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Abstract: A functional generalized linear model is applied to spectroscopic
data to discriminate disease from non-disease in the diagnosis of cervical pre-
cancer. For each observation, multiple functional covariates are available, and
it is of interest to select a few of them for efficient classification. In addition
to multiple functional covariates, some non-functional covariates are also used
to account for systematic differences caused by these covariates. Functional
principal components are used to reduce the model to multivariate logistic
regression and a grouped Lasso penalty is applied to the reduced model to
select useful functional covariates among multiple curves.
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1. Introduction

Classification with functional data is a challenging problem due to the high dimen-
sionality of the observation space. One solution is to reduce the dimension and use
the reduced features for classification, such as the work of Hall et al. [6], Zhao et
al. [19] and Ferré and Villa [5]. Another way is to use generalized linear regression
by treating the class labels as responses and functional observations as predictors,
which was proposed by James [8] and Müller and Stadtmüller [11]. Ratcliffe et al.
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[14] and Leng and Müller [9] applied this type of modeling to medical and gene ex-
pression data, respectively. Our basic concern in this study is the case when there
are multiple functions per observation in a classification problem, and we wish to
perform a curve selection to select few important curves and perform classification
based on the selected curves.

The example that motivated our work is fluorescence spectroscopy data being
investigated for cervical pre-cancer diagnosis. Fluorescence spectroscopy is an op-
tical technique proposed for cervical pre-cancer screening. As a non-invasive, low-
cost diagnosis tool, it provides a promising alternative to the existing methods for
early-stage cancer diagnosis. One important step in this type of diagnosis is to
discriminate the diseased observations from normal based on the high dimensional
functional data — the fluorescence spectral measurements. In many clinical stud-
ies, several different spectra can be produced and used simultaneously for diagnosis
([12]), which makes the classification difficult since introducing more spectra not
only provides more information but also more noise. Among these multiple spec-
tral curves, it is suspected that some spectral curves contain more disease related
information and hence are more “important” than others (see [3]). Furthermore, in
order to produce an inexpensive commercial device, we would like to measure as
few spectra as is necessary. This makes it beneficial to use statistical analysis to find
out those curves that are good enough for diagnosis and remove the unnecessary
ones, which can improve the diagnostic accuracy and reduce the cost.

The data studied in this paper are from a clinical study in which multiple fluores-
cence spectra were measured at the same sites where biopsies were taken for patho-
logical diagnosis. Each observation consists of several spectral curves measured in
the following way: an excitation light at a certain fixed excitation wavelength is
produced to illuminate the cervical tissue. The excitation light is absorbed by var-
ious endogenous fluorescent molecules in tissue, resulting in emission of fluorescent
light. The emitted fluorescent light is measured by an optical detector and the
spectrum is obtained as one smooth curve. The excitation light is varied at several
different wavelengths and gives multiple spectral curves for each measurement. The
left panel of Figure 1 shows the plot of all spectral curves from one measurement.
Each measurement contains 16 spectral curves measured at excitation wavelengths
ranging from 330 nm to 480 nm with increments of 10 nm. Each spectral curve con-
tains fluorescence intensities recorded on a range of emission wavelengths between
385nm and 700nm. If we use a color plot to represent the intensities, we can stack
all the 16 spectra and obtain an image as shown in the right panel of Figure 1.
We call such fluorescence spectroscopy measurements excitation-emission matrices
(EEMs).

This study aims to select a subset of spectral curves from the 16 available curves
for the purpose of classification. We will look at the problem from the functional
data analysis ([13]) point of view and propose a functional generalized linear model,
which will select among multiple functional predictors and perform binary classifi-
cation. The proposed model allows both functional predictors and non-functional
predictors. The non-functional predictors are variables associated with the mea-
surements which may cause systematic difference in spectra, such as tissue type of
the measurement site, or the menopausal status of patients.

The structure of this paper is as follows: Section 2 introduces the functional
generalized linear model with curve selection and Section 3 provides a simulation
study. The real data application to the fluorescence spectroscopy data is presented in
Section 4, and details on determining related parameters are discussed in Section 5.
A more general discussion is given in Section 6.
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Fig 1. Left Panel: Fluorescence spectral curves at different excitation wavelengths. Right Panel:
The image plot of fluorescence spectroscopy data (EEM).

2. Functional Generalized Linear Model with Curve Selection

Consider n i.i.d. observations where each observation contains J functions. For
i = 1, . . . , n and j = 1, . . . , J , let xij(t) denote the jth function observed from the
ith observation, where E[xij(t)] = μj(t). Note that the J functions within each
observation can be rather arbitrary hence we assume different mean function μj(t)
for each xij(t). In addition to functional data, we assume there is a non-functional
vector zi associated with each observation. Suppose the responses we observed are
binary variables yi. Similarly to James [8] and Müller and Stadtmüller [11], we
propose a functional generalized linear model to connect the binary responses with
the predictors. Let pi = Pr (yi = 1|zi, xij(t), j = 1, . . . , J) and

pi = g−1(ηi),(2.1)

ηi = α0 + zT
i α +

J∑
j=1

∫
Tj

βj(t)(xij(t) − μj(t))dt,(2.2)

where Tj is the domain of xij(t), α0 is the univariate intercept, α is a vector of coeffi-
cients for the non-functional predictors, and the βj(t)’s are the functional regression
coefficients. For convenience, we center xij(t) at its mean in the integrand. Here the
link function g(·) is a one-to-one continuous function. To perform curve selection,
we propose the following constraint on the functional regression coefficients:

(2.3)
J∑

j=1

| |βj | |L2 < s,

where | |f | |L2 = (
∫

f2(t)dt)1/2, s is a pre-defined constant. Note that (2.3) is a
combined constraint of L2 norm and l1 norm. This is an extension of the group-
wise variable selection in the multivariate setting proposed by Yuan and Li [18].
Because of the properties of this combined constraint, we expect βj ≡ 0 for a
number of j’s, depending on the value of s.
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Due to the infinite dimensionality of functional data, multivariate methods can
not be used directly for solving the above proposed model. One can discretize xij(t)
on a finite grid and transform the problem to a multivariate regression model, but
the number of grid points is an issue and there will be high correlation between
contiguous grid points because of the “functional” properties of xij(t). A natural
choice is to apply standard functional dimension reduction methods to reduce the
dimension first and solve the problem on the reduced space. If we assume ∀j, xij(t) ∈
Hj for some separable Hilbert space Hj , and E[xij(t)] = μj(t), we can expand
xij(t) − μj(t) on a set of orthonormal basis {φj

k } ∞
k=1

(2.4) xij(t) − μj(t) =
∞∑

k=1

cijkφj
k(t)

and a truncated version of (2.4) can be used to approximate xij(t) since∑∞
k=1 |cijk |2 < ∞. And similarly, we assume βj(t) ∈ Hj , ∀j, and this gives

(2.5) βj(t) =
∞∑

k=1

bjkφj
k(t).

Note that the orthonormal basis {φj
k } ∞

k=1 can be chosen to be a known basis such
as a Fourier basis or a wavelet basis. If in addition, we assume xij(t) ∈ L2[Ω × Tj ]
for the domain Tj and the underlying sample space Ω, i.e.,

∫
Tj

E[xij(t)2]dt < ∞, ∀j,
Mercer’s theorem and Karhunen-Loève theorem ([2]) suggest taking the orthonor-
mal basis to be the eigenfunctions of the covariance operator K, where K is defined
by

(2.6) Kx(t) =
∫

x(s)k(s, t)ds, k(s, t) = Cov(x(s), x(t)).

In this case, the coefficients {cijk, k = 1, . . . , ∞} are called functional principal
component scores of the functional data. Using the functional principal component
method is different from using a known basis in that the eigenbasis functions need to
be estimated. Various estimating methods are proposed as in Ramsay and Silverman
[13], and in Hall, Müller and Wang [7].

Once the functional principal component scores or the orthonormal basis coeffi-
cients have been estimated, we can reduce equation (2.2) to

(2.7) ηi = α0 + zT
i α +

J∑
j=1

δj∑
k=1

cijkbjk,

where δj is the truncation parameter for the jth functional predictor. We thus
transfer the functional regression to multivariate regression. The constraint condi-
tion (2.3) will be reduced to

(2.8)
J∑

j=1

| |bj | |2 < t,

where bj = (bj1, . . . , bjδj ) and | | · | |2 stands for the Euclidean norm. Curve selec-
tion can thus be performed through selecting variables in (2.7) using the grouped
Lasso type constraint (2.8), i.e., if one curve xj(t) is selected, then the coefficients
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bjk, k = 1, . . . , δj , will all be non-zero. The Lasso (Least Absolute Shrinkage and Se-
lection Operator) was first proposed by Tibshirani [16] for model selection in linear
regression models. The basic idea was to find a subset of the covariates with non-
zero coefficients by applying an l1 constraint to the regression coefficients based on
the ordinary least square estimation. Yuan and Lin [18] extended the regular Lasso
to cases where the covariates can be grouped, such as multi-factor ANOVA. They
combine the l1 and l2 constraints so that the resulting model selects variables at the
group level and is invariant under group-wise orthogonal transformation. To solve
our problem based on the reduced model (2.7) and (2.8), we borrow the algorithm
proposed by Meier et al. [10], where they extend the group-wise lasso regression of
Yuan and Lin [18] to a logistic regression setup. Assume the link function in (2.1)
is a logit link, i.e.,

(2.9) log
(

pi

1 − pi

)
= ηi.

The estimate can be obtained by minimizing the convex function

(2.10) Qλ(θ) = −l(θ) + λ

J∑
j=1

s(δj)| |bj | |2,

where θ = {α0, α, bj , j = 1, . . . , J }, and l(·) is the log-likelihood function:

(2.11) l(θ) =
n∑

i=1

{yiηi − log(1 + exp(ηi))}.

Here s(δj) is used to rescale the penalty with respect to the dimensionality of
bj , usually taken to be

√
δj , and λ > 0 is the tuning parameter to control the

amount of penalty. Note that in the model of Meier et al. [10], they only allow
one unpenalized term, i.e., only the intercept term is unpenalized. In our proposed
model, in addition to the intercept α0, we allow the coefficients α of nonfunctional
predictors to be unpenalized. Meier et al. stated the attainability of the minimum
of the optimization problem in their paper and provided a proof. Actually, some
conditions must be satisfied for the attainability to hold. Here we provide a general
sufficient condition for the minimum of equation (2.10) to be attained.

Proposition 1. For 0 <
∑n

i=1 yi < n, λ > 0, s(δj) > 0, ∀j, assume the design
matrix X formed by

X =

⎛
⎜⎝

1 zT
1 c111 . . . c11δ1 . . . . . . c1J1 . . . c1JδJ

...
1 zT

n cn11 . . . cn1δ1 . . . . . . cnJ1 . . . cnJδJ

⎞
⎟⎠

is an n by m matrix of rank m, n ≥ m. Assume the maximum likelihood estimator
for the logistic regression (with log-likelihood in equation (2.11)) exists. Then the
equation (2.10) has an unique minimizer θ∗.

The proof for Proposition 1 is in the Appendix. Meier et al. [10] proposed a Block
Coordinate Gradient Descent algorithm to solve the group lasso logistic regression
and provided an R package called grplasso. We will use this package to perform
curve selection based on reduced model in equations (2.7) and (2.8). The initiation
of the algorithm is the same as in grplasso.
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3. Simulation Study

To verify the performance of the proposed method in classification problems with
multiple functional covariates, we generate n = 1000 i.i.d. observations. Each obser-
vation contains one non-functional covariate and three functional covariates. The
non-functional covariate is generated from uniform (0, 1) distribution. And the three
functional covariates are generated using the first 4 cosine basis functions on the
domain [0, 1], i.e., using basis φ0(t) = 1, φk(t) =

√
2 cos(kπt), k = 1, . . . , 3. For

each functional covariate, the 4 coefficients of the cosine basis are generated in-
dependently from a normal distribution with some fixed mean and variance 0.5.
We set the coefficient functions for the first and third functional covariates to be
zero and set the coefficient function for the second to be non-zero. Figure 2 shows
the plot of both non-functional covariates and functional covariates for the first 50
observations. The binary responses yi are generated by sampling from a Bernoulli
distribution with success probability pi = (1 + exp(−ηi))−1, where ηi is computed
from equation (2.2) using numerical integration. The proportion of 1’s among the

Fig 2. Data plot of both non-functional covariates and functional covariates for the first 50
observations used in simulation.
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Fig 3. Estimated paths of coefficient vector at different λ values.

binary yi’s is 57.3%. The data are randomly split into a training set and a test set
with 800 observations in the training set and 200 observations in the test set.

To apply the proposed model to these data, one can choose different types of
orthonormal basis for dimension reduction. Since the data are generated using co-
sine basis, we will show the results of using the cosine basis so that the estimated
coefficients can be compared with their known true values. We have also tried using
functional principal components, and the curve selection and prediction results are
very similar to that of using cosine basis.

For the choice of cosine basis, we reduce the dimension of the functional pre-
dictors using the first 4 cosine basis functions. The group-wise lasso regression
algorithm of Meier et al. [10] is then applied to the reduced scores. Figure 3 shows
the estimation paths for the regression coefficients as a function of λ. Note that
for the estimated coefficient function β̂j , we plotted their L2 norm, i.e., | |β̂j | | =√∫

Tj
β̂j(t)2dt, where the function β̂j are obtained through inverse transform of the

estimated coefficients b̂j . From Figure 3, we see that for a large range of λ, i.e.,
15.7 < λ < 115, the method correctly picked out the non-zero coefficient function
β̂2. The values of β̂2(t) at 6 selected λ’s is plotted in Figure 4 in comparison with
the true β2(t). Table 1 shows the estimated coefficients(in form of the cosine basis
scores b̂j) compared with the true values under the 6 selected λ’s. From Table 1,
we see that as the penalty parameter λ increases, the magnitudes of the estimated
coefficients shrink toward 0. When λ = 0, the estimates are equal to the maxi-
mum likelihood estimates, which gives nonzero estimates to all coefficients. When
λ ranges from 22.4 to 89.6, the coefficients corresponding to the first and third curve
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Fig 4. Estimated coefficient function β̂2(t) at 6 selected λ values and the true β2(t).

are exactly 0, and the coefficients corresponding to the second curve are nonzero.
For λ > 14.1, the estimates are (almost all) closer to 0 than the true values. We
believe that these shrinkage effects are caused by the continuous-shrinkage property
of Ridge and Lasso penalty (see Tibshirani [16]). It has been suggested that there
may be large bias in the estimators related to the inconsistency of the original Lasso

Table 1

The estimated coefficient values compared with the true values at different λs

Estimated coefficients at different λ values

Coef True Values λ = 118 λ = 89.6 λ = 22.4 λ = 14.1 λ = 5.3 λ = 0
α0 0.5 0.3 0.3 0.39 0.42 0.46 0.5
α 1 0.63 0.64 0.82 0.87 0.97 1.06

b11 0 0 0 0 0 0.03 0.15
b12 0 0 0 0 0 −0.04 −0.17
b13 0 0 0 0 0 0.04 0.18
b14 0 0 0 0 0 0 −0.01

b21 1 0 0.13 0.58 0.67 0.79 0.9
b22 2 0 0.31 1.43 1.67 2.01 2.29
b23 −3 0 −0.42 −1.92 −2.24 −2.66 −3.02
b24 −1 0 −0.18 −0.84 −0.99 −1.21 −1.41

b31 0 0 0 0 0 0.02 0.03
b32 0 0 0 0 0.01 0.07 0.13
b33 0 0 0 0 0.04 0.34 0.56
b34 0 0 0 0 0.01 0.09 0.14
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Fig 5. Prediction results at different λ values.

under certain conditions, i.e., that the Lasso does not satisfy the “oracle proper-
ties” (Fan and Li [4], Zhao and Yu [20]). Some modifications have been proposed
to overcome the drawbacks of Lasso and make the estimators satisfy the oracle
properties(see Zou [22]). In this study, we only focus on the curve selection and
prediction, but more research can be done on the consistency of the grouped-Lasso
regression under the functional data setup.

To perform prediction on test set, the estimated coefficient function β̂j(t), j =
1, 2, 3 are plugged into the test set using (2.2) and the estimated success probability
p̂i are computed for each observation, from which we can plot a ROC curve (see
Zweig & Campbell [23]) for each λ. From each ROC curve, we pick a point that
maximizes the sum of sensitivity and specificity, and this point will be used as the
optimal classification point. The misclassification rate at the optimal point and the
corresponding area under the ROC curves are computed at different values of λ
and plotted in Figure 5. From Figure 5, we find that when λ is around 22.4, the
prediction on the test set gives the best sensitivity(93%) and specificity(73%) and
an fairly large area under ROC curve (0.88), and the corresponding misclassification
rate is 16%.

4. Real Data Application–Fluorescence Spectral Curve Selection and
Cervical Pre-Cancer Diagnosis

Totally 717 EEM measurements were made on 306 patients, and each measurement
contains 16 spectral curves. Measurements were taken from different sites on the
cervix and may include repeated measurements at the same site. All the measure-
ments were made using the same instrument (called FastEEM3) in the same clinic
(British Columbia Cancer Agency, Vancouver, CA). Data were split into a training
set and a test set with 396 measurements in the training set and 321 in the test set.
The proportions of diseased cases within each set are 0.21, 0.20, respectively. Two
non-functional covariates are considered in this study: the colposcopic tissue type of
the measurements, and the menopausal status. Colposcopic tissue type is a binary
variable indicating two types of tissue — squamous and columnar, which is obtained
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Fig 6. The selected functional predictors (fluorescence spectral curves denoted by excitation wave-
lengths) at different λ values.

prior the fluorescence spectroscopy measurements. Menopausal status of a patient
is a categorical variable which has three levels: pre-, peri- and post-menopause. The
first 5 functional principal components are chosen as the scores extracted from each
functional predictor, which reduce the data to a total of 80 scores. To reduce bias,
the test set scores (the scores of orthonormal basis) are computed based on only
information obtained from the training set. For example, the eigenfunctions used
for computing functional principal components scores of the test set are estimated
from the training set.

The grouped lasso logistic regression is used to pick the excitation wavelengths
as λ decreases from 6 to 0. Due to the large number of curves, the plot of coefficient
path is hard to visualize. In Figure 6, we summarize the excitation spectral curves
selected at different λ values. For example, from Figure 6 we find that when 3.73 <
λ ≤ 5.08, the curves at excitations 340, 410, 420, 460 are selected. At larger values
of λ, the penalty is heavier, and fewer curves are selected. When λ = 0, there is no
penalty, and all curves are selected. The order of selection from larger λ values to
smaller λ values suggests the importance of curves in the regression. For example,
the excitation curves are ordered by 340 > 460 > 420 > 410 according to the order
of being selected. The estimated coefficients at different values of λ are used to
predict in the test set, from where we can evaluate the performance of different
λ values. Due to the fact that the total proportion of diseased cases is small, the
misclassification rate is not an ideal criterion for evaluating the prediction result
(see [21], page 22 for details). To reduce the risk of false negatives, we wish to keep
the sensitivity high enough and sacrifice some specificity. Hence for each fixed λ,
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Fig 7. Prediction results at different λ values.

we pick a point from the empirical ROC curve using the criterion that the sum of
the sensitivity and specificity is maximized. The Figure 7 shows the area under the
curves and the optimal sum of the sensitivity and specificity at different values of
λ. At λ = 1.64, the sum is maximized at 1.44 with sensitivity 87% and specificity
57%, and the corresponding area under ROC curve is 0.77, and misclassification
rate is 38%.

Since the main purpose of the above analysis is for curve selection rather than
classification, once the functional covariates are selected, different classifiers can be
applied to perform classification based on the selected subset of curves. In addition
to logistic regression, we also performed classification with 3 other classifiers using
the selected curves. By choosing λ = 1.64, we selected function predictor curves
at excitations: 330, 340, 360, 370, 410, 420, 460 and 480, and used the first 5
functional principal components to reduce the dimension. We refitted the logistic
model without penalty and compared the prediction results on the test set with 3
other classifiers in Table 2. The corresponding ROC curves are plotted in Figure 8.
From Figure 8, we find that logistic regression, k-nearest neighbor (KNN) and
linear discriminant analysis(LDA) provide similar ROC curves. The highest sum of
sensitivity and specificity is 1.43, obtained by KNN, which is only slightly smaller
than the grouped lasso results at λ = 1.64. The LDA method provides the same
specificity with logistic regression but higher sensitivity.

Table 2

The classification results using 4 different methods on the selected curves. Auc: Area under
ROC curve. MisR: Misclassification rate. Sens: Sesitivity. Speci: Specificity. Sum: The sum of
sensitivity and specificity. Logistic: logistic regression. KNN: k-nearest neighbor. LDA: linear

discriminant analysis. SVM: support vector machine

Method Auc MisR Sens Speci Sum
Logistic 0.76 31% 71% 68% 1.39
KNN 0.68 27% 68% 74% 1.43
LDA 0.75 31% 75% 68% 1.42
SVM 0.64 28% 48% 79% 1.26
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Fig 8. ROC curves obtained when training 4 different classifiers based on selected curves and
predicting on the test set.

5. Determining the Related Parameters

In our proposed model, two types of parameters need to be determined: the tuning
parameter λ and the truncation parameters δj , j = 1, . . . , J . In this section, we
discuss how to determine these parameters.

The choice of tuning parameter λ is important for prediction. In Meier et al. [10]
and in our paper, a test set is used to choose the λ with the best prediction per-
formance. However, there are also cases where only a small number of observations
are available and splitting out a test set is not possible. In this case, we can adopt
model selection criteria such as AIC, practical Cp or BIC. AIC tends to select a
model with optimal prediction, while BIC tends to identify the true sparse model
if the true model is included in the candidate set (see Yang [17]). In the grouped
Lasso linear regression model, Yuan and Lin [18] proposed an approximation to the
degrees of freedom and used a Cp criterion for selecting the tuning parameter λ.
Whether this criterion can be extended to logistic regression case for selecting λ is
an open question.

In addition to the tuning parameter λ, the truncation parameter δj in equation
(2.7) is also one concern of the study. In the real application of Section 4, we let
δj ≡ δ and reported the curve selection and prediction results with δ = 5. To find
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Fig 9. Prediction results using different number of basis.

out whether other choices of δ are better for prediction, we compute the prediction
results for the test set at different number of δ but fixing λ = 1.64. The quantitative
prediction results are plotted in Figure 9. From Figure 9, we can see that using 11
functional principal components, the area under the ROC curve are maximized
at 0.780, and the sum of sensitivity and specificity are maximized at 1.47, with
a relatively small misclassification rate 31%. The sensitivity and specificity reach
81%, 66%, respectively.

It is also suspected that the optimal λ may interact with δ so determining one by
fixing the other may be suboptimal. In our study, we also have tried to determine
both the parameters by training the model under different combinations of them,
and predicting on the test set. It turns out that at around λ = 1.64 the prediction
results of the model is better than other choices of λ, and this is quite stable across
different choice of δ, especially for δ greater than 3. In Figure 10, We plot the area
under the ROC curve for 11 different δ and for appropriately selected λ values
across a meaningful range, i.e., λ = (5, 3, 1.64, 1.5, 1, 0.27). It shows that the line
with λ = 1.64 stays on the top for δ’s larger than 3. The reason for the small inter-
action between λ’s and δ’s can be the following: the orthogonal basis approximation
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Fig 10. The area under the ROC curves for 6 different λ values and 11 different choice of FPC’s.

tends to be accurate with only a few components. For example, in functional prin-
ciple components, over 97% of the variability will be counted in the first priciple
component score for all excitation curves. Later components only add details to the
model but does not change the likelihood dramatically. Therefore the miminum of
equation (2.10) as a function of λ does not change much when δ changes. But this
is not true for non-orthogonal basis approximation methods such as B-spline.

Note that choosing δj ≡ δ is just a convenient choice, which has the advantage
that it leaves only two parameters to determine and cross validation is feasible
for determining these parameters. However, it also brings in the risk of loosing
information. In general, one may use different truncation parameters if there are
large differences on the properties of the curves such as smoothness. If all curves
are obtained through similar sources and are similar in shape and other above
mentioned properties, it would be safe to choose a common δ. As an alternative,
since the step of estimating {cijk, k = 1, . . . , δj , j = 1, . . . , J } can be independent of
the group-wise Lasso step, one can use approximation criteria such as error sum of
squares (SSE) to determine the truncation parameters for each curve. For example,
if using functional principal component, we can choose a level of approximation
(e.g., let the percentage of variabilities explained to be greater than 99%) and
select the number of eigenfunctions to achieve this. However, better approximation
does not necessarily give better prediction.

6. Discussion

We have proposed a functional logistic regression model to perform classification
and curve selection. This model automatically selects among the functional co-
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variates through the grouped Lasso variable selection. The proposed model gives
information about which curves will be selected if we are willing to use a subset of
the functional covariates for classification. For example, under penalty λ = 5, the
best four functional predictors selected in our real data application are curves at
excitations 340, 410, 420 and 460. The selected functional covariates can then be
used with different classifiers for accurate classification.

There are several aspects that can be studied in more detail. Firstly, the basis
expansion step can be combined more tightly with the grouped Lasso regression
step using techniques similar to Müller and Stadtmüller [11]. It is necessary to
investigate the consistency properties of the estimated coefficient function βj(t)’s,
such as the oracle property. The algorithm of Meier et al. [10] requires that the
tuning parameter λ to be predefined on a grid of values, where they proposed
a way to find the range of λ of interest. This method, although faster, makes it
difficult to find a precise λ value that is optimal for prediction purposes. Efficient
algorithms for searching λ is of great importance especially when functional data
is involved.

Alternative methods for curve selection can be formulated through the Bayesian
paradigm. Bayesian variable selection models can be derived for selecting variables
at a group level and thus can be used for curve selection as well.

Appendix: Proof of Proposition 1

The proof of Proposition 1 uses a result stated in the following lemma.

Lemma 1. Let f : R
n 	→ R be a strictly convex function with a minimizer x̃, and

let g : R
n 	→ [0, ∞) be a convex function. Then f + g has a unique minimizer x∗ in

R
n.

Proof. Let h(x) = f(x) + g(x). It is easy to show that h(x) is strictly convex from
the definition. We claim that the existence of a minimizer x̃ of f implies that h
is coercive, which means h(x) → ∞ as | |x| | → ∞. The coerciveness and strict
convexity of h implies the existence of a unique minimizer x∗.

To show that h is coercive, it is sufficient to show that f is coercive (since g ≥ 0).
The minimizer x̃ of f is the unique minimizer of f by strict convexity. Also, f is
convex hence is continuous on R

n (see [15], page 82). Thus ∀ r > 0, ∀ x such that
| |x − x̃| | > r, we claim

f(x) >
b

r
| |x − x̃| | + f(x̃),

where b = inf{f(x) : | |x − x̃| | = r} − f(x̃). Note that b exists and b > 0 by continuity
of f . To show this inequality, let x0 = r(x − x̃)/(| |x − x̃| |) + x̃, so that x0 lies on
the line formed by x and x̃, with | |x0 − x̃| | = r and | |x − x0| | = | |x − x̃| | − r.
Thus f(x0) − f(x̃) ≥ b by the definition of b. Now let α = r/| |x − x̃| |. We see that
x0 = αx + (1 − α)x̃. By strict convexity of f ,

f(x0) < αf(x) + (1 − α)f(x̃).

Thus
b

r
| |x − x̃| | + f(x̃) ≤ (f(x0) − f(x̃))

| |x − x̃| |
r

+ f(x̃)

< (αf(x) + (1 − α)f(x̃) − f(x̃))
| |x − x̃| |

r
+ f(x̃)

= f(x).
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Since | |x − x̃| | ≥ | |x| | − | |x̃| |, | |x| | → ∞ implies | |x − x̃| | → ∞, which implies
f(x) → ∞ by the above inequality and the facts that b > 0, r > 0, f(x̃) finite.
Therefore, f is coercive, and so is h.

Since h is coercive, we have h(x) → ∞ as | |x| | → ∞. Therefore, if we pick an
arbitrary point x1 ∈ R

n, there exists a constant δ > 0 such that h(x) > h(x1) for all
| |x − x1| | > δ. Since the domain | |x − x1| | ≤ δ is compact and h(x) is strictly convex
on it, h(x) has a unique minimizer in | |x−x1| | ≤ δ, which we denote as x∗. (A strictly
convex real valued function defined on a compact domain has a unique minimum
on its domain.) This x∗ is also the global minimizer since h(x) > h(x1) ≥ h(x∗) on
| |x − x1| | > δ.

Proof of Proposition 1. Based on results in Lemma 1, we let f to be −l(θ) and g

to be λ
∑J

j=1 s(δj)| |bj | |2 , therefore our objective function in equation (2.10) is the
sum of f and g, where θ = {α0, α, bj , j = 1, . . . , J }, and l(θ) =

∑n
i=1 yiηi − log(1 +

exp(ηi)) with ηi = α0 + zT
i α +

∑J
j=1

∑δj

k=1 cijkbjk.
Firstly, we show that −l(θ) is strictly convex. It is sufficient to show that its

Hessian is positive definite. Since the Hessian takes the form

�2
θ(−l(θ)) = XT DX,

where D = diag{exp(ηi)/(1+exp(ηi))2, i = 1, . . . , n}. It is positive definite since X
is of rank m (full rank). Secondly, since the maximum likelihood estimator exists,
−l(θ) has an unique minimizer. The existence of maximum likelihood estimator for
logistic regression requires some conditions for the design matrix X. Basically, the
n rows of X can not be completely separated or quasi-completely separated in R

m.
See [1] for details. In practice, as long as we can find a numerical solution for the
MLE at λ = 0, we would believe that the maximum likelihood estimator exists.
Finally, let g(b) = λ

∑J
j=1 s(δj)| |bj | |2, bT = (bT

1 , . . . , bT
J ). It is easy to see that g(b)

is convex by the triangle inequality. Therefore by Lemma 1, Qλ(θ) has a unique
minimizer θ∗.
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