505.

[12] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Non-
linear Anal. 72 (2010), 916-924.

[13] M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary value problems for differential
equations with fractional order and nonlocal conditions, Nonlinear Anal. 71 (2009)
2391-2396.

[14] A. Boucherif, Second-order boundary value problems with integral boundary condi-
tions, Nonlinear Anal. 70 (2009), 364-371.

[15] S. Hamani, M. Benchohra, John R. Graef, Existence results for boundary value prob-
lems with nonlinear fractional inclusions and integral conditions, Electronic J. Differ-
ential Equations, Vol. 2010(2010), No. 20, pp. 1-16.

[16] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science
B.V., Amsterdam, 2006.

[17] M.A. Krasnoselskii, Two remarks on the method of successive approximations, Us-
pekhi Mat. Nauk 10 (1955), 123-127.

[18] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[19] J. Sabatier, O.P. Agrawal, J.A.T. Machado (Eds.), Advances in Fractional Calculus:
Theoretical Developments and Applications in Physics and Engineering, Springer,
Dordrecht, 2007.

[20] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory
and Applications, Gordon and Breach, Yverdon, 1993.

[21] S. Zhang, Positive solutions to singular boundary value problem for nonlinear frac-
tional differential equation, Comput. Math. Appl. 59 (2010), 1300-1309.

[22] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional dif-
ferential equations, Electron. J. Differential Equations 2006, No. 36, 12 pp.


