On the convergence of the product of independent random variables

By

Hiroshi SATO

1. Introduction

Let $\{X_k\}$ be a sequence of integrable random variables on a probability space $(\Omega, \mathscr{B}, P), \mathscr{B}_n$ be the σ -algebra generated by $\{X_k; 1 \le k \le n\}$, denote the mathematical expectation by E[] and the mathematical expectation on a set $A \in \mathscr{B}$ by E[; A].

 $\{X_k\}$ is upper semi-bounded iff there exists a positive constant K such that

$$\sum_{k} \mathrm{E}[X_k; X_k \ge K] < +\infty.$$

If there exists a positive constant K such that $X_k < K$, a.s., $k \in N$, then $\{X_k\}$ is upper semi-bounded.

Assume that $\{X_k; k \in N\}$ are independent and upper semi-bounded with nonnegative means. Then in Paragraph 2 we shall show the equivalence of the L^1 convergence and the almost sure convergence of $\sum_k X_k$ (Theorem 1). Furthermore, assume that $X_k > -1$, a.s., and $\mathbb{E}[X_k] = 0$, $k \in N$. Then in Paragraph 3 we shall show the equivalence of the almost sure convergence of $\sum_k X_k$ and the L^1 -convergence of $\prod_k (1+X_k)$ (Theorem 2). Note that if $\{x_k\}$ is a real sequence, then the convergence of $\sum_k x_k$ does not imply the convergence of $\prod_k (1+x_k)$ (for example $x_k = (-1)^k k^{-\frac{1}{2}}$). Conversely the convergence of $\prod_k (1+x_k)$ does not imply the convergence of $\prod_k (1+x_k)$ (for example $x_k = (-1)^k k^{-\frac{1}{2}} + (2k)^{-1}$). As an application in Paragraph 4 we shall give necessary and sufficient conditions for the equivalence (mutual absolute continuity) of two infinite product measures based on the convergence of marginal densities (Theorem 3).

2. Sum of semi-bounded independent random variables

In this paragraph we prove the following theorem.

Theorem 1. Let $\{X_k\}$ be a sequence of upper semi-bounded independent random variables such that $E[X_k] \ge 0, k \in \mathbb{N}$. Then all of the following statements are equivalent.

Communicated by Professor S. Watanabe, Jan. 26, 1986

- (A) $\sum_{k} X_{k}$ converges in L^{1} .
- (B) $\sup_{n} \mathbb{E}\left[\left|\sum_{k=1}^{n} X_{k}\right|\right] < +\infty.$
- (C) $\sum_{k} X_{k}$ converges almost surely.
- (D) $\sum_{k} X_{k}$ and $\sum_{k} X_{k}^{2}$ converge almost surely.

Proof. (A) \Rightarrow (B) and (D) \Rightarrow (C) are trivial. (B) \Rightarrow (C) is proved by the Doob's theorem since $S_n = \sum_{k=1}^n X_k$ is a \mathscr{B}_n -matringale (W. Stout [3], Theorem 2-7-2). (C) \Rightarrow (D). Since $\{X_k\}$ is upper semi-bounded, there exists a positive constant

K such that

(1)
$$\sum_{k} \mathbb{E}[X_{k}; X_{k} \ge K] < +\infty$$

Define

$$Y_k = \begin{cases} X_k, & \text{if } |X_k| < K, \\ 0, & \text{otherwise}, \end{cases}$$

and $Z_k = X_k - Y_k$, $k \in N$. Then, since $\sum_{k} X_k$ converges almost surely, by Kolmogorov's three series theorem the following three series are convergent.

(2)
$$\sum P(|X_k| \ge K) < +\infty$$

(3)
$$\sum E[Y_k]$$
 converges,

(4)
$$\sum_{k} \left\{ \mathbb{E}[Y_{k}^{2}] - \mathbb{E}[Y_{k}]^{2} \right\} < +\infty.$$

For every k in N define $m_k^+ = \mathbb{E}[X_k; X_k \ge K] \ge 0$, $m_k^0 = \mathbb{E}[Y_k] = \mathbb{E}[X_k; |X_k| < 0$ K], and $m_k = -E[X_k; X_k \le -K] \ge 0$. Then by the assumption we have

$$m_k^+ + m_k^0 - m_k^- = \mathrm{E}[X_k] \ge 0, \quad k \in \mathbb{N}$$

and by (1) and (3)

$$\sum_{k} m_{k}^{-} \leq \sum_{k} m_{k}^{+} + \sum_{k} m_{k}^{0}$$

converges. Furthermore we have for every k in N

$$m_k^+ + m_k^0 \ge m_k^0 \ge m_k^- - m_k^+ \ge -(m_k^+ + m_k^-)$$

so that

$$\sum_{k} |m_{k}^{0}| \leq \sum_{k} (m_{k}^{+} + m_{k}^{-}) + \sum_{k} (m_{k}^{+} + m_{+}^{0}) < +\infty.$$

Consequently $\sum_{k} m_k^0$ converges absolutely. This implies the convergence of $\sum_{k} E[Y_k]^2$ and by (4) we have

(5)
$$\sum_{k} \mathbb{E}[Y_{k}^{2}] < +\infty.$$

By Kolmogorov's three series theorem (2) and (5) imply (D).

382

(C)
$$\Rightarrow$$
 (A). For every m , $n(n < m) \in N$ we have

$$E[|\sum_{n < k \le m} X_k|] \le E[|\sum_{n < k \le m} Y_k|] + E[|\sum_{n < k \le m} Z_k|]$$

$$\le E[|\sum_{n < k \le m} Y_k|^2]^{\frac{1}{2}} + \sum_{n < k \le m} E[|Z_k|]$$

$$\le \{\sum_{n < k \le m} E[Y_k^2] + [\sum_{n < k \le m} (m_k^- + m_k^+)]^2\}^{\frac{1}{2}} + \sum_{n < k \le m} (m_k^+ + m_k^-)$$

 $\rightarrow 0$ as $n, m \rightarrow +\infty$. Therefore $\sum_{k} X_{k}$ converges in L^{1} .

3. Infinite product of independentrandom variables

In this paragraph we extend Theorem 1 to the convergence of infinite product of independent random variables.

Theorem 2. Let $\{X_k\}$ be a sequence of independent random variables such that $E[X_k]=0$ and $X_k > -1$, a.s., $k \in \mathbb{N}$. Then all of the following statements are equivalent.

- (A) $\sum_{k} X_{k}$ converges in L^{1} .
- (B) $\sup_{n} \mathbb{E}[|\sum_{k=1}^{n} X_{k}|] < +\infty.$
- (C) $\sum_{k} X_{k}$ converges almost surely.
- (D) $\sum_{k} X_{k}$ and $\sum_{k} X_{k}^{2}$ converge almost surely.
- (E) $\prod_{k} (1+X_k)$ converges and is positive almost surely.
- (F) $\prod_{k} (1+X_k)$ converges in L^1 .

Proof. Since $\{-X_k\}$ is upper semi-bounded with zero mean, the equivalences from (A) to (D) are already proved in Theorem 1. (D) \Rightarrow (E) is proved by Lemma 8 of *H*. Sato [2].

 $(E) \Rightarrow (F)$. Since we have

$$\prod_{k=1}^{\infty} E[\sqrt{(1+X_k)}] = \liminf_{n} E[\sqrt{\prod_{k=1}^{n} (1+X_k)}]$$

$$\geq E[\liminf_{n} \sqrt{\prod_{k=1}^{n} (1+X_k)}] = E[\sqrt{\prod_{k=1}^{\infty} (1+X_k)}] > 0,$$

the arguments of J. Neveu [1], Proposition III-1-2 imply (F).

(F) \Rightarrow (C). Assume that $V_n = \prod_{k=1}^n (1+X_k)$ converges in L^1 . Then, since $\{V_n\}$ is a \mathscr{R}_n -martingale, V_n converges almost surely to $V = \prod_{k=1}^{+\infty} (1+X_k)$ and we have

$$\mathbf{E}[V] = \lim_{n} \mathbf{E}[V_n] = 1,$$

so that P(V>0)>0. Since $\{\log(1+X_k)\}$ is an independent random sequence, by the 0-1 law we have

Hiroshi Sato

$$P(V>0) = P(\sum_{k} \log (1 + X_{k}) \text{ converges})$$
$$= 0 \quad \text{or} \quad 1.$$

Therefore we have V > 0, a.s..

On the other hand define

$$U_1 = 1$$
,
 $U_k = X_k V_{k-1}$, $k = 2, 3, 4, \dots$

Then $\{U_k\}$ is a \mathscr{B}_k -martingale difference sequence such that

$$\sup_{n} E[|\sum_{k=1}^{n} U_{k}|] = \sup_{n} E[V_{n}] = 1 < +\infty.$$

Define

$$v_1 = 1$$
,
 $v_k = V_{k-1}^{-1}, \quad k = 2, 3, 4, \dots$

Then for every k in N, v_k is \mathscr{B}_{k-1} -measurable and we have

$$\sup_{n} |v_{n}| \leq \sup_{n} \prod_{k=1}^{n} (1+X_{k})^{-1} \leq \frac{1}{\inf_{n} \prod_{k=1}^{n} (1+X_{k})} < +\infty, \quad \text{a.s.}.$$

Therefore by Burkholder's theorem (W. Stout [3], Theorem 2–9–4) $\sum_{k} X_{k} = \sum_{k} v_{k}U_{k}$ converges almost surely.

4. Absolute continuity of the infinite product measures

In this paragraph we apply Theorem 2 to the equivalence of two infinite product measures on the sequence space.

Theorem 3. Let $\mu = \prod_{k} \mu_{k}$ and $\nu = \prod_{k} \nu_{k}$ be infinite product measures on the sequence space \mathbb{R}^{N} , where $\{\mu_{k}; k \in \mathbb{N}\}$ and $\{\nu_{k}; k \in \mathbb{N}\}$ are probabilities on \mathbb{R}^{1} such that $\nu_{k} \sim \mu_{k}$ (equivalent) for every k in N. Then all of the following statements are equivalent.

(A)
$$\sum_{k} \left(\frac{dv_{k}}{d\mu_{k}}(x_{k}) - 1 \right)$$
 converges in $L^{1}(\mu)$.

(B)
$$\sup_{n} \int \left| \sum_{k=1}^{n} \left(\frac{dv_{k}}{d\mu_{k}}(x_{k}) - 1 \right) \right| d(\mu_{1} \times \mu_{2} \times \cdots \times \mu_{n}) < +\infty.$$

- (C) $\sum_{k} \left(\frac{dv_k}{d\mu_k} (x_k) 1 \right)$ converges almost surely (μ).
- (D) $\sum_{k} \left(\frac{dv_{k}}{d\mu_{k}}(x_{k}) 1 \right) and \sum_{k} \left(\frac{dv_{k}}{d\mu_{k}}(x_{k}) 1 \right)^{2}$ converges almost surely (μ).
- (E) $\prod_{k} \frac{dv_{k}}{d\mu_{k}}(x_{k})$ converges and is positive almost surely (μ).

384

(F) $v \sim \mu$.

In the above statements $x_k = x_k(x), k \in \mathbb{N}$, denotes the k-th coordinate of $x = \{x_k\} \in \mathbb{R}^{\mathbb{N}}$.

Proof. Define

$$X_k(x) = \frac{dv_k}{d\mu_k}(x_k) - 1, \quad x = \{x_k\} \in \mathbb{R}^N, \quad k \in \mathbb{N}.$$

Then obviously the random sequence $\{X_k\}$ on the probability space (\mathbb{R}^N, μ) satisfies te hypothesis of Theorem 2. Since the L¹-convergence of $\prod_k \frac{dv_k}{d\mu_k}(x_k) = \prod_k (1+X_k)$ is equivalent to $v \sim \mu$ (J. Neveu [1], Proposition III-1-2), Theorem 3 is a special case of Theorem 2.

DEPARTMENT OF MATHEMATICS KYUSHU UNIVERSITY

References

- [1] J. Neveu, Martingales à temps discrét, Paris, Masson & Cie, 1972.
- [2] H. Sato, Characteristic functional of a probability measure absolutely continuous with respect to a Gaussian Radon measure, J. Func. Anal., **61** (1985), 222–245.
- [3] W. Stout, Almost sure convergence, New York, San Fransisco and London, Academic Press, 1974.