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1. Summary
Bohnenblust, Shapley, and Sherman [2] have introduced a method of compar-

ing two sampling procedures or experiments; essentially their concept is that one
experiment a is more informative than a second experiment ,, a v ,S, if, for every
possible risk function, any risk attainable with , is also attainable with a. If a is
a sufficient statistic for a procedure equivalent to ,S, a >- ,, it is shown that
a v j3. In the case of dichotomies, the converse is proved. Whether > and v are
equivalent in general is not known. Various properties of > and n are obtained,
such as the following: if a > , and y is independent of both, then the combina-
tion (a, -y) > (#, y). An application to a problem in 2 X 2 tables is discussed.

2. Definitions
An experiment a is a set of N probability measures u1, . . ., UN on a Borel field

B of subsets of a space X. The N measures are considered as N possible distribu-
tions over X, and performing the experiment consists of observing a sample point
x E X. A decision problem is a pair (a, A), where A is a bounded subset of N-space.
The points a E A are considered as the possible actions open to the statistician;
the loss from action a = (a,, . . . , aN) is ai if the actual distribution of x is ui. A
decision proceduref for (a, A) is a B-measurable function from X into A, specify-
ing the action a to be taken as a function of the sample point x obtained by the ex-
periment. With every f = [al(x), . ., aN(x)] is associated a loss vector

v(f) =(fa, (x) du,** ,faN (x) duN);

the i-th component of v() is the expected loss from f if x has distribution ui. The
range of v(f) is a subset of N-space which we denote by Rj(a, A); the convex closure
of Ri(a, A) will be denoted by R(a, A) and will be called the set of attainable loss
vectors in (a, A); every vector in R is either attainable or approximable by a ran-
domized mixture of N + 1 decision procedures.
THEOREM 1. R(a, A) = R(a, A1) = Ri(a, A1), where A1 is the convex closure of A.
This theorem permits us to restrict attention to closed convex A, which we

shall do in the following sections. The proof of the theorem will not be given here;
it is straightforward except for the fact that R(a, A1) = Rj(a, A1). This fact fol-
lows from the result that whenever A is closed, so is Ri(a, A), which has been
proved elsewhere by the author [1].

Following Bohnenblust, Shapley and Sherman [2], we shall say that a is more
informative than j3, written a v ,3, if for every A we have R(a, A) n R(13, A).
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It is an immediate consequence of theorem 1 that if R(a, A) n R(O, A) for every
closed convex A, then a ,B.

3. Conditions equivalent to a

THEOREm 2. The following conditions are equivalent to a ,
(1) For every A and every v E R(fl, A), there is a v* C R(a, A) with v* < vifor all i.

(2) For every A and every choice of ci _ 0, I ci = 1,

min E ci <_ min E civi.
v( R(a,A) EyE R(A) i

(3) For every A,

min vi < min v.
vE R(a,A) vE R(8,A) i

(4) For every A,
min (max vi) < min (max vi).

vE R(a,A) i VaER(f,A) i

PROOF. The implications a D-8(1) (2) -- (3), (1) -* (4) are immediate.
We show that (3) implies a D ,3. Let d, . . . , dN be any constants, and let T
be the linear transformation Tv = (div, .. ., dNvN). Then R(a, TA) =

TR(a, A) and min E vi= min E divi, and similarly for ,3. Thus
vE R(a, TA) vE R(a,A)

(3) yields that for all A, di, ... , dN, m din v im : divi~vE R(z,A) d vi,E I?(6,A)

every supporting hyperplane of R(a, A) lies on one side of R(f3, A), so that
R(a, A) D R(,3, A). Finally, we show that (4) implies (2). For any A and any

ci> 0, ci = 1, let vo E R(,, A) be a point where E civi assumes its mini-

mum value over R(,3, A), and let U be the linear transformation Uv = v - vo.
Then

min E civi= 0= min (max v ).
vERG%,UA) i VER(, UA) i

Applying (4) to UA yields min (max vi) < O,so that min : c v <O.
E R(a, UA) i v ER(a,UA)

Thus min ci vi = ci v0i so that (2) holds.
vER(a,A) i .

4. Reduction to standard experiment
For any a, let pi(x), i = 1, . . ., N, be the density of ui with respect to Nuo =

Ul + . . . +UN, so that for any S E B, ui(S) = f Npi(x)duo. Then pi > 0,

5 pi = 1 except on a set of uo measure zero, and we may redefine pi here so that

the conditions hold identically. Let P be the set of N-tuples p = (Pl, . ., PA)
pi _ O, E pi = 1, and define, for any Borel subset of A of P, m.(A) = ui{p(x) CA },

where p(x) = [p1(x), . . . , pN(x)], so that mi is the distribution of p when x has
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distribution ui. Since p(x) is a sufficient statistic for x, considering i as the param-
eter, we would expect that the experiment a* with measures ml, .. ., mN on P is
equivalent to a. This fact was noted in [2] for the case in which the set A of ac-
tions has only a finite number of extreme points, and is embodied in
THEOREm 3. For every A, R(a, A) = R(a*, A).
PROOF. We shall use the notation f E (a, A) to indicate that f is a decision

procedure for the experiment (a, A). For anyf* = [al(p), . . . , aN(p)] E (a*, A),
define f = Ial[p(x)] . . . , aN[p(x)]}, so that f C (a, A). Since p has the same
distribution on P with respect to mi, i = 0, . . . , N, Nmo = mi + . . . + mN,
as p(x) on X with respect to ui, for any Borel function g(p) we have fg(p)dmi =

fg[p(x)Idui. Choosing g(p) = ai(p) yields v(f*) = v(f), so that R(a*, A) c

R(a, A). For the reverse inclusion, let f = [al(x), .. . , aN(x)] E R(a, A), let
a*(p) = E(ai lp), the conditional expectation of ai given p, with uo as the basic
probability measure on X, and let f* = [a*(p), ... X ak(p)]. Then for any

Borel function g(p), we havefai(x)g(p)duo =fa*(p)g(p)dmo. Choosing g(p) =

pi and using fai(x)piduo = fai(x)dui and fa*(p)pidmo = f a47(p)dmi
yields that v(f) = v(f*); it remains to show that f* e (a*, A), that is, that the
values of f* are in A. If not, there is a linear function L(a) with L(a) _ 0 for

a C A, uo{L[f*(x)] > O} > 0. ThenfL[f(x)Iduo > 0, whilefL[f*(p)]duo > 0,
where S = IL[f*(x)] > O}, so that the two integrals cannot be equal, contrary
to the definition of conditional expectation. Thus f E (a*, A), and the proof is
complete.

Thus every experiment a is equivalent in the sense of theorem 3 to be an experi-
ment a* whose outcome is a point p C P. The experiment a* is called the standard
experiment associated with a. Note that the measures ml, ... m,mN of the standard
experiment a* are completely determined by mo = (m1 + . . . + mN)/N, since
the density of mi with respect to Nmo is simply pi, and that the standard experi-
ment associated with a* is simply a*. Moreover, any probability measure mo over

P such thatfATpidmo = 1 for i = 1, ..., N is the mO of a standard experiment

a ,with ml,... , mN defined by mi(S) =Nfpidmo; the class of standard experi-
ments is essentially equivalent to the class of probability measures over P with mean
(1/T, ... , 1/N). The mo of the standard experiment of an experiment a will be
called the standard measure of a; for two standard measures M, m of experiments
a, ,, the notation M O m means that a v ,3.
The following theorems, proved in [2], are valuable tools in the actual compari-

son of two experiments.
THEOREm 4. For two standard measures M, m, M D m if and only if for every

continuous convex g(p), fg(p) dM > fg(p)dm.
PROOF. Let A be the convex set determined by a finite set ai = (ail, ... aiN),

N
i = 1, . . . , k, and define L2(p) = , ai,pj, L(p) = min L2(p), f(p) = ai when

ji= i
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Lj(p) > L(p), k < i, Lj(p) = L(p). Then f E (a, A) for any standard experi-
N N

ment a, and for any f* E (a, A), pjaj*(p) _ zpja,(p) for all p, so that with
j -1 j-1

v= v(f*), v = v()

N~~~~~v*. NE Jr a; (p) pjdM> N , Cai (p) pjdM

= ,, v,= NJfL (p) dM,

that is, if a has standard measure M,

min V= NJfL (p) dM.
vE (a, A)

Thus for a pair of standard experiments a, # with standard measures M, m, con-
dition (3) of theorem 2 holds for every A determined by a finite set if and only if

JL(p)dM _ fL(p)dm for every L(p) which is the minimum of a finite number

of linear functions, that is, if and only if fc(p)dM > fc(p)dm for every c(p)
which is the maximum of a finite number of linear functions. It is readily shown
by approximation that if condition (3) of theorem 2 holds for every A determined

by a finite set, it holds for all A, and that fc(p)dM > fc(p)dm for all c(p)
which are maxima of a finite number of linear functions implies the same in-
equality for all convex c(p), and the theorem follows.

THEOREm5. IfN = 2, M D m if and only if fJ FM(x) dx >_ Fm (x) d x for

all y, where FM(x) = MI pi _ x}, Fm(x) = mI pi _ xI -

PROOF. Define cv(x) = y - x for x < y, cv(x) = 0, x > y. Every convex func-
tion c(x) on (0, 1) can be uniformly approximated by a linear function plus func-

tions of the form aicyi(x), where ai > 0, so that, from theorem 4, M v m
i= 1

if and only iffc,(x)dM > fc,(x)dm for all y. Nowfcy (x) dM = fJ (y - x) dM

= JFM (x) dx, integrating by parts, and similarly forfc1(x)dm, so that the

proof is complete.

5. Sufficiency
A standard experiment a with measure M is said to be sufficient for a standard

experiment , with measure m, written a >- , or M > m, if there is a function
Q(p, E), defined for each p E P and each Borel set E of P such that (1) for fixed
p, Q is a probability measure over P, (2) for fixed E, Q is a Borel function of p, and

(3) for every E, mi(E) = fQ(P, E)dMi(p), i = 1, ... , N, where ml, . .. , MN,
M, ... , MN are the measures over P associated with m, M respectively, that is,
if there is an experiment -y over the space P1 X P2 with measures m* such that
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the distributions of pi, p2 with respect to m* are Mi, mi and that pi is a sufficient
statistic for (PI, P2) with respect to ml, . . ., m. That the second formulation
is equivalent to the first follows from an unpublished result of Doob that condi-
tional distributions of real or vector variables with respect to real or vector vari-
ables can always be defined so as to be probability measures; we shall use this fact
several times in what follows. Essentially, M > m means that, if p is the result of
experiment M, then a vector p' selected according to the distribution Q(p, E)
will be as informative as a p* resulting from experiment m, in the sense that for
each i, p' and p* have the same distribution.
THEOREM 6. M > m if and only if there is a function D(p, E) such that (4) for

fixed p, D is a probability measure over P, (5) for fixed E, D is a Borel function of

p, (6) fpidD(p*, p) = p*, and (7) for every E, M(E) = JD(p, E)dm(p).
PROOF. Suppose M > m, and let i, pl, p2 be chance variables whose joint dis-

tribution is specified as follows: i = 1, . . . , N, each with probability 1/N; the
conditional distribution of pi given i is Mi; and the conditional distribution of P2
given i, pi is Q(pi, E), a function of pi only. Then pi, p2 have distributions M, m
respectively, and mi is the conditional distribution of P2 given i. There is a de-
termination of D(p2, E), the conditional probability given P2 that PI E E, such
that for each P2, D is a probability measure over P, and for any g(pD), E(g P2) =
g(p)dD(p2, p). This D then satisfies conditions (4), (5), and (7) of the theorem,
and (6) will be proved if we show that p2io = E(plo, P2) for io = 1, . . . , N,
where pki iS the i-th coordinate of pk, k = 1, 2.
We first verify that the probability Pr{ i = iolPkP = pkio. This is equivalent to

the statement that, for any S, Pr(i = io, pi E S) = fpijdM, and a similar

statement with M replaced by m for k = 2. Since Npio is the density of Mi with
respect to M,

j';PiodM=yMi(S) =Pr{i=io}Pr{piESli=io},

and similarly for k = 2. Moreover, Pr{i = iojp2J = E{Pr(i = ioIpl, P2)1P21, so
that to show that p2io = E(p21oIP2), it is sufficient to show that E{Pr(i =

iolpl, P2)JP2} = E(p1ioIP2), and this will follow from (8) Pr{i = iojpi, P2} =

Pr{i = ioIpiI. We postpone the proof of (8).
Now suppose there is a function D satisfying the conditions of the theorem.

Let i, pl, P2 be chance variables whose joint distribution is specified as follows:
P2 has distribution m; the conditional distribution of pi given P2 is D(p2, E);
and the conditional probability that i = io given pi, P2 is plio, a function of pi
only. Condition (6) says that E(pi11P2) = p2i, so that Pr{i = ioIp2l = E{Pr(i =
io pl, P2) | P21 = E(pi, | P2) = p2i, and condition (7) guarantees that pi has distribu-
tion M. We next show that PrtPi C E i} = Mi(E), Pr{p2 C El i) = mi(E), that is,
that Pr{i = io, Pi E El = Pr{i = io)Mi(E) and Pr{i = io, P2 E El = Pr{i =

io}mi(E). SincePr{i = iojpi} = pio, Pr{i = io,p1 E El =fpiodM =Mi(E)/N;
similarly, Pr{i = io, P2 C El = mi(E)/N, so that we need simply note that Pr{i =

iol =fpiodM = 1/N, since M is a standard measure.
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Let Q(p, E) be the conditional distribution of P2 given pi. Then requirements (1),
(2) hold. Requirement (3) may be written PrI P2 C Eli} = E{Pr(p2 C Elpl) li},
orEIPr(P2 C EIP1,i)Ii} = E{Pr(p2 C EIpi)Ji} which will follow from (9)
Pr{p2 E Elp1, i} = Pr{p2 E ElplJ.

The proof of the theorem is now complete except for (8) and (9), which are
special cases of

THEOREM 7. If x, y, z are chance variables such that the distribution of z given x, y
is a function of y only, then the distribution of x given y, z is a function of y only.

PROOF. If h(y, z) is the characteristic function of a set depending only on
y, z and g(x) is the characteristic function of a set depending only on x, we must
show that E(gh) = E[E(g y)h]. We prove the equation when h(y, s) =
hi(y)h2(2); the general result follows by approximation. We have E[E(g y)hlh2] =
E{E[ghlE(h2ly)]ly1 = E[ghiE(h2ly)] = E[ghiE(h2|x, y)] = E(ghlh2). This com-
pletes the proof.

Theorem 7 asserts essentially that a Markoff chain is also a Markoff chain in
reverse, a fact noted in varying degrees of generality by several writers. The proof
given here seems particularly simple.

Theorem 6 can be restated as follows: M > m if and only if there are chance
variables pi, P2 with distributions M, m such that E(p1 | P2) = P2-

THEOREm 8. If M > m, then M D m.

PROOF. For every continuous convex g(p), fg(p)dM =f[fg(p)dD(p', p)]
dm(p'), where D is the set of measures whose existence is asserted by theorem 6.

Since g is convex, fg(p)dD(p', p) > g [fpdD(p', p)] = g(p'), so that

fg(p)dM > fg(p)dm and M n m.

Thus theorems 4 and 6 reduce theorem 8 to a special case of the fact, noted
by Hodges and Lehmann [4] and Doob (unpublished manuscript) that for any
continuous convex g and any chance variables x, y, E[g(x)] _ E{g[E(x) y] .

6. Equivalence of > and v for N = 2

In this section we consider only the case N = 2, so that P = { (pl, P2)1, pi _ 0,
pl + P2 = 1. For simplicity of notation, we denote the point (PI, P2) by the num-
ber x = pi, 0 < x _ 1, so that a standard measure becomes simply a probability
measure defined for Borel subsets of (0, 1) such that f xdM= 2. For any

standard measure M, we write FM(y) = M{x _ y}, cM(y) = f FM (x) dx.

Then CM is a nondecreasing convex function of y, cM(O) = 0, cM(l) = 2X and,
according to theorem 5, M D m if and only if cM(y) > cm(y) for all y.
A class of measures D(x, E) such that D is for each x C (0, 1) a probability

measure over (0, 1), for each E a Borel function of x, andf ydD (x, y) = x is

called a transformation T, and for any standard measure m, the standard measure

M(E) = JD(x, E)dm will be denoted by Tm. Theorem 6, for N = 2, asserts that

M D m if and only if there is a transformation T with Tm = M.
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THEOREM 9. For any sequence of transformations T1, T2, ... ,there is a trans-
formation T such that for any standard measure m, Fm.(y) -+ FTm(y) at every point
of continuity of FTm, where mk = Tk ... Tlm.

PROOF. Let Q be the space of sequences X = (xo, xi ... .), 0 < xi < 1. For
any a, 0 _ a < 1, there is a probability measure Pa, defined for Borel sets of Q,
such that Pa{xO = a} = 1 and Pa I(Xk E EIxo, . . , Xk-1)} = Dk(Xk-1, E), where
Dk is the set of measures defining Tk. Then E(xk+i xo ... , Xk) = Xk, so that,
by induction onj, E(xk+jIxo, ...., xk) = E[E(xk+jxIxo,. ., XO,Xki) IXO,. . ., xk] =
E(xk+;jiIxo, . . , Xk) = Xk for all j _ 1. Thus, xo, xi, . is a martingale; since
O < Xk _ 1, a theorem of Doob [3] asserts that there is a chance variable x
such that Xk -* x with probability 1, and that E(x xo, Xk) = Xk. Irk particu-
lar E(x) = E(xo) = a. Let D(a, E) = Patx E E}. We shall show that the set
of measures D(a, E), 0 < a < 1, is the required transformation T.

For any Borel function g(xo, ... , xk) (10)fgdPa = ff .. fg(xo ..... xk)
dDk(xk-l, x,) dD1(xo, xl)dIa(xo), where Ia is the measure concentrated at a,

so that fgdPa is a Borel function of a. The class S of sets S for which Pa(S) is

a Borel function of a is a normal class [7, p. 83] which includes all (xo, . ., Xk)-
Borel sets, so that [5, p. 83] includes all Borel sets of U. In particular, Pa{GxEE =

D(a, E) is a Borel function of a, so that D(a, E) is a transformation T. For any

standard measure m, define, for all Borel subsets S of Q, Pm(S) = fPa(S)dm(a).
Then for every g(w), fgdPm =f fgdPat dm(a). Letting g be the characteristic

function of an xk-set and using (10) shows that the distribution of Xk is mk. Also
the distribution of x is Tm, and Xk -4 x with Pm-probability 1, so that Fmk(y)
FTm(y) at all points of continuity of FTm-
THEOREM 10. ForN = 2, if M ,m, then M > m.
PROOF. We shall construct a sequence of transformations T1, T2,... such that

c_*(y) -* cM(y) for all y, where mk = Tk .. . Tim. Then cM(y) = CTm(y) for all y,
where T is the transformation whose existence is asserted in theorem 9, so that
M = Tm. For any subinterval (a, b) of (0, 1), let T(a, b) be the transformation
defined by b

D (x,E) = b Ia+b Ib for a_ x_ b,

D(x, E) = Ix for x outside (a, b) .

It is easily verified that for any measure m, CT(a,b)m = cm for x outside (a, b),
b-x x-a

cT(a b)= -- cm(a) + b c (b) for a< x_ b.

Since M D m, cM(X) _ cm(x) for all x. At any point [t1, cm(ti)] of the
curve y = cM(x), draw a tangent, intersecting y = cm(x) say at x = a1, x = b,
where a1 < ti _ bi. Then, with T1 = T(ai, b1), cT,m _ CM with equality at x = t1.
Applying the same process to y = cTim from a point [t2, CM(t2)] and continuing
in this way, using a sequence t1, t2, . dense in (0, 1), yields a sequence T1, T2,
such that cm&,(y) -+ cM(y) for all y.
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T'heorems 6 and 10 combine to yield the following partial converse of the re-
sult of Hodges and Lehmann and Doob mentioned in section 5: If M, m are stand-

ard measures in (0, 1) such that fg(x)dM _.fg(x)dm for every continuous convex g,
then there are chance variables pl, P2 with distributions M, m such that E(pl P2) = P2-
The requirement that M, m be standard measures on (0, 1) can be immediately
weakened so that M, m can be any probability measures over a bounded interval
(a, b). The extension to probability measures over (- co, co) has not been carried
out, and the extension to N-dimensional vector variables which, in view of the-
orem 6, would imply the equivalence of > and , remains unsolved. It has been
pointed out by S. Sherman that theorems 5, 8, and 10, for the special case of meas-
ures concentrated at a finite number of points, are given, somewhat disguised, in
[5, theorem 45 and associated results].

7. Combinations of experiments
For two experiments a, ,S, the combination (a, ,) is the experiment defined by

the space X X Y with the N probability measures u, X v1, . ., uN X VN, where
a -= (X, ul, ***,UN),X = (Y, VI) *.*.*. VN)-
THEOREM 11. If a*, #* are the standard experiments for a, ,, then the standard

experiment for (a*, #*) is the same as that for (a, p3).
PROOF. If Npi(x), Nqi(y) are the densities of ui, vi with respect to uo, vo, then

di (x, y) = Npi (x) qi (y) / pi (x) qi (y) is the density of ui X vi with re-

spect to wo = N-' ui X vi . The measure m for the standard experiment for

(a, ,) is the joint distribution of di, . . , dN with respect to wo. The function
Di (p, q) = Npiq1/ ppiqi is thedensityforthemeasuremiX Mion PX Qwith

respect to the measure yo = N1E mi XMi, where a* = (P1, mi1, M. ., iN)

= (Q, M1, . . . , MN), and the measure M for the standard experiment for
(a*, ,*) is the joint distribution of D1, . . . , DN with respect to yo. Now for each i,
p has the same distribution with respect to mi as p(x) with respect to ui, and
similarly for q, Mi, q(y), vi, so that (p, q) with respect to mi X Mi has the same
distribution as [p(x), q(y)], with respect to ui X vi. Since Di is the same func-
tion of p, q that di is of p(x), q(y), the joint distribution of di, . . . , dN with re-
spect to wo is the same as that of D1, . . . , DN with respect to -yo.
THEOREM 12. If a, > a2 and 1 > 2 then (a,, ,%) > (a2, 02)-
PROOF. Since > is transitive (this follows from theorem 6), we may suppose

that al = a2 = a; the general result would follow from this case, since (a,, g3) >
(a,, ,2) > (01, 92). Let a, j1, j2 have standard measures m, m', m" and let X =

P1 X P2 X PS X P4; we define a measure wi on X by the following specifica-
tions: (PI, P2) have distribution mi X mi, and the conditional distribution of
(P3, P4) for fixed pl, P2 is given by Pr{p3 E S, P4 E TJpl, P21 = g(pl)Q(P2, T),
where g is the characteristic function of S and Q is the function whose existence
is implied by B1 > 12, SO that m"(T) =fQ(p, T)dm'. Then (p3, P4) have dis-
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tribution mi X m"' with respect to wi. The standard experiments for (a, 1),
(a, 12) have measures (M1, ... , MN), (M:, . , MN*), where Mi, M: are the
distributions of d = (di, . . ., dN) and D = (Di, . . ., DN) with respect to wi,
where di = Pli, P2i/ Pli, P2i and D, = p3i, P4i/ P3i, P4i, and it is suffi-

cient to show that the conditional distribution of D given d is independent of i.
For any functionf(D), in fact for any function of (p3, P4), E(fIpl, P2) = h(pl, P2)
is independent of i, so that we need show only that E(h Id) using measure mi X m'
on PI X P2 is independent of i. Since the density of mi X m' with respect to

N fi mi X m' is di, a function of d, we conclude by Neyman factorization [4],
that d is a sufficient statistic for the N measures mi X m', so that E(h|Id) is inde-
pendent of i.

The extension of the concept of combination of two independent experiments
and of theorem 12 to the case of combination of n independent experiments is
straightforward, and we obtain that if a, > #1, i = 1, ..* , n then (al, . * , a,,) >
(01 .... ,*3,). In particular if a > 1, then the experiment yielding n independent
a's is sufficient for the experiment yielding n independent ,B's. It would be inter-
esting to know whether conversely (a, a) > (13, 13) implies a > 13.

8. Binomial experiments
If the space X consists of two points, say 0, 1, an experiment a is simply the

specification of a vector a = (a, . . . , aN), 0 < ai < 1, where ai = mi{x = 1}.
For the case N = 2, a simple computation shows that the standard measure M for
(a1, a2) assigns measures d, 1 - d to the points (Pi, 1 - pl), (P2, 1 - P2), where
d = (a, + a2)/2, pi = al/2d, P2 = (1- a1)/2(1 - d). Thus if a1 < a2, we have

=0 for0<x_p1
Cm(X)d =d (x-Pi) forpi _ x_ P2

t= d (P2-PI) + (x-P2) for p2 <_ x< 1;
if a2 _ a,, we interchange ai, a2 and replace d by 1- d in the above description.
For two binomial experiments (a,, a2) = a, (b1, b2) = b with standard meas-
ures M, m, the relation between CM and cm is geometrically clear:

a > b if and only if
min [pi(a), P2(a)] < min [p1(b), p2(b)] and max [pi(a), P2(a)] _ max [p1(b), p2(b)].

As an application of the comparison of binomial experiments, we consider the
following 2 X 2 table problem. There are two characteristics H, S, whose propor-
tions h, s, in the general population are known. Moreover it is known that the pro-
portion of HS in the general population is either hs or a definite alternative c. A
sample of size k is to be selected, after which some action is to be taken, whose
worth depends only on whether Pr{HS} = As or Pr{HS} = c. Suppose that, for
each observation, the statistician may select an individual at random from H or S
or non-H or non-S; he has a choice among four binomial experiments which we
denote by aH, as, acH, acs. If it should happen that one of these, say aH, is more
informative than each of the other three, then it follows from the extension of
theorem 12 that a sample of k individuals from H is more informative than any
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other combination of k experiments from aH, as, aCH, acs (a sample of k individuals
from H can then also be shown to be more informative than any other sequentially
selected set of k experiments from aH, as, aCH, acs, where the decision about which
of the four experiments to do next depends on the results already obtained, but
we shall not go into this).

The four experiments are aH = (s, c/h), as = (h, c/s), acH = [s, (s -c)/(1 -)],
and acs = [h, (h - c)/(1 - s)]. Computation of pl, P2 for each of the four ex-
periments and using the condition given above for a > b yields the following
conditions:
For H >S :h< s

H > CH: h < s, h+s <1

H > CS h + s _ 1

S > CS: s< h, s+ h _ 1

S > CH: h + s _ 1

CS > CH: h < s

Without loss of generality, we may suppose that h is the smallest of the four num-
bers h, s, 1 - h, 1 - s. Then aH > as > acH, aH > acs > aCH and as, acs are
not comparable unless h = s or h = 1 - s. Thus the procedure which always se-
lects the characteristic which is rarest in the general population is more informative
than any other procedure of the class considered. The experiment acH is the least
informative of the four, while as, acs are intermediate.
A second example, which suggests that for N > 2, the concept O is quite

strong (and > is at least as strong as v), is the binomial experiment (0, 2, 1) = a.
The standard measure M for a assigns measure 2 to each of Q1 = (0, 1, 2) and
Q2 = (2, 1, 0). Theorem 4 shows that the measures m c M are exactly those
concentrated on the line segment joining Ql, Q2; the binomial experiments
,B= (a,, a2, a3) whose m is concentrated on this line are those for which a2 =
(al + a3)/2. Thus a is not more informative than (0, -, 4) or than (2- e, 2, + 2e),
e > 0 for instance, and for any 0 c a, a suitable arbitrarily small perturbation
of the a's destroys the relationship.
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