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Recovery of Distributions via Moments
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Abstract: The problem of recovering a cumulative distribution function (cdf)
and corresponding density function from its moments is studied. This problem
is a special case of the classical moment problem. The results obtained within
the moment problem can be applied in many indirect models, e.g., those based
on convolutions, mixtures, multiplicative censoring, and right-censoring, where
the moments of unobserved distribution of actual interest can be easily esti-
mated from the transformed moments of the observed distributions. Nonpara-
metric estimation of a quantile function via moments of a target distribution
represents another very interesting area where the moment problem arises. In
all such models one can apply the present results to recover a function via its
moments. In this article some properties of the proposed constructions are de-
rived. The uniform rates of convergence of the approximation of cdf, its density
function, quantile and quantile density function are obtained as well.
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1. Introduction

The probabilistic Stielties moment problem can be described as follows: let a se-
quence ν = {μj , j = 0, 1, . . . } of real numbers be given. Find a probability distrib-
ution on the non-negative real line R+ = [0, ∞), such that μj =

∫
tjd F (t) for j ∈

N = {0, 1, . . . }. The classical Stieltjes moment problem was introduced first by
Stieltjes [21]. When the support of the distribution F is compact, say,
supp{F } = [0, T ] with T < ∞, then the corresponding problem is known as a
Hausdorff moment problem.

Consider two important questions related to the Stieltjes (or Hausdorff) moment
problem:

(i) If the distribution F exists, is it uniquely determined by the moments {μj }?
(ii) How is this uniquely defined distribution F reconstructed?
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If there is a positive answer to question (i) we say that a distribution F is moment-
determinate (M -determinate), otherwise it is M -indeterminate.

In this paper we mainly address the question of recovering the M -determinate
distribution (density and quantile functions) via its moments in the Hausdorff mo-
ment problem, i.e., we study question (ii). Another question we focus on here is the
estimation of an unknown distribution and its quantile function, given the estimated
moments of the target distribution.

It is known from the probabilistic moment problem that under suitable conditions
an M -determinate distribution is uniquely defined by its moments. There are many
articles that investigated the conditions (for example, the Carlemann’s and the
Krein’s conditions), under which the distributions are either M -determinate or M -
indeterminate. See, e.g., Akhiezer [2], Feller [6], Lin [10, 11], and Stoyanov [22–24]
among others. However, there are very few works dealing with the reconstruction of
distributions via their moments. Several inversion formulas were obtained by invert-
ing the moment generating function and Laplace transform (Shohat and Tamarkin
[20], Widder [27], Feller [6], Chauveau et al. [4], and Tagliani and Velasquez [25]).
These methods are too restrictive, since there are many distributions for which the
moment generating function does not exist even though all the moments are finite.

The reconstruction of an M -determinate cdf by means of mixtures having the
same assigned moments as the target distribution have been proposed in Lindsay
et al. [12]. Note that this procedure requires calculations of high-order Hankel de-
terminants, and due to ill-conditioning of the Hankel matrices this method is not
useful when the number of assigned moments is large. The reconstruction of an
unknown density function using the Maximum Entropy principle with the specified
ordinary and fractional moments has been studied in Kevasan and Kapur [9] and
Novi Inverardi et al. [18], among others.

In Mnatsakanov and Ruymgaart [17] the constructions (2.2) and (3.13) (see
Sections 2 and 3 below) have been introduced, and only their convergence has been
established.

Different types of convergence of maximum entropy approximation have been
studied by Borwein and Lewis [3], Frontini and Tagliani [7], and Novi Inverardi et
al. [18], but the rates of approximations have not been established yet. Our con-
struction enables us to derive the uniform rate of convergence for moment-recovered
cdfs Fα,ν , corresponding quantile function Qα, and the uniform convergence of the
moment-recovered density approximation fα,ν , as the parameter α → ∞. Other
constructions of moment-recovered cdfs and pdfs (see, (3.13) and (3.14) in Re-
mark 3.2) were proposed in Mnatsakanov [13, 14], where the uniform and L1-rates
of the approximations were established.

The paper is organized as follows: in Section 2 we introduce the notation and
assumptions, while in Section 3 we study the properties of Fα,ν and fα,ν . Note that
our construction also gives a possibility to recover different distributions through
the simple transformations of moment sequences of given distributions (see The-
orem 3.1 in Section 3 and similar properties derived in Mnatsakanov [13]: Theo-
rem 1 and Corollary 1). In Theorem 3.3 we state the uniform rate of convergence
for moment-recovered cdfs. In Theorem 3.4 as well as in Corollaries 3.2 and 3.5 we
apply the constructions (2.2) and (3.11) to recover the pdf f , the quantile function
Q, and the corresponding quantile density function q of F given the moments of
F . In Section 4 some other applications of the constructions (2.2) and (3.11) are
discussed: the uniform convergence of the empirical counterpart of (2.2), the rate of
approximation of moment-recovered quantile function (see (4.4) in Section 4) along
with the demixing and deconvolution problems in several particular models.
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Note that our approach is particularly applicable in situations where other esti-
mators cannot be used, e.g., in situations where only moments (empirical) are avail-
able. The results obtained in this paper will not be compared with similar results
derived by other methods. We only carry out the calculations of moment-recovered
cdfs, pdfs, and quantile functions, and compare them with the target distributions
via graphs in several simple examples. We also compare the performances of Fα,ν

and fα,ν with the similar constructions studied in Mnatsakanov [13, 14] (see, Fig-
ures 1 (b) and 3 (b)). The moment-estimated quantile function Q̂α and well known
Harrell-Davis quantile function estimator Q̂HD (Sheather and Marron [19]) defined
in (4.6) and (4.7), respectively, are compared as well (see Figure 2 (b)).

2. Notation and Assumptions

Suppose that the M -determinate cdf F is absolute continuous with respect to the
Lebesgue measure and has support [0, T ], T < ∞. Denote the corresponding density
function by f . Our method of recovering the cdf F (x), 0 ≤ x ≤ T , is based on an
inverse transformation that yields a solution of the Hausdorff moment problem.

Let us denote the moments of F by

(2.1) μj,F =
∫

tjd F (t) = (KF )(j), j ∈ N,

and assume that the moment sequence ν = (μ0,F , μ1,F , . . . ) determines F uniquely.
An approximate inverse of the operator K from (2.1) constructed according to

(2.2)
(

K −1
α ν

)
(x) =

[αx]∑
k=0

∞∑
j=k

(−α)j−k

(j − k)!
αk

k!
μj,F , 0 ≤ x ≤ T , α ∈ R+,

is such that K −1
α KF →w F, as α → ∞ (see, Mnatsakanov and Ruymgaart [17]).

Here →w denotes the weak convergence of cdfs, i.e. convergence at each continuity
point of the limiting cdf. The success of the inversion formula (2.2) hinges on the
convergence

(2.3) Pα(t, x) =
[αx]∑
k=0

(αt)k

k!
e−αt →

{
1, t < x,

0, t > x,

as α → ∞. This result is immediate from a suitable interpretation of the left hand
side as a sum of Poisson probabilities.

For any moment sequence ν = {νj , j ∈ N}, let us denote by Fν the cdf recovered
via Fα,ν = K −1

α ν according to (2.2), when α → ∞, i.e.

(2.4) Fα,ν →w Fν , as α → ∞ .

Note that if ν = {μj,F , j ∈ N} is the moment sequence of F , the statement (2.4)
with Fν = F is proved in Mnatsakanov and Ruymgaart [17].

To recover a pdf f via its moment sequence {μj,F , j ∈ N}, consider the ratio:

(2.5) fα,ν(x) =
ΔFα,ν(x)

Δ
, Δ =

1
α

,

where ΔFα,ν(x) = Fα,ν(x + Δ) − Fα,ν(x) and α → ∞.
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In the sequel the uniform convergence on any bounded interval in R+ will
be denoted by −→u, while the sup-norm between two functions f1 and f2 by
| | f1 − f2 | |. Note also that the statements from Sections 3 and 4 are valid for
distributions defined on any compact [0, T ], T < ∞. Without loss of generality we
assume that F has support [0, 1].

3. Asymptotic Properties of Fα,ν and fα,ν

In this Section we present asymptotic properties of the moment-recovered cdf Fα,ν

and pdf fα,ν functions based on the transformation K −1
α ν (2.2). The uniform ap-

proximation rate of Fα,ν and the uniform convergence of fα,ν are derived as well.
Denote the family of all cdfs defined on [0, 1] by F. The construction (2.2) gives

us the possibility to recover also two non-linear operators Ak : F × F → F, k =
1, 2, defined as follows: denote the convolution with respect to the multiplication
operation on R+ by

(3.1) F1 ⊗ F2(x) =
∫

F1(x/τ) dF2(τ) := A1(F1, F2)(x), 0 ≤ x ≤ 1,

while the convolution with respect to the addition operation is denoted by

F1 � F2(x) =
∫

F1(x − τ) dF2(τ) := A2(F1, F2)(x), 0 ≤ x ≤ 2 .

For any two moment sequences ν1 = {μj,F1 , j ∈ N} and ν2 = {μj,F2 , j ∈ N},
define ν1 � ν2 = {μj,F1 × μj,F2 , j ∈ N} and ν1 ⊕ ν2 = {ν̄j , j ∈ N}, where

(3.2) ν̄j =
j∑

m=0

(
j

m

)
μm,F1 × μj−m,F2 ,

while μ� k
F = {μk

j,F , j ∈ N} and F ⊗ k = F ⊗ · · · ⊗ F for the corresponding k-fold
convolution (cf. (3.1)). Also denote by F ◦φ−1 the composition F (φ−1(x)), x ∈ [0, 1],
with φ - continuous and increasing function φ : [0, 1] → [0, 1].

Since cdfs A1(F1, F2) = F1 ⊗ F2, A2(F1, F2) = F1�F2, and F ◦ φ−1 have compact
support, they all are M -determinate and have the moment sequences ν1 �ν2, ν1 ⊕ν2,
and ν = {μ̄j , j ∈ N}, with

(3.3) μ̄j =
∫

[φ(t)]j dF (t),

respectively. Hence, applying Theorem 3.1 from Mnatsakanov and Ruymgaart [17]
a statement similar to the one in Mnatsakanov [13] (see Theorem 1 and Corollary 1,
where T = T ′ = 1) is obtained. Besides, the following statement is true:

Theorem 3.1. If ν =
∑m

k=1 βk μ� k
F , where

∑m
k=1 βk = 1, βk > 0, then (2.4) holds

with

(3.4) Fν =
m∑

k=1

βkF ⊗k .

Proof. The equation (3.4) follows from Theorem 1 (i) (Mnatsakanov [13]) and the
linearity of K −1

α ν.
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The construction (2.2) is also useful when recovering the quantile function Q(t) =
inf{x : F (x) ≥ t} via moments (see (4.5) in Section 4). Define Qα = Fα,νQ

, where

(3.5) νQ =
{∫ 1

0

[F (u)]j du, j ∈ N

}
.

The following statement is true:

Corollary 3.2. If F is continuous, then Qα →w Q, as α → ∞.

Proof. Replacing the functions φ and F in (3.3) by F and the uniform cdf on
[0, 1], respectively, we obtain from Theorem 1 (iv) (Mnatsakanov [13]) that Qα =
Fα,νQ

→w Fν = F −1 as α → ∞.

Under additional conditions on the smoothness of F one can obtain the uniform
rate of convergence in (2.4) and, hence, in Theorem 3.1 too. Consider the following
condition

(3.6) F ′ ′ = f ′ is bounded on [0, 1] .

Theorem 3.3. If ν = {μj,F , j ∈ N}, and (3.6) holds, we have

sup
0≤x≤1

∣∣Fα,ν(x) − F (x)
∣∣ = O

(
1
α

)
, as α → ∞.(3.7)

Proof. Let us use the following representation

Pα(t, x) = P{Nαt ≤ αx} = P{S[αx] ≥ αt}.

Here {Nαt, t ∈ [0, 1]} is a Poisson process with intensity αt, Sm =
∑m

k=0 ξk, S0 = 0,
with ξk being iid Exp(1) random variables. Integration by parts gives

Fα,ν(x) = (K −1
α ν)(x) =

∫ 1

0

[αx]∑
k=0

(αt)k

k!

∞∑
j=k

(−αt)j−k

(j − k)!
dF (t)(3.8)

=
∫ 1

0

Pα(t, x)d F (t) =
∫ 1

0

P{S[αx] ≥ αt}dF (t)

= F (t)P{S[αx] ≥ αt}
∣∣∣1
0

−
∫ 1

0

F (t) dP{S[αx] ≥ αt}

= P{S[αx] ≥ α} +
∫ 1

0

F (t) dP{S[αx] ≤ αt} =
∫ ∞

0

F (t) dP{S[αx] ≤ αt}.

Thus, (3.6) and the argument used in Adell and de la Cal [1] yield (3.7).

Remark 3.1. When supp{F } = R+, Fα,ν(x) =
∫ ∞
0

Pα(t, x)d F (t) (cf. with (3.8)).
According to Mnatsakanov and Klaassen [16] (see the proof of Theorem 3.1), one
can derive the exact rate of approximation of Fα,ν in the space L2(R+, dF ). Namely,
if the pdf f is bounded, say by C > 0, then∫ ∞

0

(
Fα,ν(x) − F (x)

)2

dF (x) ≤ 2 C

α
.

Now let us consider the moment-recovered density function fα,ν defined in (2.5)
and denote by Δ(f, δ) = sup|t−s|≤δ |f(t) − f(s)| the modulus of continuity of f ,
where 0 < δ < 1.
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Theorem 3.4. If the pdf f is continuous on [0, 1], then fα,ν −→u f and

(3.9) | | fα,ν − f | | ≤ Δ(f, δ) +
2 | | f | |
αδ2

+ o
( 1

α

)
, as α → ∞.

Proof. Since [α(x + 1/α)] = [αx] + 1, for any x ∈ [0, 1], we have

(3.10) fα,ν(x) = α

[
[αx]+1∑

k=0

∞∑
j=k

(−α)j−k

(j − k)!
αk

k!
μj,F −

[αx]∑
k=0

∞∑
j=k

(−α)j−k

(j − k)!
αk

k!
μj,F

]
,

and, after some algebra (3.10) yields

fα,ν(x) =
α[αx]+2

Γ([αx] + 2)
·

∞∑
m=0

(−α)m

m!
μm+[αx]+1,F .(3.11)

Let g(t, a, b) denote a gamma pdf with shape and rate parameters a and b, respec-
tively. Substitution of (2.1) into the right hand side of (3.11) gives

fα,ν(x) =
α[αx]+2

Γ([αx] + 2)

∫ 1

0

∞∑
m=0

(−αt)m

m!
t[αx]+1 dF (t)(3.12)

=
∫ 1

0

g(t, [αx] + 2, α) f(t)dt.

To show (3.9), note that the pdf g in (3.12) has mean ([αx] + 2)/α and variance
([αx] + 2)/α2, respectively. The rest of the proof is similar to the lines of Theo-
rem 1 (i) (Mnatsakanov [14]).

Remark 3.2. In Mnatsakanov [13, 14] the uniform and L1-rates of moment-
recovered approximations of F and f defined by

(3.13) F ∗
α,ν(x) =

[αx]∑
k=0

α∑
j=k

(
α

j

)(
j

k

)
(−1)j−k μj,F

and

f ∗
α,ν(x) =

Γ(α + 2)
Γ([αx] + 1)

α−[αx]∑
m=0

(−1)m μm+[αx],F

m! (α − [αx] − m)!
, x ∈ [0, 1] , α ∈ N,(3.14)

are established. In Section 4, see Example 4.2, the cdf F (x) = x3 − 3 x3 lnx and its
density function f(x) = −9x2 ln x, 0 ≤ t ≤ 1, are recovered using Fα,ν and F ∗

α,ν ,
and fα,ν and f ∗

α,ν constructions, (see Figures 1 (b) and 3 (b), respectively).

The formulas (3.11) and (3.14) with ν = νQ defined according to (3.5) can be
used to recover a quantile density function

q(x) = Q′(x) =
1

f(F −1(x))
, x ∈ [0, 1].

For example, consider fα,νQ
:= qα: the application of the first line in (3.12) with

F −1 instead of F yields

(3.15) qα(x) =
∫ 1

0

g(F (u), [αx] + 2, α) du
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and corresponding moment-recovered quantile density function

qα,β(x) =
∫ 1

0

g(Fβ,ν(u), [αx] + 2, α) du , α , β ∈ N.

Here Fβ,ν is a moment-recovered cdf of F . As a consequence of Theorem 3.4 we
have the following

Corollary 3.5. If qα = fα,νQ
, with νQ defined in (3.5), and f is continuous on

[0, 1] with inf0≤x≤1 f(x) > γ > 0, then qα −→u q and

| | qα − q | | ≤ Δ(f, δ)
γ2

+
2 | | f | |
α δ2 γ2

+ o
( 1

α

)
, as α → ∞.

Finally, note that taking ν = νQ in (3.14), we derive another approximation q∗
α =

f ∗
α,νQ

of q based on Beta densities β(·, a, b) with the shape parameters a = [αx] + 1
and b = α − [αx] + 1:

(3.16) q∗
α(x) =

∫ 1

0

β(F (u), [αx] + 1, α − [αx] + 1) du .

4. Some Applications and Examples

In this Section the construction of the moment-recovered cdf Fα,ν is applied to the
problem of nonparametric estimation of a cdf, its density and a quantile functions as
well as to the problem of demixing in exponential, binomial and negative binomial
mixtures, and deconvolution in error-in-variable model. In Theorems 4.1 we derive
the uniform rate of convergence for the empirical counterpart of Fα,ν denoted by F̃α,
i.e. for F̃α = Fα,ν̂ , where ν̂ is the sequence of all empirical moments of the sample
from F . In Theorem 4.2 the uniform rate of approximation for moment-recovered
quantile function of F is obtained. Finally, the graphs of moment-recovered cdfs,
pdfs, and quantile functions are presented in Figures 1-3.

Direct model

Let X1, . . . , Xn be a random sample from F defined on [0, 1]. Denote by F̂n the
empirical cdf (ecdf) of the sample X1, . . . , Xn:

F̂n(t) =
1
n

n∑
i=1

I[0,t](Xi) , 0 ≤ t ≤ 1 .

Substitution of the empirical moments

ν̂j =
1
n

n∑
i=1

Xj
i , j ∈ N ,

instead of μj,F into (2.2) yields

F̃α(x) = Fα,ν̂(x) =
∫ 1

0

Pα(t, x)d F̂n(t) =
∫ 1

0

P{S[αx] ≥ αt}d F̂n(t) .

Furthermore, the empirical analogue of (3.8) admits a similar representation

F̃α(x) =
∫ ∞

0

F̂n(t) dP{S[αx] ≤ αt}.

The application of the Theorem 3.3 and the asymptotic properties of F̂n yield
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Theorem 4.1. If ν = {μj,F , j ∈ N}, then under condition (3.6) we have

sup
0≤x≤1

∣∣F̃α(x) − F (x)
∣∣ = O

(
1√
n

)
+ O

(
1
α

)
a.s., as α , n → ∞.(4.1)

Remark 4.1. In Mnatsakanov and Ruymgaart [17] the weak convergence of the
moment-empirical processes {√

n{F̃n(t) − F (t)}, t ∈ [0, 1]} to the Brownian bridge
is obtained.

Of course, when the sample is directly drawn from the cdf F of actual interest,
one might use the ecdf F̂n and empirical process Un =

√
n (F̂n − F ). The result

mentioned in Remark 4.1 yields, that even if the only information available is the
empirical moments, we still can construct different test statistics based on the
moment-empirical processes Ũn =

√
n (F̃n − F ).

On the other hand, using the construction (3.11), one can estimate the density
function f given only the estimated or empirical moments in:

fα,ν̂(x) =
α[αx]+2

Γ([αx] + 2)

∞∑
m=0

(−α)m

m!
ν̂m+[αx]+1 , x ∈ [0, 1] .(4.2)

Remark 4.2. In practice, the parameter α as well as the number of summands
in (4.2) (and the number of summands in the inner summation of Fα,ν̂) can be
chosen as the functions of n: α = α(n) → ∞ and M = M(n) → ∞ as n → ∞, that
optimize the accuracy of corresponding estimates. Further analysis is required to
derive the asymptotic forms of α(n) and M(n) as n → ∞. This question is currently
under investigation and is beyond the scope of the present article.

Note that the construction (4.2) yields the estimator f̂α(x) = fα,ν̂ with ν̂ =
{ν̂j , j ∈ N}:

f̂α(x) =
α

n

n∑
i=1

(αXi)[αx]+1

([αx] + 1)!
e−αXi =

1
n

n∑
i=1

g(Xi, [αx] + 2, α), x ∈ [0, 1] .

Here g(·, [αx] + 2, α) is defined in (3.12). The estimator f̂α does not represent
a traditional kernel density estimator of f . It is defined by a δ-sequence, which
consists of the gamma density functions of varying shapes (the shape and the rate
parameters are equal to [αx] + 2 and α, respectively). It is natural to use this
estimator when supp{F } = [0, ∞), since, in this case, the supports of f and gamma
kernel densities coincide and one avoids the boundary effect of f̂α (cf. Chen [5]).

Some asymptotic properties such as the convergence in probability of f̂α uni-
formly on any bounded interval and the Integrated Mean Squared Error (IMSE )
of f̂α have been studied in Mnatsakanov and Ruymgaart [17] and Chen [5], respec-
tively.

Applying the results from Mnatsakanov and Khmaladze [15], where the necessary
and sufficient conditions for L1-consistency of general kernel density estimates are
established, one can prove in a similar way (cf. Mnatsakanov [14], Theorem 3) that
if f is continuous on [0, 1], then E | | f̂α − f | |L1 → 0, as

√
α/n → 0 and α , n → ∞.

Exponential mixture model

Let Y1, . . . , Yn be a random sample from the mixture of exponentials

G(x) =
∫ T

0

(1 − e−x/τ ) dF (τ) , x ≥ 0 .
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The unknown cdf F can be recovered according to the construction Fα,ν = K −1
α ν

with ν = {μj,G/j!, j ∈ N}. Similarly, given the sample Y1, . . . , Yn from G and tak-
ing Fα,ν̂ = K −1

α ν̂, where ν̂ = {μ̂j,G/j!, j ∈ N}, we obtain the estimate of F . Here
{μ̂j,G, j ∈ N} are the empirical moments of the sample Y1, . . . , Yn. The regular-
ized inversion of the noisy Laplace transform and the L2-rate of convergence were
obtained in Chauveau et al. [4].

Binomial and negative binomial mixture models

When Y1, . . . , Yn is a random sample from the binomial or negative binomial mix-
ture distributions, respectively:

p(x) := P (Y = x) =
∫ 1

0

(
m

x

)
τx (1 − τ)m−xdF (τ) , x = 0, . . . , m ,

p(x) := P (Y = x) =
∫ 1

0

Γ(r + x)
Γ(r) x!

( 1
1 + τ

)r ( τ

1 + τ

)x

dG(τ) , x = 0, 1, . . . ,

where m and r are given positive integers. Assume that the unknown mixing cdfs F
and G are such that F has at most m+1

2 support points in (0, 1), while G is a right
continuous cdf on (0, 1). In both models the mixing distributions are identifiable
(see, for example, Teicher [26] for binomial mixture model). Note also that the jth
moments of F and G are related to the jth factorial moments of corresponding Yi’s
in the following ways:

μj,F =
1

m[j]
E(Y [j]

1 ) and μj,G =
1

r(j)
E(Y [j]

1 ) .

Here y[j] = y(y − 1) · · · (y − j + 1) and r(j) = r(r + 1) · · · (r + j − 1). To estimate
F and G one can use the moment-recovered formulas (2.2) or (3.13) with μj,F and
μj,G defined in previous two equations where the theoretical factorial moments are
replaced by corresponding empirical counterparts. The asymptotic properties of the
derived estimators of F and G will be studied in a separate work.

Deconvolution problem: error-in-variable model

Consider the random variable Y = X +U, with cdf G, where U (the error) has some
known symmetric distribution F2, X has cdf F1 with a support [0, T ], and U and
X are independent. This model, known as an error-in-variable model, corresponds
to the convolution G = F1 � F2. Assuming that all moments of X and U exist,
the moments {ν̄j , j ∈ N} of Y are described by (3.2). Hence, given the moments
of U (with E(U) = 0), we can recalculate the moments of F1 as follows: μ1,F1 =
ν̄1, μ2,F1 = ν̄2 − μ2,F2 , and so on. So that, assuming that we already calculated
μk,F1 , or estimated them by μ∗

k,F1
for 1 ≤ k ≤ j − 2, we will have, for any j ≥ 1:

μj,F1 = ν̄j −
j∑

m=2

(
j

m

)
μm,F2 × μj−m,F1

or, respectively,

μ∗
j,F1

= μ̂j,G −
j∑

m=2

(
j

m

)
μm,F2 × μ∗

j−m,F1
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given the sample Y1, . . . , Yn from cdf G. Now the moment-recovered estimate of
F1 will have the form Fα,ν̂ = K −1

α ν̂, where ν̂ = {μ∗
j,F1

, j ∈ N}. The alternative
construction of the kernel type estimate of F1 based on the Fourier transforms is
studied in Hall and Lahiri [8], where the

√
n-consistency and other properties of

the estimated moments μ∗
j,F1

, j ∈ N, are derived as well.

Example 4.1. Consider the moment sequence μ = {1/(j + 1), j ∈ N}. The corre-
sponding moment-recovered distribution Fα,μ = K −1

α μ is a good approximation of
F (x) = x already with α = 50 and M = 100.

Assume now that we want to recover the distribution G with corresponding
moments νj,G = 1/(j + 1)2, j ∈ N. Since we can represent νG = μ � μ, we conclude
from Theorem 1 (i) in Mnatsakanov [13], that G = F ⊗ F , with F (x) = x, and
hence G(x) = x − x ln x, 0 ≤ x ≤ 1. We plotted the curves of Fα,νG

(the solid line)
and G (the dashed line) on Figure 1 (a). We took α = 50 and M = 200, the number
of terms in the inner summation of the formula (2.2). From Figure 1 (a) we can
see that the approximation of G by Fα,νG

at x = 0 is not as good as inside of the
interval [0, 1]. This happened because the condition (3.6) from Theorem 3.3 is not
valid for g′(x) = G′ ′(x) = −1/x.

Example 4.2. To recover the distribution F via moments νj = 9/(j + 3)2, j ∈ N,
note that νj = νaj,G, with a = 1/3. Hence, F (x) = G(x3) = x3 − x3 ln(x3),
0 ≤ x ≤ 1 (Theorem 1 (iii), Mnatsakanov [13]). We conducted computations of
moment-recovered cdf Fα,ν when α = 50 and the number of terms in the inner
summation of the formula (2.2) is equal to 200. Also, we calculated F ∗

α,ν defined
in (3.13) with α = 32. See Figure 1 (b), where we plotted Fα,ν (the solid blue
line), F ∗

α,ν (the solid red line), and F (the dashed line), respectively. These two
approximations of cdf F justify a good fit already with α = 50 and M = 200 for
the first one and with α = 32 for the second one. From Figure 1 (b) we can see that
the performance of F ∗

α,ν is slightly better compared to Fα,ν : F ∗
α,ν does not have the

“boundary” effect around x = 1.

Fig 1. (a) Approximation of G(x) = x − x ln x by Fα,ν and (b) Approximation of G(x3) by Fα,ν

and by F ∗
α,ν .



262 Mnatsakanov and Hakobyan

Estimation of a quantile function Q and quantile density function q

Assume that a random variable X has a continuous cdf F defined on [0, 1]. To
approximate (estimate) the quantile function Q given only the moments (estimated
moments) of F , one can use Corollary 3.2. Indeed, after some algebra, we have

(4.3) Qα(x) = Fα,νQ
(x) =

∫ 1

0

Pα

(
F (u), x

)
du , 0 ≤ x ≤ 1 ,

where νQ and Pα(·, ·) are defined in (3.5) and in (2.3), respectively. Comparing
(4.3) and (3.8) we can prove in a similar way (see, the proof of Theorem 3.3) the
following

Theorem 4.2. If f ′ is bounded and inf0≤x≤1 f(x) > γ > 0, then

sup
0≤x≤1

∣∣Qα(x) − Q(x)
∣∣ = O

(
1
α

)
, as α → ∞.(4.4)

Now, given only the moment sequence ν of F , one can construct the approxima-
tion Qα,β of Q by substituting the moment-recovered cdf Fβ,ν (instead of F ) in the
right hand side of (4.3). Let us denote the corresponding approximation of Q by

(4.5) Qα,β(x) =
∫ 1

0

Pα

(
Fβ,ν(u), x

)
du , α, β ∈ N.

Figure 2 (a) shows the cdf F (x) = x3 − x3 ln(x3) (the dashed line), introduced
in Example 4.2, and its quantile approximation Qα,β (the solid line), when ν =
{9/(j + 3)2, j ∈ N}, α = β = 100, and M = 200.

Replacing F by the empirical F̂n in (4.3), (3.15), and in (3.16) yields the following
estimators, respectively, based on the spacings ΔX(i) = X(i) − X(i−1), i = 1, . . . ,
n + 1:

Q̂α(x) = Fα,ν̂Q
(x) =

∫ 1

0

Pα

(
F̂n(u), x

)
du =

n+1∑
i=1

ΔX(i) Pα

(
i − 1

n
, x

)
,(4.6)

q̂α(x) =
∫ 1

0

g(F̂n(u), [αx] + 2, α) du =
n+1∑
i=1

ΔX(i) g

(
i − 1

n
, [αx] + 2, α

)
,

Fig 2. (a) Approximation of Q by Qα,β and (b) Estimation of Q(x) = x1/3 by Q̂α and by Q̂HD.
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and

q̂∗
α(x) =

n+1∑
i=1

ΔX(i) β

(
i − 1

n
, [αx] + 1, α − [αx] + 1

)
.

Here ν̂Q = {
∫ 1

0
[F̂n(u)]jdu, j ∈ N}, while X(i), i = 1, . . . , n, X(0) = 0, X(n+1) = 1,

are the order statistics of the sample X1, . . . , Xn.
Now, let us compare the curves of Q̂α and the well known Harrell-Davis estimator

(4.7) Q̂HD(x) =
n∑

i=1

X(i) ΔBeta

(
i

n
, (n + 1)x, (n + 1)(1 − x)

)
,

where Beta
(

·, a, b
)

denotes the cdf of a Beta distribution with the shape parameters
a > 0 and b > 0. For asymptotic expressions of MSE and the bias term of Q̂HD we
refer the reader to Sheather and Marron [19]. Let us generate n = 100 independent
random variables X1, . . . , Xn from F (x) = x3, 0 ≤ x ≤ 1. Taking α = 100, we esti-
mate (see, Figure 2 (b)) the corresponding quantile function Q(x) = x1/3, 0 ≤ x ≤ 1,
(the dashed line) by means of Q̂α (the solid line) and by Q̂HD (the dashed-dotted
line), defined in (4.6) and (4.7), accordingly. Through simulations we conclude that
the asymptotic behavior of the moment-recovered estimator Q̂α and the Harrell-
Davis estimator Q̂HD are similar. The MSE and other properties of Q̂α, q̂α, and
q̂∗
α will be presented in a separate article.

Example 4.1 (continued). Assume now that we want to recover pdf of the dis-
tribution G studied in the Example 4.1 via the moments νj,G = 1/(j + 1)2, j ∈ N.
On the Figure 3 (a) we plotted the curves of the moment-recovered density fα,ν

(the solid line) defined by (3.11) and g(x) = G′(x) = − ln x, 0 ≤ x ≤ 1 (the dashed
line), respectively. Here we took α = 50 and M = 200.

Example 4.2 (continued). Now let us recover the pdf f(x) = −9x2 ln x, 0 ≤
x ≤ 1, of distribution F defined in Example 4.2 where νj,F = 9/(j + 3)2, j ∈ N. We
applied the approximations fα,ν and f ∗

α,ν defined in (3.11) and (3.14), respectively,
by calculating the values of fα,ν and f ∗

α,ν at the points x = k/α, k = 1, 2, . . . , α.
Figure 3 (b) shows the curves of fα,ν (the blue dashed-dotted line), and f ∗

α,ν (the

Fig 3. (a) Approximation of g(x) = − ln x by fα,ν and (b) Approximation of f(x) = −9x2 ln x by
fα,ν and f ∗

α,ν .



264 Mnatsakanov and Hakobyan

red solid line), and f (the black dashed line). Here, we took α = 50 and M = 200
when calculating fα,ν and α = 32 in f ∗

α,ν . One can see that the performance of f ∗
α,ν

with α = 32 is better than the performance of fα,ν with α = 50 and M = 200.

After conducting many calculations of moment-recovered approximants for sev-
eral models we conclude that the accuracy of the formulas (2.2) and (3.11) are not
as good as the ones defined in (3.13) and (3.14) in the Hausdorff case. On the other
hand, the constructions (2.2) and (3.11) could be useful in the Sieltjes moment
problem as well.
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