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§0. Introduction

In this paper, we understand by a variety a projective variety
which is defined over a fixed algebraically closed field k of characteristic
p (which can be zero).

Our main purpose of the present paper is to classify the type
of subvarieties of Gr(n, 1) which are biregular to projective spaces of
dimension n—1. 1

As examples of such varieties we know followings.

0 _— 1, 0, 0""’ 0 n—1 2)
Xn,l_{ 0’ X0s Xgseeey Xpo1 € Gr(n, l)l(xO’ Xpgeees xn—l) € P }

o= )€ 0n Dt € )

Xg,l =¢3(X‘3’,,)
X§,1=¢3(X§.1)

where ¢,: Gr(n, 1)>Gr(n, n—2) is the dual biregular morphism.

1) In general Gr (n, d) denotes the Grassman variety which paramerizes d-dimensional
linear subspace of n-dimensional projective space P».

2) By ((1): x(:,, x(:”i x,,?l) we denote the point of Gr (n, 1) which represent the line which

passes two points (1, 0, 0,...,0) and (0, xy, x,..., x,_,) of P7,
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X (S)={xeGr(4, 1)| the line which is represented by x is con-
tained in S},3 where S is a non-singular quadric hypersurface of
P4 and chark=p+2.

The main Theorems are the following theorems.

Theorem 5.1. Let X be a subvariety of Gr(n, 1) which is biregu-
lar to P, Then,

(i) if n=3, then X is projectively equivalent®) to some one
of Xg,laX%,l’jzg,l’ and )}51

(i) if n25, then X is projectively equivalent to X9, or to X1 ,.

Theorem 6.2. Assume that the characteristic of k is not equal
to 2. Let X be a subvariety of Gr(4, 1) which is biregular to P3.
Then, X is projectively equivalent to some one of X3 |, X} | and X (S),
where S is a fixed non-singular quadric hypersurface of P4.

We shall prove these theorems by numerical method. Let E(n, 1)
(resp. Q(n, 1)) be the universal subbundle (resp universal quotient bundle)
of Gr(n,1). Assume that X is a subvariety of Gr(n, 1) which is
biregular to P"~!, Let E=I§(n, D|x and Q=0Q(n, 1)|x. And let ¢,(E)=
hH and c¢,(E)=bH? where H is a hyperplane of X~P"~!. Then, we
shall prove Theorem 5.1 and Theorem 6.2 by completing the following
table.

n (h, b) Property of X Type of X

3 (1,0) Ex0x®0x(1) X8,
2,1 E=0x(1)®0x(1) X3,
(1,1) 0~ 03 ®Ox(1) X3,
(2, 3) 0~ 0x(1) ® 0x (1) X1,

3) In §6 we shall prove that X,(S) is biregular to P3.

4) Subvarieties X and Y of Gr (n, 1) are said to be projectively equivalent to each
other if there exists a biregular map ¢ from Gr(n, 1) to Gr(n, 1) which is induced
by an element of PGL(n, k) such that ¢(X)=Y.
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4 (1,0) Ex 0y ®0x(1) X3
(2, 1) Ex0x(1)®0x(1) Xia

2,2 (%) X,(S)
25 (1,0) Ex0x®0x(1) X324
(2, 1) E=0x(1) ®0x(1) X

(*): All the lines which are represented by the points of X are
contained in some hypersurface of P4.

I wish to thank Professor Masayoshi Nagata and Hideyasu Sumi-
hiro for their valuable conversations.

§1. Notation and preliminary results

As mentioned in the introduction, we understand by a variety a
variety defined over an algebraically closed field k of characteristic
p. In §1,8§2,83,84 and §5, p is arbitrary. And in §6, we assume
that p#+2. We consider the Grassmann vairety Gr(n, d) parametrizing
d-dimensional linear subspaces of n-dimensional projective space P~
If x is a point of Gr(n, d), we denote by L, the d-dimensional linear
subspace of P" which is represented by x.

Let A4y, A,,..., A; be d+1 liner spaces of P” such that

Ao‘i—:Ax% "'%Ad,

and let a; be the dimension of A; (0<i<d). Then the following
subvariety of Gr(n, d)

Qio.arnnaddo, Ay, A)={x€Gr(n, d)|dim(L,n 4)=i for all i}

is called the Schubert variety associated with Ay, A,,..., 4. Two
Schubert varieties Q,, ,,, . ..(A4¢, A1,..., Ay and Q,  , (B, By,..., By)
are rationaly equivalent to each other if and only if a;=b; for all i.
The equivalence class containing Q,, ,,..  ,.(A4¢ Ay,..., A;) is denoted
by Q,0.4,....asr and is called a Schubert cycle.

Since Qo ,_g+1m-a+2,. (Ao, Ay,..., A) depends only on A, we
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also denote it by Q. _441n-a+2,..(A0) Similarly we denote
Qn—d—l,n-d....,n--l(AO’ Al""’ Ad) by Qn—d—l,n--d,...,n—I(Ad)'

The Schubert cycles Q where aq, ay,..., a; runs over all
integers which satisfy the relation

G0,814...,4d

0<apg<a;<--<a;=n (Schubert condition)

form a free generator of Chow ring A(Gr(n,d)) of Gr(n,d) as an
d

additive group. The codimension of Q, ,,. ., is X (n—d+i—a)).
i=o

The formula, colled Pieri’s formula, show the multiplicative structure
of Chow ring A(Gr(n, d)).

an.al,...,aa 'Qn—d—h,n~d+ 1L,n—d+2,.,n = Zgbo,b, yeeusba

where the summation is made over all distinct sets by, by,..., by such
that

0<by<ag<b;=a;<b,=--=a, <b;<a,<n and

In order to describe the structure of A(Gr(n, d)) in simpler way,
we  set  Wuo.a..naa=2n-d—aom-d+1-ay,..n-ag- Lhen, Schubert cycles

{®ag.a,....as} Where aq, ay,...,a; run over all integers which satisfy

the relation

n—dzayza, = 0

1\

ay

)%

form a free generators of Chow ring A(Gr(n, d)), and we have the
formula

wao,al...,aa - wh,o,...,o = Zwbo,b 1sesba

where the summation is made over all distict sets of integers b, by,...,
b, which satisfy the relation

n—dzby2ao2b;2a,2b,=z--2a, 12b,2a,20 and
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d d
Z b,=2 a +h
i=0 i=0

The codimension of @, q,,...,as 1S }: a;.

Let d,, d,,...,d, be a set of 1ntegers with n=d,>d,>:-->d;20,
then the subvariety {(x{, X3..., X;) |[P">L,, cL,,>--cL,} of
Gr(n, d,)x Gr(n, dy)x --- xGr(n, d)) is called the flag variety of type
(n,d,, d,,...,d;) and is denoted by Dr(n, d,, d,,..., d)).

d

Lemma 1.1. For a subvariety Z of Gr(n,d) with dimZ2=} a,
i=o

and for a general point (x4 X4_1,...,%9) of Dr(n,n—ay, n—1—a,_y,...,

n—d—a,), we have

dlm (Z n Qn—d—ao,n—d+1—a;,...,n—ad(Lx,,_d_ao’ an—a+1-a°""’ Lx,-.-.,d))

Proof. Consider the subvariety X ={(x, (X4, X4- .., Xo)) € Gr(n, d) x
Dr(n,n—agz n—1—ay_q,..., n—d—ag)|dim(L,n L,)=i for alli} of
Gr(n,d)x Dr(n, n—ag, n—1—ay_,,...,n—d—ag). Let mny; X - Gr(n,d)
and n,; X—»Dr(n,n—ay, n—1—a,_y,...,n—d—a,) be projections.
Then,

dim X =dimDr(n, n—ay, n—1—a,_4,...,n—d—ay)+dimow

@0,a1,...,44"

Since n7l(x) and =ny!(y) are biregular to each other for any two
points x and y of Gr(n, d), we have

dim n71(x) =dim X —dim Gr(n, d).

To prove Lemma 1.1, it is enough to show that for some point 4 of
Dr(n,n—ay;, n—1—a,_,..., n—d—a,),

dim (13 '(A) N 771 Z) <dim Z— 3. a;.
i=0

Assume the contrary. Then for any point A of Dr(n,n—a,, n—1—a,_4,
e n—d—ag)
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dim (n31(A) N 77 Z)2dimZ— 3 a,+1.
=o

Hence, we have
dimn71(2)=dim Dr(n, n—ay, n—1—a,_,,..., n—d—ay)+dimZ

d
—> a;+1.
i=o

On the other hand we have
dim n71(Z)=dim Z+dim X —dim Gr (n, d)

=dimDr(n, n—ag, n—1-a,_,,...,n—d—ay)+dimZ

This is a contradiction. g.e.d.

Corollary 1.2. The Schubert cycles are numerically non-negative,
i.e. the intersection number of Z with w, ., .. ., IS non-negative,

d
for any subavriety Z of dimension Y a; of Gr(n, d).
=)

Let E(n, d) be the universal subbundle of Gr(n, d) and let Q(n, d)
be the universal quotient bundle of Gr(n, d), Then, there exists a
canonical exact seqence of vector bundles

n+1
0—> E(n,d) — @ Ogen,ay — Q(n,d) — 0.

Suppose that X is a variety, E is a vector bundle of rank d+1 on
X and that there exists an exact sequence of vector bundles

0— E— @0y —> Q—0.
Then, there is a canonical morphism
f; X — Gr(n, d)
such that the exact sequence

n+1

0— E— @ 0y —Q — 0.
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is isomorphic to the pull back of
n+1
0— E(n,d) — ®Ogin,a)— Q(n,d) — 0.

by f. -
For a vector bundle E, we denote by E the dual vector bundle
of E. The exact sequence of vector bundle on Gr(n, d)
v n+1 v

0 —_— Q(n, d) b @ OGr(n,d) — E(n, d) b— O.

(which is the dual of the exact sequence
n+1
0— E(n,d)— @ aGr(n,d) — Q(n,d)—> 0)

induces a canonical morphism ¢; Gr(n, d)»Gr(n, n—d—1). It is eaasy
to see that ¢ is a biregular map. We denote ¢(X) by 5(, for any
subvariety X of Gr(n,d). It is easy to see that (X¥)¥=X.

For a vector bundle E on a variety X, we denote by c(E) the
i-th Chern class of E (which is an element of A(X) of degree i).
Then, the following lemma is well known.

Lemma 1.3 c(E(n, d)=w, 1, . 1.0...0 if iSd+1 and c(E(n, d))=
0 if i>d+1. (cf. for example [3]).

The tangent bundle Tg,(,,4 of Gr(n, d) is isomorphic to E(n, d)
®Q(n, d). Therefore, we have the following exact sequence

0 — E(n, d)® E(n, d) — "éli*f(n, d) — Toimay— 0.

Let R be a commutative ring with identity and let R[[t]] be the
formal power series ring of one variable t with coefficient ring R.
For each positive integer i, we define a group homomorphism y;;
R[[f]]->R by

xu( 2 ajth)=a;.
Jj=0

When c(f)=1+4c t+cyt2+---+c,t"+--- is an element of R[[t]], we
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denote y{c(—1)~') by @,(c(f)). By definition
(= )1+ D (c(D)t+ Py (c()t2 + -+ + D (c(D)t"+--)=1.

When c(f)=1+ct+c 82+ +c,t" is an element of R[t], we also
denote Pc(t)) by D(cy, cy,..., Cy).

Lex X be a non-singular variety of dimension m and let E be a
vector bundle on X. The element c(E)=1+4c,(E)+cy,(E)+-+c,(E)
of Chow ring A(X) is called the Chern character of E. For the
simplicity, we denote @,c,(E), c,(E),..., ¢, (E)) by ®(c(E)) and we de
note 1+ ®,(c(E)+P,(c(E))+--+P,(c(E)) by P(c(E)). Then, we have
(E)- ®(c(E)) =1.

Lemma 14. In Gr(n, d),
clQ(n, ) =B(c(E(n, d)=wip,..0 (=0 if i>n—d).

Proof. Assume that the following sequence of vector bundles
on a variety X is exact.

0— E— @0y — 0 —0.
Then, we have
c(E)(Q)=1.
Hence we have
(Q) =P(e(E)).
In Gr(n, d), it is easy to see by the direct calculation that
0=w;,0,0,...0— @1,0,...0 Wi-1,0,...,0
+0q,1,0,.,0  @i-2,0,..,0 ~ @1,1,1,0,..,0 " Vi-3,0,...05
+eor (=DMl 1 ®ima- 10,00

where w;o  o0=0 if j<0 or j>n—d.
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This shows that

c(0(n, d)) =d(c(E(n, D)) =w; 0.0 g.e.d.

§2. Vector bundles generated by their global sections

Proposition 2.1. Let X be' a non-singular variety of dimension
m and let E be a vector bundle of arbitrary rank which is generated
by its global sections. Then,

(i) ¢(E) and ®(c(E)) are numerically non-negative, for all
i=1,2,..,m.

(i) cy(E)edE)—ci+1(E) and c,(E)P(c(E))—Pi+ (c(E)) are numeri-
cally non-negaitve, for all i=1,2,...,m—1. In particular if c(E)
(resp. ®(c(E))) is numerically equivalent to zero, then so is c¢;.(E)
(resp. @, 1(c(E))).

Proof. Since E is generated by its global sections, we have

n+1
®0y— E— 0,

hence we have

v n+1
0 — E— @ 0y — (quotient bundle) — 0.

Then, there exists a canonical morphism f; X—Gr(n, d) such that
E= f*E(n, d) where d+1 is the rank of E. Thus we have

. f*o14,..1,0,..0 if isd+1
¢(E) =f*c(E(n, ) =l
0 if i>d+1.

. [*w;o,...0 if isn—d
D(c(E))=f*P(c(E(n, d)))= [
0 if i>n—d.

f*wz,l,....1,0,...,0, if isd+1
c1(E)c{E)—c;y((E)= [
0 if i>d+1.
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f*wi1,0,..0 if isn—d
c(E)®(c(E))— D, ,(c(E)) =
0 if i>n—d.

Hence (i) and (ii) follow, by virtue of Corollary 1.2 and projection
formula.

Proposition 2.2. Let X be a variety of dimension m and let
E be a vector bundle of rank d+1. Suppose that E is generated
by its global sections, mzd+1 and c¢;,,(E)=0. Then

(i) There exits a (m—d)-dimensional subvariety Y of X such
that E|ly=0y@®E' where E' is some vector bundle of rank d on Y.

(ii) Suppose d=1. Then either E has a trivial line bundle as
direct summand or there exists a morphism f from X to a curve
C such that E=f*E" with a suitable vector bundle E" on C.

In order to prove Proposition 2.2, we need some preliminaries.

Lemma 2.3. For a subvaritety X of Gr(n,d), the following
three conditions are equivalent to each other.

(i) Xop,,.,1=0.

(ii) There exists a hyperplane H of P" such that H does not
contain L, for any point x of X.

(iii) For a general hyperplane H of P", there is no point x of
X such that H contains L.

If there exists a non-singular variety X and a morphism f from
X onto X, the following conditions are equivalent to these three
conditions.

(iv) E(n, d)|x has a trivial line bundle as a quotient bundle.

Proof. (i)<(ii)<>(iii) are obvious by virtue of Lemma I.1.
(iv)=(): Since f*E(n,d) has a trivial line bundle as a aquotient
bundle,

Car ((F*E(n, d)) =f*cyy (E(n, d) =f*w, ,, ., =0

Hence we have X-w,,, ;=0
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(ii)=>(iv) is obvious. g.e.d.

Lemma 24. Let X be an m-dimensional subvariety of Gr(n, d)
which satisfies the conditions (i)~(iii) of Lemma 2.3, and assume
that m=d+1. Then, there exists a (m—d)-dimensional subvariety
Y of X such that E(n,d)|y has a trivial line bundle as a direct
summand. If d=1, then E(n,d)|y has a trivial line bnudle as a
direct summand.

Proof. Let x, be a point of X, and we consider the following
diagram.

Dr(n,n—1, d)

Gr(n, n—1) Gr(n, d)> X 3 x,

Set Z=mon;'(xo)={heGr(n, n—1)|L,oL,} and W=n7'(Z)nn;'(X)=
{(h, x)eDr(n,n—1,d)|xeX, L,oL, and L,oL,}
For any point I of Z,

dimnyi(h)yn W=dim(X nw, ;. (L,)=dimX—d.
Hence there exists an irreducible component W, of W such that
dim Wy=2dimZ+dimX —d=dimX+n—2d—1.

Hence, for any point x of n3!(W,) we have

dimn;1(x) n W=dimnz'(x) N Wy=dim X +n—2d — 1 —dim n,(W,).
Since n3'(x)n Wx{heGr(n,n—1)|L,oL, and L,oL,},

dimn3'(x) N W=n—1~—dim {linear space spaned by L, and L, }

=n—1-(Q2d-dim(L,n L,,))

Let m,(Wy)=Y,, then for any point x of Y, we have
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(¢)) dim(L,nL,;)=dim X —dim Y, .
We consider the following diagram.
Dr(n, d, 0)
pri pra
Gr(n,d)oX2Y, Gr(n, 0)~P"> Lo

since
dim (pry1(Y,) n pr3'(L,,))=dim Yy +dim X —dim Y, =dim X,
we have for some point P of pryepri!(Yo)nL,,
dim (prii(Yo) n prz'(P))=dim X —dim L, ,=m—d.

This shows that there exists an (m—d)-dimensional subvariety Y of
X such that for any point x of Y, L, goes throguh a common point
P of P». Therefore, E(n, d)|y has a trivial line bundle as a direct
summand.

If d=1, the formula (I) shows that dim X =dim Y,, hence X =Y.
This shows that for arbitrary two points x and y of X,L, and L,
have a common point. This and the condition (ii)) of Lemma 2.3
show that for any point x of X, L, has a common point. Therefore,
E(n, d)|x has a trivial line bundle as a direct summand. q.e.d.

Proof of Proposition 2.2. Since E is generated by its global sec-
tions, we have the following exact sequence.

v n+1
0 — E— @ 0y — (quotient bundle) — 0.

Hence there exists a canonical morphism f: X—Gr(n ,d) such that
E=f*E(n, d). Let m’'=dimf(X). Since cyy (E)=0, we see that f(X)
satisfies the conditions (i)~(iii) of Lemma 2.3.

If m'<d, the assertion is trivial.

Assume that m’'=d+1. By virtue of Lemma 2.4, there exists an
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an (m’'—d)-diemnsional subvariety Y’ of f(X), such that E(n, d)|y
has a trivial line bundle as a direct summand. Since dimf-!(Y’)
=>m—d, there exists an (m—d)-dimensional subvariety of X such that
E|y has a trivial line bundle as a direct summand.

Assume now that d=1 and m'=2. By virtue of Lemma 2.4,
E(n, 1)|xy has a trivial line bundle as a direct summand. This shows
that E has a trivial line bundle as direct sumand. g.e.d.

Corollary 2.5. Let X be an m-dimensional non-singular variety
and let E be an ample vector bundle of rank r. Assume that E is
generated by its global sections. Then, c!(E) is numerically positive
if |I| is less than m+1 and r+1, where I=(iy, is,..., i) is a set of
non-negative inlegers,

cI(E)y=c(E)'1-cy(E)'2-----¢(E)!r and |I|=i;+2iy+ - +ri,.
(Sumihiro [5])

Proof. Since E is generated by its global sections, there exists
an exact sequence

0— E—> 610,‘( — (quotient bundle) — 0.
This exact sequence define a morphism f; X—Gr(n, r—1), such that
E=f*l§(n, r—1). Let r' be a positive integer such that r'<min{r, m}.
Suppose that c,.(E) is not numerically positive. Since ¢, (E) is numeri-
cally non-negative (by virtue of Proposition 2.1), there exists r’-dimen-
sional subvariety Z of X, such that Z-¢.(E)=0. Since

Z‘Cr'(E)=Zf*w1,1....,1,o,...,0s
S st

r

we have

f(z)'w1,1....,1,o....,o =0.
h—N’—-—I

r

Hence, there exists a system (Ao, 4;,..., A,_;) of linear subspaces
A; of P* such that
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(2) f(Z)nQn—r,u—r+1,...,n—r+r’—1.n—r+r’+1,n-—r+r'+2 n(AOv Al"“* Ar—l)

.....

=¢.

We fix a (n—r+r')-dimensional linear subspace 4 of P", which con-
tains A, _,. For any point x of f(Z), we have

dim(L,nA)=r'—1 and dim(L,nA, _,)<r'—1 (by virtue of (2)).
Hence we have

dim(L.n A)=r'—1.

Therefore, we can define a morphism g:f(Z)»Gr(n—r+7v, 1 —1),
by L,ny=L.nAcAXP"*" for any point x of f(Z). It is easy
to see that

G NNZ) oy,,.1=0 (in Gr(n—r+r,r'—1)).

Hence, by virtue of the proof of Lemma 2.4, there exists a curve C
in Z, such that for any point y of (gef)C), L, passes through a
common point. This shows that for any point x of f(C), L, passes
through a common point, and this shows that E|c has a trivial line
bundle as a direct summand. But this contradicts the fact that E
is an ample vector bundle. Thus we proved that c,.(E) is numerically
positive.

If |I|=r'Emin{r, m}, it is easy to show that

®io,. 0 021,00 o 1,1
=wy,1,..1,0,.,0+sum of other Schubert cycles of
non-negative coefficient.
This shows that c’(E) is numerically positive in this case. q.e.d.

§3. Morphisms from projective spaces to Gr(n, d)

In this section we are gonig to show that all morphisms from P™
to Gr(n,d) is constant if m2n+1 or if m=n=26 and d=1 or 2.
Let m be an integer with m=n—d+1 and assume that n>2d>0.
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Let f be a morphism from P™ to Gr(n, d) and let E=f*1§(n, d). Let
¢; be the integer such that

c¢(E)=c;h* where h is a hyperplane (1<i<d+1). Since E is
generated by its global sectios, ¢; is a non-negative integer.

Set c=(cq5 C5eeer Cap1)s
F(ty=1—c t+cyt2— - +(—=1)4*1¢, 1441 and
G)=14+D()t+Py(c)t2+ -+ D, _4(c)t" 4.
F(t) and G(t) are elements of Z[t]. Then, we have
Lemma 3.1. Under the above notation, we have
Dp_gr1(0)=Py_g42(c) ="+ =D,(c)=0.

Proof. Since f*Q(n,d) is a vector bundle of rank n—d and
c(f*Q(n, d))=d,(c)h*, the assersion is obvious.

Corollary 3.2. Assume that m=n+1 and f be a morphism from
P" to Gr(n, d). Then f(P™)=one point.

Proof. We may assume that m=n+1. We use same notation
as above. By virtue of Lemma 3.1. we have

F()-G@)=1.
Therefore, we have
¢y =Cy=+=¢4,,=0.
In particular we have ¢,(E)=0. This shows that
S®™) w4 0=0.

Since w,o,.,0 is an ample divisor, this shows that f(P"*!) is one point.

q.e.d.

Lemma 33. If m=n and f(P™) is not one point, then
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(1) c1s €20y Ca1s Di(c), Po(c),..., P,_4(c) are positive integers.

(ii) Set r=M.C.D.(i, d+1) and set pu,y be such that i=ru and
d+1=ry. Then clcz}, is a positive integer less than (d'i._l )v, for all
i with 1Zi<d+1.

(iii) When nd is even, there exists an integer a such that

— gd+1
Cay1=a"" "

When nd is odd, there exists an integer a xuch that
Cy41=0° where 2s=d+1.
Proof. By virtue of Lemma 3.1, we have
1) Fy GO =1+(—1441Ca41 Pu-a(Ot™*.
By the same way as in the proof of Corollary 3.2, we have
2 ¢;>0 and ¢4 P,_4(c)F0.

Hence, by virtue of formula (2) and Proposition 2.1, we have (i).
(ii): Let B be the positive (n+1)-st root of c¢;.;P,_4(c).
Set

F@)=(1—o, (1 —o80) ... (1 — g1 B1),
By virtue of formula (1), we have
3) logl =1, ok o; if ij, op!=a;€{ay, dzyeee, Ogur)s
00y ...054,=1 and P*l=cs,,.
ciedk1=(Z1sji<jacmejisat1%), 0,0 05,)"
<(#41Y,
Hence, we have

Since cYcz%, is a rational number and is integral over Z, it is a
rational integer.
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(iii): By virtue of the formula (3), we have
F(-,—L—)“‘“ =(t—oa)(t—oy) - (F—agey)

=(a7 =1zt —1) ... (gt t—Dogoty ..0lgsy
=(o t— 1ozt —1)... 44 1—1)
= (= F().
B
This shows that
O] B i=cyp B for all i with 1Zi<d.

Case 1. When d is even. Let d=2m, then by virtue of the
formula (4), we have

ﬂ =Cm+ lc;ll .

Since B is a rational number and is integral over Z, B is a rational
integer. Let a=p, then we have c;,;=a%*"!.

Case. 2. When d is odd and n is even. Sine n—d is odd, we
can apply similar technic to G(f) as in the Case | to F(f), and we see
that B is an integer. Let a=p, then we have

— gd+1
Ca+1=0a"" " .

Case 3. When d and n are odd. Let d+1=2s, then by virtue
of the formula (4), we have

ﬂz =Cs+1C5-1-

Hence, % is an integer. Let a=f2, then we have c¢;,,=a"

q.e.d.

Proposition 3.4. Let n=6 and let f be a morphism from P"
to Gr(n, 1), then f(P") consists of one point.

Proof. Suppose that f(P") has more than one point. By virtue
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of Lemma 3.3, we see that cic3! is a positive integer less than 4.
When cic;' =1, we have ®,(c)=0. When c}c;! =2, we have ®,(c)=0.
When cfc3!'=3, we have ®5(c)=0. Since n>6, this contradicts (i) of
Lemma 3.3. q.e.d.

Proposition 3.5. Let n=6 and let f be a morphism from P"
to Gr(n, 2), then f(P") consists of one point.

Proof. Suppose f(P") has more than one point. By virtue of
Lemma 3.3, we can write

F(t)=(1—at)(1—bat+a?t?) where b and a are integers. By the
same way as in the proof of Lemma 3.3, we see that b2 is less than
4. When b=—1, we have F(tf)=1—a3t3>. This contradict (i) of Lemma
3.3. When b=0, we have F(f)=1-—at+a2t2—a3t3. Hence, we have
®,(c)=0. This contradict (i) of Lemma 3.3. When b=1, we have
F(f)=1-2at+2a%t>—a3t3. Hence, we have &,(c)=0. This contradict
(i) of Lemma 3.3. qg.e.d.

§4. Numerically property of (n—1)-dimensional projective space
in Gr(n, 1)

Let X be a subvraiety of Gr(n, 1) which is biregular to P!,
H a hyperplane of X~P" ! and E=E"(n, D|x. Set

cl(E)=X'w1,o=hH
CZ(E)=X-w1'I=bH2 (as cycles in Xan—l).

Then, we call that the triple (h, b, n) and the vector bundle E are
associated with X.

In the sequel we shall say that a triple (h, b, n) is admissible
if and only if the triple (h. b, n) is associated with X, for some suitable
subvariety X of Gr(n, 1), which is biregular to P"~!,

The aim of this section is to prove the following theorem.

Theorem 4.1. Assume that a triple (h, b, n) is admissible and
b0, then
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(i) when n=3, (h, b)=(1,1) or (2.1) or (2, 3)
(ii) when n=4, (h, b)=(2,1) or (2,2)
(iii) when nz5, (h, b))=(2, 1).
In order to prove Theorem 4.1, we need some prerilinaries.
Lemma 4.2. In Gr(n, 1), we have
(1) o0 =0 4

(ii)) let n—12iz2j=20, n—12k=2m=0 and i+j+k+m=2n-2,

then,
1 if i+m=j+k=n—1
c')i,ja)k,m
0 otherwise.
Proof. Since w,,=w,,*—w,, and ,_,,_,=one point, the

assertion is proved by easy calculation.

Lemma 4.3. Let X be a subvariety of Gr(n, 1) which is biregular
to P*~1 and let N be the normal bundle of X in Gr(n, 1). Assume
that (h, b, n) is the triple associated with X. Then,

[(n—-1)/2] .
cn—l(N)= i;O (¢n-—l—2!(h’ b)bl)2

where [(n—1)/2] is the integer part of (n—1)/2.

Proof. By virtue of Lemma 4.2, we have X is rationally equivalent
[(n—1)/21
to "ZO X o,y @,—y-;;. By virtue of [1], [9], we have

[(n—1)/2]
G (N)=X-X= X (X’wn—l—i,i)z-

i=0
On the other hand we obtain

X=X 0y -y 00, (by virtue of Lemma 4.2)
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=X, 1 5(01,0, 01,1y,

=¢n_l_2"(h, b)bi. q. C.d.
[(n—1)/2] .
Set ¢,—y4(h, b)= . (@i-aih b)b’)? and
Sulhy by )=+ ht+bt2)"* 1 [(1+(4b—h2)t2)(1+t)"€ Z[[t]]. Then, we have
the following lemma. g.e.d.

Lemma 4.4. Assume that a triple (h, b,n) is admissible and
b=+0, then

(i) h and b are positive integers with h2=b.
(i) x(fu(h, b, n))>0  if 0Zign-—1.
(i) gu-1(fu(h, b, D)=c,_4(h, b).

(iv) ®(h, b)=0 if 0<i<n—I.

Proof. (i): Since w;2—w,,=w,4, We have
(hz—b)H2=((1)1,02—w1,1)°X=w2'0'X;0 and hng.

Since b#+0, h and b are positive integers by virtue of Proposition 2.1.

(ii) and (iii): Let X be a subvariety of Gr(n, 1) with which the
triple (h, b, n) is associated. And let Ty (resp. Tg,(,;)) be the tangent
bundle of X (resp. Gr(n, 1)). Then, there exist the following exact
sequences of vector bundles,

0— Ty — TGr(n.1)|x_—* N—0

v n+1 v
0— E(n, 1)Q@EMn, 1) — @ E(n, 1) — Tgyn,1)— 0.

Hence, we have

e(N)=c(E)"*'|c(EQ E)e(Tyx)  where E=E(n, 1)|y.

Since ¢(E)=X +hH+bH?, ((EQE)=X +(4b—h?)H? and o(Ty)=(X +H)",
we have
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c¢(N)=(X+hH+bH?)" ! |(X +(4b—h?)H?)(X + H)".

By virtue of Lemma 4.3, we have (iii). It is easy to see that
x1(fi(h, b, ))>0 and x,_(f,(h, b, 1))>0. Since E(n, 1) is generated
by its globalsections, so is N. By the descending induction on i and
by virtue of Proposition 2.1, we can prove (ii). (iv): Since E is gene-
rated by its global sections, we have (iv) by virtue of Proposition 2.1.

g.e.d.

Lemma 4.5. Let a and B be the cmplex number such that 1—

ht+bt2=(1—a/bt)(1—ay/bt). Then,
(i) B, b)=(a"+ o1 B+ - +afmt 4 fm) /B
(i) @u(h, b)=((a* 1 —pm* )@= p)J b ™
=(sin(m+ 1)O(h, b)/sinO(h, b))/ b™  if b<h2<4b
where 0<0(h, b)=cos™1(h/2b)<7/3.
Proof. ®,(h, b) =1m(1/(1—ht+bt2))
= w1 (1 =2/ B D)1= /B 1)
=(am+oam Bt a4 ) /D™

(ii) is confirmed by easy calculation. g.e.d.

Lemma 4.6. Assume that a triple (h, b,n) is admissible and
h2<4b. And set n(h, b)=[n/0(h, b)], then we have

n(h, b)y=n.

Proof. By virtue of (iv) of Lemma 4.4 and (ii) of Lemma 4.5,
we have the result. g.e.d.

Lemma 4.7. Assume that a triple (h, b, n) is admisseble, and b=*0.
If n=3, then (h, b)=(1,1) or (2,1) or (2, 3).
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Proof. Since x,(f5(h, b, t))=7Th?—12h+5 and since

¢,(h, b)=(h?-b)2+b2,

we have
14h2 —24h+12=h*, by virtue of (iii) of Lemma 4.4. Then, we
have h=2 or 1, which implies our assersion. g.e.d.

Lemma 4.8. Assume that a triple (h, b, n) is admissible, and
b+0 If n=4, then (h, b))=(2,1) or (2, 2).

Proof. Since x3(fa(h, b, ))=15h3—44h2+50h—20—-4b<15h® and
since

c(h, b)=(h® —2hb)? +(hb)2 = h8/5

we have 75=h3 and 4=h. Therefore, it is easy to see that (I, b)=
2,1 or (2,2). q.e.d.

Lemma 4.9. Assume that a triple (h, b, n) is admissible, and
b#0. If n=5, then (h, b)=(2,1).

Proof. Since

xa(fs(h, b, ))=31h*—2h2b+7b%—5(26h>+6hb)+ 15(16h2 4 2b)
—210h+70<31h*—2h2b+7b2<36h* and since
cy(h, b)y=(h*—=3h2b+b?)2+(h?—b)?b2 + b4,

we have 36h4>b* and 6h2=b2.

When h2=4b, we have cy(h, b)=h8/16. Thus we have 36:16=h*
and 4=h. Hence, in this case 9=b.

Assume now that h2<4b. Since 6h*=b%, we have 92h and
24>b. Therefore, it is easy to see that (h, b)=(2, 1) g.e.d.

Lemma 4.10. Assume that a triple (h, b, n) is admissible. If
n=6, then 12 divides hb(h?—b+3).
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Proof. Let Y (=~P53) be a linear subspace of dimension 5 of
X=~Pr!, then by Riemann-Roch Theorem, we have

- A7 2 15 ;5 137 4 SX Lpz_opyg2
X(Ely)—x5<<l+3t+ L ) L AR Gt

_1_3_ 3]_4_2724L5_3 25))
+ (1 =3hb)t> + 57 (h* —4h?b+2b2)t* + 5(h® — Sh3b + Shb2)t

—1 +x(0(h))—4b—2hb—{-i—hzb——i—b(b+ 1)+ g (2 —b+ 3)} .

Since x(E|y) and x(@(h)) are integers, 12 has to divides hb(h?—b+3).
g.e.d.

Lemma 4.11. If n=6 and h2<4b, then there exists no admis-
sible triple (h, b, n).

Proof. Since n=6 and h?<4b, we have n(h, b)=6. Hence, we
have

M 3b<h?<4b.

We also have

?2) ¢,—1(h, b)=6b""!, by virtue of Lemma 4.5 (ii).

On the other hand we have

3) Xn—1((L+ht4+bt2)* D=y (fu(h, b, )1+ )"(1 + (4b— h?)2?)
> Ya—1(fulh, b, 1))
=c,-((h, b) by virtue of Lemma 4.4.

and

(4) Xn—l((l +ht+bt2)"+l)<Xn—1((l +\/Ft)2"+2)

=%t e
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Since (2":4>§4< 22i%> (when n=6), we have

(5) (22ff)§2-4"-1.
Therefore, by (2), (3), (4) and (5), we have
(6) 152b and 72h.

The following table is that of n(h, b) with the pair (h, b) which
satisfies the condition (1) and (6).

7 (h, b) n(h, b) (h, b) n(h, b)
@3, 3) 6 (6, 11) 7
4, 5) 6 (6, 12) 5_’6
5,7 9 (7, 13) 12
(5, 8) 6 (7, 14)
(6, 10) 9 (7, 15)

In the pairs (h, b) which appear in the table (7), only (6, 10),
(6, 11) and (6, 12) satisfy the condition of Lemma 4.11.

The following table shows that there exists no admissible triple
(h, b, n) with n=6 and h2<4b.

When h=6.
b n Xn—1((1+ht+be2)m*1) ¢,—1(h, b)
10 6 52, 8696 = 6-10°
10 7 650, 3168 =10-10¢
10 8 7950, 8736 =10-107
10 9 9, 6855, 3120 =10.108
11 6 57,2166 > 6.11°
11 7 720, 2104 > 6.11°6
12 6 61,6896 = 6.125

(cf. Lemma 4.5. (ii)) g.e.d.
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Lemma 4.12. If n=6 and h?=4b, then (2,1,n) is the only

admissible triple with b=0.

Proof. Let a be a positive number such that

Lht+bi2=(1+ayB0(14-yB1) with azl.

Then by virtue of Lemma 4.5, we have

2
() ¢y (h b)>®,_ (h b)?> (a™! +om=3)2pn=1 =<1 +;12—) (a2b)r1,

On the other hand we have

(€))

and

(10)

An— (1 +ht+bt2)" 1 /(1 +(4b— h?)t?))
=Xn—l(fn(h’ b’ t)(l +t)”)
>Xn—l(fn(h’ bs t))

=c,-(h, b) by virtue of Lemma 4.4

Xn—1((L+ht+bt2)"+1[(1 4+ (4b— h?)12))

et Bn (15 1= (e o))
i+j+zzl:'=n—1<n-l!- 1)(;;-}- 1) fli_"(a —%)2"[,%1
(B0 nZ (1T v

n+1 —_
<(1+55)" 2B

IIA

By (8), (9) and (10), we have

(1 +O(L2)"_1 >(ayB)

Since "1./2 <5,/2 <1.15, we have
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(11) 23(1+ 5 )>J5

Since (1—-&12—>a\/7)_=\/m, we have
23>23(1- 1 )> 745

Therefore, we have h2—4b=0 or 1 or 4 or 5. In the case when
h?—4b=35, (h, b) does not satisfy the condition of Lemma 4.10. Only
(h, b)=(6,9), (4, 4), (2, 1), (7, 12),(5, 6),(3,2) and (4, 3) satisfy (11) and
h*—4b=0 or 1 or 4.

Case 1. When (h, b)=(3, 2). We have

Xn—l(fn(3s 2, t))=Xn—1((] +2t)"+1(1 —t)_1)<3"+1 and
13, 2)>d,_((3,2)2>(2" 1 42772 42173)2 > 3. 32072

Hence, a triple (3, 2, n) is not admissible if n=6.
Case 2. When (h, b)=(4, 3). We have

Y=t (fuld, 3, 0) = x,— (143" (1 +2)(1 *412)")<-"T'6"“ and
Cai(d,3)> B, (4, 3)2> (301 43072 431325091,

Hence, a triple (4, 3, n) is not admissible if n=6.
Case 3. When (h, b)=(7, 12). We have

Xn— 1(fn(7» 123 t))<Xn- l((1 +7t+ 12t2)"+1(1 - 12)_1)

<tn-1 (14402 2(1—12)71)

n—1 2n+2 >
<4 i;o n—l—2i

n—1. 1 D2n+2 _42n—1
<4 T 2 =4 .
"On the other hand we have

2\ 2
ey (1, 12)>d,_, (7, 12)2=(4~—3")2=4"(1—(%) ) >4t
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Hence, a triple (7, 12, n) is not admissible if n=6.
Case 4. When (h, b)=(5, 6). We have

Tn-1(fu(6, 5, D) =4 (1 +20" 1 (143" 1 (1 =127 (1 +0)7")

- X"_l( i+j§u—l(l +t)—l<n-;-l><n-;l >><

(|+t)il+1—i—j2jti+j>
<3 <n-|.-1>2,,+1+ ¥ <n+l><n-i.-l>2,,
jsn—1 J jsn-2 1 J

n+l n+j) n—1 <n+l)<n+[> n—2
+j§§:—3< 2 )( 1 2 +i+j'§;,_1 2 j 2

<4n+l +(n+1)22”“+n(n—l)22"+23".
On the other hand we have
Cn— 1(5’ 6)>¢n—-l(5? 6)2+(pu-3(5’ 6)262

=(3n__2n)2+(3:1—2_2n—2)262
2 2

> < .132n “~ .22n—4g42

23 3 +—*3 3 62.

Hence, it is easy to see that

Xn—l(fn(ss 6a t))<cn—l(5’ 6)'

Therefore, a triple (5, 6, n) is not admissible if n=6.
Case 5. When (h, b)=(2,1). We have

Humr(F2 1, D) = ey (140 2) = o+ D(n+2)

On the other hand we have

[(n—1)/2]
Cn—l(z’ l)= ZO <pn—l—2i(2’ 1)2

i=

[(n=1)/2] 1
= Y (n—2i)? =-6—n(n+ )(n+2).

i=
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Hence, a triple (2, 1, n) satisfies the condition (iii) of Lemma 4.4
for any n. It is easy to see that a triple (2, I, n) satisfies other con-
ditions of Lemma 4.4.

Case 6. When (h, b)=(4,4) or (6,9). Let h=2(a+1) and b=
(a+1)? where a=1 or 2. Then, we have

Xn—1(Su(hy by D) =1, (1+(@+ DD 2(14+1)7")

n—1
=X”—1 ( z (2ni+2>(l +t)n+2—iaiti>

i=0

S 2n42\ n+2—-i0 )
=g (M)
On the other hand we have
¢u—1(h, B)=b""1c,_4(2, 1)

=@+ 122 "1?)

=(l+a)~'(1 +a)2n-1<n-3i-2)
51t B 112)
SE( e

Since (2”;‘)(”ng)—(z”l.*z)(:f%:;)go (=0 if and only if i=0),

cn—l(h’ b)>Xn—1(fn(h, bs t))

Hence, triples (4, 4, n) and (6,9, n) are not admissible if n=6.
q.e.d.

By virtue of Lemma 4.7, Lemma 4.8, Lemma 4.9, Lemma 4.11
and Lemma 4.12, Theorem 4.1 is proved.
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§5. (n—1)-dimensional projective spaces in Gr(n, 1)

Let (xq, Xy5..., X,) be a system of homogeneous coordinates in
P" When

aoyo, ao’l,..., ao’"

al,o, al’l,..., al n

ad’o, ad, 19eees ad’"

is a (d+1, n+1) matrix of rank d+1, we denote by the same symbol
A the element of Gr(n, d) which represents the d-space in P" spanned
by (d+1)-points (g0, Ao,15+++> Ao,n)s (A1,05 A1, 150005 A1 p)seees (Aa05 Ag15e- -5 Ay p)-

For any i with 0<i<d, we define a morphism f}, from P"¢
to Gr(n, d) by the following way.

fi,d((xo’ Xirenes xn-d)) =

1, 0, .., O
0, 1, .., O

i+1

ey Xy—q )
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Let X! ,=f% j(P"9). 1t is easy to see that Xi , is biregular to P"7¢
and that Xi, and X}, are projectively equivalent to each other if
and only if i=}j.

As mentioned in §1, there exists a canonical dual biregular mor-
phism ¢: Gr(n, d)—>Gr(n,n—d—1). We denote ¢(X:,) by )}f,,,,.
The aim of this section is to prove the following Main Theorem.

Theorem 5.1. Let X be a subvariety of Gr(n, 1) which is bire-
gular to P""'. Then,

(i) When n=3, X is projectively equivalent to some one of
X9,1, X34, X9,, and X} ;.

(i) When n=5, X is projectively equivalent to either X9, or
X!,

In order to prove Theorem 5.1, we need some preliminaries.

Lemma 5.2. Let X be a subvariety of Gr(n, 1) which is bire-
gular to P""' (n=3). Assume that a triple (h,0,n) is associated
with X. Then, X is promecitvely equivalent to X9 . Consequently
h=1.

Proof. Set E=E(n, 1)y. Since cy(E)=X'w,,=0, we have, by
virtue of Lemma 2.4

Ex0y® (line bundle).
Hence, there exists a point P in P” such that
X cQ,,(P)={xeGr(n, DIL e P}xP""1.

Therefore, X =Q,,(P) and this is projectively equivalent to X924
g.e.d.

Lemma 5.3. Let X be a subvariety of Gr(n, 1) which is biregular
to P~ (n=3) and let E=I§(n, Dly. Assume that the triple (2,1, n)
is associated with X. Then
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E=0x(1)® 0x(1).
In order to proof Lemma 5.3, we need following lemmas.

Lemma 5.4. Let E be a vector bundle of rank 2 on P2, Assume

that E is not simple® and wuniform vector bundle. Then, E is
decomposable. (cf. [11], Theorem 4.10 or [7])

Lemma 5.5. Let E be an indecomposable and almost decompo-
sable  vector bundle of rank 2 on a variety Y with dimY=2. Then
there exists a line bundle L such that

(i) h%E®L)=1

(i) h°(E®L)=ho(det(E®L))>0.
(Schwarzenberger [7]).

Proof of Lemma 5.3. When n=3. Since E is generated by its
global sections, for any line / in X=~P2, E|,=0()®0,1) or
E|,=0(2)®0,. Suppose that for any line / in X, E|,=0,2)®0,,
i.e. E is uniform. Since c¢,(E)?2—4c,(E)=0, E is not simple (cf [7]).
Hence, E is decomposable by virtue of Lemma 5.4. Hence, E=04(2)
@0x. This contradict the fact that c,(E)=1. Therefore, there exists
some line / in X, such that E|,=0,(1)®0,(1).

We now assume that n=3. By induction on n and by the fact
we proved in the above, we may assume that there exists a hyper-
plane H of X ~P""!, such that

E|lg=04(1)®04(1). Since, for any integer m, the sequence

00— E(m—1) — E(m) — Oy(m+1)®Oy(m+1) — 0

is exact, it is easy to see that °(E(m))=h'(E(m))=0 if m< —2. Hence,
we have ho(E(—1))=2. Since (E(—1)*)=E(—1)@det(E(—1)*)=E(—1),
E is an almost decomposable vector bundle. Since h°(E(—1))=2 and

5) Avector bundle E is said to be almost decomposable or not simple if and only if
dim HY(X, EQE)>1.
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h°(E(—2))=0, it is easy to see that E is a decomposable vector bundle
by virtue of Lemma 5.4. Therefore,

E=0x(l )(“B@x(l). q.e.d.

Lemma 5.6. Let X be a subvariety of Gr(n, 1) which is biregular
to P""1(n=3). Assume that the triple (2,1,n) is associated with
X. Then X is projectively equivalent to X} ,.

Proof. Set E=}§(n, D|x. By virtue of Lemma 5.3, we have E=
0x(1)®0x(1), whence X is given by the exact sequence

00— Ox(—1)POx(—1) 2> %1(9,( — (quotient bundle) — 0

v
This exact sequence is factered through ¢j: 0 — 0,((—1)-—"(-'_’90,\(
(i=1, 2) such that ¢=¢,+¢,, where

0—0x(—1) ° ‘('!"30x

?1 (\ l
0 — 04 (= D@®Oy(~1) 0 ® 0y
0 0x(—1)——>®0x

These ¢; gives a linear map
Y XxaPr !t — P (i=1,2).

Since ¢ is injective, ¥ ,(P)+y,(P) for any point P of X, and
X={xeGr(n, 1)|PeX, L, is a line passing through

¥1(P) and Y(P)}.

Therefore, in order to cmoplete the proof, we have only to prove the
following lemma.

Lemma 5.7. Let A and B be hyperplanes of P" and y: A-B
be a linear map such that P+y(P) for any point P of A. Then,
we can choose suitable coordinate system of P" such that
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(i) A={points with x,=0} and B={points with x,=0}

() Y((x0s X15eees Xp— 15 0))=(0, X0, Xysuees Xy ).

In order to prove Lemma 5.7, we need the following definition
of A-system and Lemma 5.8.

Definition. (I): A system of six points of P" expressed in the

P}
form P} P} is called a A-system of size 2 if and only if
P} PY PY

(i) P, P and P9 span a linear space of dimension 2.

(ii) Py e P3P where P3 P} is the line passing through P}
and P? and P+ P3 and Py+ P?: similarly P! e P9 PJ and P!+ P9
and P}+ Pj.

(i) P3=P§ P§n Pi PY.

(I1): When m=3, system of (m'2"2> points of P" expressed in
Py
P?)l-l Prln—l
the form
Py P} - Py
Py P9 - Po

or in the form {P0<i,j, i+j<m}, is called a A-system of size m
if and only if

(i) P, PY,..., P% span a linear space of dimension m.

Pan—l Pl{l—l
P73—2 Pr]n—2 Pr{l—l Prél*Z
(ib) - . and < . are
P(S P% : PI}I—Z P} Pé . Pl}l—l
P3Py - Py P} P§ Py

A-systems of size m—1.



448 Hiroshi Tango

0
(iii) Py~t Pn=l s a A-system of size 2.
Py Py P

Lemma 58. (I): Let P§, P%,..., P%; Py, Pi,..., PL_, be 2m+1
points of P" such that

(i) P9, PY,..., PS span a linear space of dimension m.

(i) P}ePPP),,, P}+P? and P!+P%, for any i with 0<
i<m-—1.
Then, there exists a completely determined one A-system {Pil0<i,
Jj,i+j=m} of size m such that P§, PY,..., P%; P§, Pi,..., P._, are
its bottom row and its second bottom row, respectively.

(D: If {Pi|0<i,j, i+j<n} is a A-system of size n in P".
Then

(i) P3, PY,..., P2, Py are in general position, i.e. any subset of
n+1 points of {P§, PY,..., P3, P§} spans P".

(ii) if we choose coordinate system of P" such that P3=(1,0,...,
0), P9=(0,1,0,..,0),..., P9=(0,...,0,1) and Pi=(l,1,...,1), then
Py t=(,1,..,1,0) and P7"1=(0, 1,...,1)

(II): Let A and B be linear spaces of P" and Y:A—B be
a linear map. Let {Pi|0Zi,j, i+j<m} be a A-system of size m in
A. Then, the A-system of size m in B determined by 2mx1 points

3=y(P3), QY =yY(PY), ..., Qn=y(PR); Q6 =¥/(P1), Q6 =Y (P}), ..., Qp-1=

W(Ph-1) is {Qi=y(PYIOSi, j, i+j<m).

Proof. 1t is easy. q.e.d.

Proof of Lemma5.7. Let Ay=A and By,=B, and we define
inductively A4;=B;_;NA;_; and B;=y(4)(1=ign—1). Since ¥ has
no fixed point, 4;%+B;. Hence,

dim4;=dimB;=n—1—i.

Set P9=B,_; (which is a point of Pr). We define inductively
P)=y~1(P%,). Then, it is easy to see that P?, P{ ..., P span
B;_,, that P3, PY,..., P9_, span A, and that P§, P},..., P} span P".
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Fix a point P} on the line P§ P} such that P}+P§ and P§+P?,
and we define inductively

P} =y(P}.,) where 1=Zisn—1.

Then, by virtue of Lemma 5.8, there exists a A4-system {Pil0<4, J,
i+j<n} of size n. Since Y(P9)=P%, (0=j<n—1) and Y(P})=Pj;,
(0<j<n-2), we have Y(Py')=Py~!, by virtue of Lemma 5.8 (II).
We choose a system of coordinate P" such that P§=(l,0,...,0),
P2=(0,1,0,...,0),..., P$=(0,0,...,0,1) and P§=(1,1,...,1). Then, we
have (1, 1,...,1, 0)=(, 1, 1,...,1), by virtue of Lemma 5.8 (I).
Therefore, we have

Y((Xgs X1seees X1, 0)=(0, X, Xq,.00y X,u_1). g.e.d.

Lemma 5.9. Let X be a subvariety of Gr(3, 1) which is biregular
to P".

(i) Assume that the triple (1,1, 3) is associated with X. Then,
X is projectively equivalent to )?g,,.

(ii) Assume that the triple (2,3, 3) is associated with X. Then,

X is projectively equivalent to /\V’é'l.

Proof. (i): Set E=I§(3, 1)|x. There exists an exact sequence of
vector bundles

~ 4
00— E— @0y — Q —0

where 0=0(3, 1)|x. Then, X is the dual space to the space defined
by the exact sequence

v 4
0—Q— ®0y— E—0.

Since ¢,(Q)=®,(E)=0, we have the result by virtue of Lemma 5.2.
(ii): By the same way as in (i), we can prove (ii) q.e.d.

By virtue of Theorem 4.1, Lemma 5.2, Lemma 5.6 and Lemma 5.9,
Theorem 5.1 is proved.
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§6. On the family of lines lying on a non-singular quadric
three fold

In this section we assume that the characteristic p of k is not
equal to 2. Let S be a non-singular quadric hypersurface of P4,
and let

X(S)={xeGr(4, 1)|S>L,}=Gr(4, 1).

In this section we shall show the following two theorems.

Theorem 6.1. (i) X (S) is biregular to P3.
(i) X, S) and X,/(S') are projectively equivalent to each other,
for any two non-singular quadric hypersurface S and S’ of P4,

Theorem 6.2. Let X be a subvariety of Gr(4, 1) which is biregular
to P3. Then, X is projectively equivalent to some one of X3 ;, X}
and X/S) where S is a non-singular quadric hypeersurface of P*.

In order to prove Theorem 6.1, we need the following lemmas.

Lemma 6.3. Let S be a non-singular quadric hypersurface of
P+ and let L,,L, and Ly be three distinct lines which lie on S.
Then,

(i) S contains no linear spaces of dimension 2.

(ii) No linear spaces of dimension 2 contain L;UL,U L;.

(iii) Assume that Ly, L, and Ly span P* and L,nL,+¢. Then,
LinLy=¢ and LynLy=¢.

(iv) Assume that LynL,=¢, then for any point P on L,, there
exists only one point Q on L, such that PQcS where PQ is the
line which passes through P and Q.

(v) Assume that Ly L, and L, span P*, then there exists only
one line which lies on S and has a common point with every one of
L,, L, and L,.

(vi) For any line L, which lies on S, there exist three distinct
lines L,,L, and Ls which satisfy the following three conditions
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(a), (b) and (c¢). (a): L,, L, and L; lie on S. (b): Lg, L;, L, and
Ly span P* (c): LonL #¢, LinLy*+¢, LynLy+¢, LoNLy=¢, LoN
L3=¢ al‘ld LlﬂL3=¢.

Proof. (i): If S contains a linear space of dimension 2, S must
have a singular point, which is not the case.

(ii): Since degree S=2, the proof is easy by virtue of (i).

(iii): It is obvious.

(iv): Let H(L{, L,) be the hyperplane spanned by L, and L,.
It is easy to see that Sn H(L;, L,)®a cone and SnH(L,, L,)* two
planes. Hence, Sn H(L,, L,)~P!xP!. And there exists an isomor-
phism f:P!'xP!—>SnH(L,, L,) hwich satisfies the following con-
ditions:

(@): L,=f(P'x(1,0) and L,=f(P! x (0. 1)),
(B): {lines lying on SnH(L,, L,)}
= {f(P'x P)PeP'} U(f(QxP1)|QeP}.

Hence, (iv) is obvious.

(v): Since Ly, L, -and L; span P#, we may assume that L,nL,=
¢. Let f;P'xP'>SnH(L,L,) be as above. Since Ly¢H(L,, L,),
Lyn(H(Ly, L)n S)=Lyn H(L,, L,) is one point, say f((P,, P,)), then
L=f(P,xP") is unique line which satisfies (v).

(vi): There exists a general hyperp]aﬁe H such that HbL, and
SNH is a non-singular "quadric surface. Hence, SNH~P!xP!.
Since Lon(SNH)=L,nH is one point, we can take two lines L,
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and L; such that L, and Ly lie on SNH,L,nLy=¢ and Lyn L, +¢.
There exists a line L, which lies on SNH and L,nL,+¢,L,nLy+¢
and LonL,=¢, by virtue of the proof of (iv). It is easy to see
that the three distinct lines L,, L, and L; satisfy the conditions (a),
(b) and (c). q.e.d.

Lemma 64. Let S and S’ be two non-singular quadric hyper-
surfaces of P* and let Ly, L, Ly, and Ly (resp. Ly, Ly, L5 and Lj)
be four distinct lines which lie on S (resp.S’). Assume that Ly, L,,
L, and Ly (resp.Ly. Ly, Ly and L%) span P* and that LonL,%¢.
LinL,*+¢,L,nLy+¢, LonLy=¢, Lo N Ly =¢ and L, nLy=¢ (resp.

oNLyF+Ed, LinLy*d, LynLy+¢, LonLy=¢, LonLy=¢ and Ly n
4=¢). Then,

(i) There exists a linear map o:P*—-P* such that o(S)=S'
and o(L,)=L} for all i=0,1,2, 3.

(ii) In particular X,S) and X/(S') are projectively eauivalent
to each other.

Proof. Set P{=L,nL,, PI=L,nL, and PY=L,nL,

Take P the point on L, such that PJ P{cS and take P3
the point on L; such that P} P{cS (cf. Lemma 6.3. (iv)). Choose
a point P} on L, such that P{+PJ and P§+P9. Then, there exist
three points P!, P} and P} such that PleL,, PteL,, PieL,, P} P}
cS, P} PlcS and P! PicS.

Pl
~ ng
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It is easy to see that 9 points P§, P9, P3, Py, PY; P}, Pi, Pi, P} satisfy
the conditions of Lemma 5.8 (I). Hence, there exists a A4-system
{Pil0<i,j, i+ j<4} of size 4 such that P§, P9, P}, P}, P} form
its bottom row and P}, P}, Py, Py form its second bottom row.
Similary we can define a A4-system of size 4 {PY|0<i,j,i+j<4}
such that PY'=LynL,, Py=L,nLy PY=L,nLs PYelL, Py Py
cS', Py €Ly PV PYcS', Py PY'cS', Py Py'cS’ and P PLcS'.

0
PO' /P4
0N -
~ e
\\ //
\\ // Ll
L ~ - 3 ,
- 0 \></ P%
Pl s — —— — — ;—_._\ ——————— 11—
0 ~ - ~ -
~ - ~ -
< SN
-7~ RS
\ — ~ o _- ~
Py 3
3

0°
P?

Since P}, P9, PY, P§, P and P§ (resp. Py, PY', PY’, P, PY') and P}
are in general position, there exists a linear map o¢:P%—P* such
that o(P§)=P%' and o(P?)=P9" for all i=0,1,2,3,4. Therefore,
o(Pi)=Py for all i,j with 0<i,j, i+j<4. Since o(L,)=Lj, o(L,)=L1,
o(Ly) =Ly, o(P§ P3) =Py Py and o(P§ P})= Py Py, o(Sn H(L, L))
n(S’' n H(Ly, L,)) contains 5 sidtinct lines where H(L,, L,) (resp. H(Lj,
5)) is the hyperplane spanned by L, and L, (resp. Ly and Lj).
Since degreea(S n H(L,, L,))=degreeS’ n H(L},, L3)=2, this shows that

o(SnH(Ly, Ly))=S"nH(Ly, L3).
Similarly we have
o(SnH(Ly, L3))=S"nH(Ly, L3) and
o(SNH(L,, Ly))=S"n H(L}, L3).

Since degree o(S)=degree S'=2 and since a(S)N S’ contains three dis-



454 Hiroshi Tango

tinct quadric surfaces, we have o(S)=S'. q.e.d.

Corollary 6.5. X,(S) is a complete non-singular variety of dimen-
sion 3.

Proof. Since S is complete variety, so is X, (S). For any general
hyperplane H of P4, SnH is non-singular quadric surface. Hence,
dim X (S)n Q, ;(H)=1. Since codimQ, ;(H)=2, we have dim X, (S)=3
by virtue of Lemma I.1. For any two points x and y of X,S), there
exists a biregular mapo; Gr(4, 1)>Gr(4, 1) such that (X, (S))=X,(S)
and a(x)=y, by virtue of Lemma 6.3 (vi) and Lemma 6.4. This shows
that X (S) is non-singular and that every irreducible component has
same dimension. Assume that X (S) is reducible, and let X, and X,
be two distinct irreducible components of X, (S). Since X (S)~mw,
for some suitable m as a cycle of Gr(4, 1), we have X,~myw,  and
X,~myw,, where m; and m, are ‘some suitable positive integers.
Since (X X,)=m;m,>0, we have X,n X,+¢. But this contradict
the fact that X (S) is non-singular. Therefore, X, (S) is a complete
non-singular variety of dimension 3. q.e.d.

Lemma 6.6. Let S be a non-singular quadric hypersurface of
P4, Then, (X(S)w,,)=4.

Proof. Llet S, be the non-singular quadric hypersurface of P*
defined by the homogeneous equation

X0X2+X1X3+Xi=0.

Let A, be the hyperplane of P* defined by X,=0 and let 4, be the
line of P4 which passes through two points (1,0,0,0,0) and (0,0, 1,

_(1,0,0,0,0 _(1,0,0,0,0 _(0,1,0,0,0
O’ O). And ]et XI _<09 1, 0’ 0, O)’ x2_<0’ 03 0’ 19 O ’ x3_<0’ 0’ l’ 0’ 0>

and x4=<8: 8: (1): (]): 8> be the four points of Gr(4, 1). Then, we have

X (So) N Q2 3(Ag, Ay)={x;, X3, X3, X4} .
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Hence, there exists four positive integers cy, ¢y, c3 and c, such that
Xy(So) @y 3~eixy+CX+C3X3+Caxy.

Now we shall show that ¢, =c,=c3=c4=1. Set

_ (1,0, uy, us, u4) }
Uo,,_{ 6] Uty e Gra, 1)

be the affine open set of Gr(4,1). U,, is biregular to
A% ={(uy, us, Uy, V3, V3, U4)}.
Then, the defining ideal of X, (So)n Uy, in Uy, is
(uy+u2, v5+03, vy+u;3+2uu0,)R

where R=k[u,, us, ug, v, 3, v4]. And the defining ideal of @, ;(A,,
A)NUy,y in Uy, is

(us, uy, vy)R.

Therefore, it is easy to see that ¢, =1. Similarly we have ¢, =c;=c,=1.
Since Q,;=w,,, this shows that

(Xq(so)'w2,1)=4-
Since X,(S,) and X (S) are projectively equivalent to each other,
(X[(S) w;,,)=4. g.e.d.

Lemma 6.7. Let S be a non-singular quadric hypersurface of
P%. Denote by H, the subset {yeX (S)IL,nL,+¢} of X/(S) for
any point x of X,/(S). Then, we have

(i) H, is an ample divisor.

(ii)) H, and H, are linearly equivalent to each other for any
two points x and y of X,(S).

(i) H2=1.
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(iv) dimH°(X(S), 0(H,))=4.

Proof. 1t is easy to see that H, is a divisor. Fix two points
x and y of X (S) such that L,nL,+¢. Now we shall show that

X,(S) @, o~H,+H,.

Set x=x,, and y=x,,. We can choose four points x,, X, ,, X3,
and x;, of X,S) usch that L,, nL,, *¢, L,  NL, ,+¢ and

Ly, ,»Ls,,, and L. span P* for all 1<ij,i, i3<2. Since

X()n2uL,, L, )={H,, ,H,, forall j=1,2,3

where L, L, ,
by L, , and L

is the linear space of dimension 2 which is spanned

x;,» We have

Xq(S)'Qz,4(L ij_z)~cj,1HXJ,1 +CJ',2H

Xjs1 Xje2

where ¢;,; and c¢;, are positive integers. Since Q,,=w;,, ¥},0=
2w, +w;,0 and (X,(S) w;,0)=0, we have

(M 8=(X,(S) 2w,,1) =(X(S) w3,0)
=(C1,1Hx1, 1 +cl,2Hx1,z)'(c2,1HXz,1 +c2,2sz,z)'
'(C3’1Hx3.]+C3’2Hx3.z) in Xq(S)

=Z¢'1,i,¢'2,i,¢'3,i3H H. H.

X1,i177%X2,1277X3,i3

1 éib i2’ i3§2

Since L,, ,,, L and L

4
2,02 s.: SPan P4, we have

H =1

Hxl.il'sz.lz' X3,i3 =

by virtue of Lemma 6.3 (v). This and the formula (1) show that
cy,1=¢;,=1 and

=1.

(2) HJH,l.HX Hx3,|_

2,1
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Now we shall show (ii). For any points x and y of X,(S), there
exists another point z of X,(S) such that L,nL,+¢ and L,nL,%+¢.
Hence, we have

Hx+Hz~Xq(S)'wl,0~Hy+Hz°

Therefore, we have that H, and H, are linearly equivalent. (i) and
(iii) follow easily from (ii) and (2) and the fact that w, o is an ample
divisor of G,(4, 1).

Next we shall show (iv).

We can choose four points x, y,z and w of X,(S) such that
L.nL,=¢, L.nL,=¢, L,nL,*¢, L,nL,*¢, L,nL,*¢ and L,n
L, L,*¢. Then, H.nH,nH,nH,=¢. Since
H, is an ample divisor, This shows that

L, L,
L, dim HO(X (S), O(H,)) 4. q.e.d.

Lemma 6.8. Let X be a complete non-singular variety of dimen-
sion n. Assume that there exists an ample divisor D such that D"=
I and dimH°(X, O(D))=n+1. Then, X is biregular to P" (cf.
R. Goren [2] Theorem 1).

Theorem 6.1 is proved by virtue of Lemma 6.4 (ii), Lemma 6.7
and Lemma 6.8.

Proof of Theorem 6.2. Let X be a subvariety of Gr(4, 1) which
is biregular to P3. Assume that (h, b, 4) is the triple associated with
X. Then, by virtue of Theorem 4.1, Lemma 5.2 and Lemma 5.6, we
have

(i) b=0 (in this case X is projectively equivalent to X% ,) or

(ii) (h,b)=(2,1) (in this case X is projectively equivalent to
Xi,1) or

@iii) (h, b)=(2, 2).

Then, we need only to show that X is projectively equivalent to
X(8) if (h, b)=(2, 2).
Let us consider the following diagram.
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Dr(4, 1, 0)
n/ \{
Gr(4, )oX P> S=pr,-pri'(X)

where S=pryopri'(X). Then, S is an irreducible variety. Since
XQ0,=X0;,0=X(03,0—2w;,0w,,,)=0, there exists a point P of P*
such that L. P, for any element x of X. This shows that S+P*4,
It is easy to show that dimS=3. Therefore, S is a hypersurface.
In order to complete the proof, it is sufficient to prove the following
lemma.

Lemma 6.9. Under the same notation as above, S is a non-

singular quadric hypersurface.

Proof. Let d be the degree of S. Since X'Q, ;=X'w,,,=X w0,
w,,; =4, we have d<4.

Case 1. Suppose that d=3 or 4. Let P be a point of S. Since
dim{xe X|L,>P}=1, we have

dim pryepri'(X 0 priopr3'(P)22.

We denote pryopri (X n priopr;1(P)), by Cp. Cp is finite union of
cones. And for a general point P of S, dimCp=2, and contains a
linear space of dimension2 because X-Q,;=4. Hence, for three
general points P, P, and P; of S, there exist linear spaces of dimen-
sion2 A,, A, and A; such that Cp >A4;3P; for all i=1,2,3. We
may assume that A;+A; if i+j and that A4,, A, and A4; span P*.
We denote {lines contained in A, and pass through P;} by 4. For any
point x of X, we have dimpr,opr;'(L,)=2. We denote priopr;!(L,)
by H, Since dimA4;=1 and X is biregular to P3, A;nH,+¢. This
shows that L.n A4;+¢ for any x and i, hence dimA4;nA;=1. Since
A,, A, and A; span P4, we have A;> A, N A,. This shows that
{xeGr(4, D|L,eP and L,nA,nA,+¢}cX, for any point P of S.
In particular {xe Gr(4, 1)|L,=4;} is contained in X, we denote this
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by D, Since dimD;=2 and dimD,nD,=0, X is not biregular to P3.
Therefore, d+3 and d+4.
Case 2. Suppose that d=1. Then X can be regarded as a sub-
variety of Gr(3, 1). But this is impossible by virtue of Lemma 4.7.
Case 3. Suppose that d=2 and S has a singular point. Let
W={weGr4,2)|L,=S} and let D, ={xeGr(4, 1)|[L,<L,} for any
point w of W. Then, it is easy to see that

(@) dimW=1 and dimD,=2.

(b) dim U D, =3.
weW
© v D,oX.
weW

These show that # {we W|D,cX}=o00. Hence, there exists two points
w, and w,, such that D, UD,,cX. Since dimD,,=2 and dimD,, n
D,,=0, X is not biregular to P3.

Therefore, S must be non-singular quadric hypersurface. q.e.d.
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