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Abstract: A Lévy model combines a Brownian motion with drift and a pure-
jump homogeneous process such as a compound Poisson process. The estima-
tion of the Lévy density, the infinite-dimensional parameter controlling the
jump dynamics of the process, is studied under a discrete-sampling scheme.
In that case, the jumps are latent variables whose statistical properties can
in principle be assessed when the frequency of observations increase to in-
finity. We propose nonparametric estimators for the Lévy density following
Grenander’s method of sieves. The associated problem of selecting a suitable
approximating sieve is subsequently investigated using regular piece-wise poly-
nomials as sieves and assuming standard smoothness conditions on the Lévy
density. By sampling the process at a high enough frequency relative to the
time horizon T , we show that it is feasible to choose the dimension of the
sieve so that the rate of convergence of the risk of estimation off the origin
is the best possible from a minimax point of view, and even if the estimation
were based on the whole sample path of the process. The sampling frequency
necessary to attain the optimal minimax rate is explicitly identified. The pro-
posed method is illustrated by simulation experiments in the case of variance
Gamma processes.
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1. Introduction

1.1. Motivation and Some Background

In the last decade, Lévy processes have received a great deal of attention, fueled
by numerous applications in the area of mathematical finance, to the extend that
Lévy processes have become a fundamental building block in the modeling of asset
prices with jumps (see e.g. [11] and [30]). The simplest of these models postulates
that the price of a commodity (say a stock) at time t is determined by

(1.1) St := S0e
Xt ,

where X := {Xt}t≥0 is a Lévy process. Even this simple extension of the classi-
cal Black-Scholes model, in which X is simply a Brownian motion with drift, is
able to account for some fundamental empirical features commonly observed in
time series of asset returns such as heavy tails, high-kurtosis, and asymmetry. More
recently, other Lévy based models have been proposed to account for more styl-
ized features of stock prices. These models include exponential time-changed Lévy
processes (cf. [7]-[9]), and stochastic differential equations driven by multivariate
Lévy processes (cf. [1], [31]). Lévy processes, as models capturing some of the most
important features of returns and as “first-order approximations” to other more
accurate models, should be considered first in developing and testing a successful
statistical methodology. However, even in such parsimonious models, there are sev-
eral issues in performing statistical inference by standard likelihood-based methods.

A Lévy process is the “discontinuous sibling” of a Brownian motion. Concretely,
X = {Xt}t≥0 is a Lévy process if X has independent and stationary increments,
its paths are right-continuous with left limits, and it has no fixed jump times. The
later condition means that, for any t > 0,

P [ΔXt �= 0] = 0,

where ΔXt := X(t) − lims↗t Xs is the magnitude of the “jump” of X at time t.
It can be proved that the only Lévy process with continuous paths is essentially
the Brownian motion W := {Wt}t≥0 up to a drift term bt (hence, the well-known
Gaussian distribution of the increments of W is a byproduct of the stationarity
and independence of its increments). The only deterministic Lévy process is of the
form Xt := bt, for a constant b. Another distinguished type of Lévy process is a
compound Poisson process defined as

(1.2) Yt :=
Nt∑
i=1

ξi,

where N is a homogeneous Poisson process and the random variables ξi, i ≥ 1, are
mutually independent from one another, independent from N , and with common
distribution ρ. The process N dictates the jump times, which can occur “homoge-
neously” across time with an (average) intensity of λ jumps per unit time, while
the sequence {ξi}i≥1 determines the sizes of the jumps.
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It turns out that the most general Lévy process is the superposition of a Brownian
motion with drift, σWt + bt, a compound Poisson process, and the limit process
resulting from making the jump intensity of a compensated compound Poisson
process, Yt − E Yt, to go to infinity while simultaneously allowing jumps of smaller
sizes. The latter limiting process is governed by a measure ν such that the intensity
of jumps is λε := ν(ε ≤ |x| < 1), the common distribution of the jump sizes
is ρε(dx) := 1{ |x|≥ε}ν(dx)/λε, and the limit is when ε ↘ 0. For such a limit to
converge to a “steady” process it must hold that∫

{ |x|<1}
x2ν(dx) < ∞.

The previous fundamental decomposition of a Lévy process is called the Lévy-Itô
decomposition (see Section 19 in [29] for the details).

In summary, Lévy processes are determined by three “parameters”: a non-nega-
tive real σ2, a real b, and a measure ν on R\{0} such that

∫
(x2 ∧ 1)ν(dx) < ∞. The

measure ν controls the jump dynamics of the process X in that for any A ∈ B(R)
whose indicator χA vanishes in a neighborhood of the origin,

ν(A) =
1
t

E

⎡⎣∑
s≤t

χ
A

(ΔX(s))

⎤⎦ ,

for any t > 0 (see Section 19 of [29]). Thus, ν(A) gives the average number of jumps
(per unit time) whose magnitudes fall in the set A. A common assumption in Lévy-
based financial models is that ν is determined by a function s : R\{0} → [0, ∞),
called the Lévy density, as follows

ν(A) =
∫

A

s(x)dx, ∀A ∈ B(R\{0}).

Intuitively, the value of s at x0 provides information on the frequency of jumps with
sizes “close” to x0. In the case of the compound Poisson process (1.2), the Lévy
measure is ν(dx) = λρ(dx).

By allowing a general Lévy process X in (1.1), instead of just a Brownian motion
with drift as in the Black-Scholes model, one can incorporate two very appealing
features: sudden changes in the price dynamics and some freedom in the distribution
for the log return log{St/Ss} = Xt −Xs. The possible distributions belong to the so-
called class of infinitely-divisible distributions, a very rich class which include most
known parametric families of distributions. We recall that an infinitely divisible
distribution μ is characterized by the so-called Lévy-Khinchin representation of its
characteristic function.

There are two key properties of a Lévy process that are exploited in this work.
The first property relates ν with the short-term moments of Xt. Concretely, if ϕ is
ν-continuous, bounded, and vanishing in a neighborhood of the origin, then

(1.3) lim
Δ→0

1
Δ

E ϕ(XΔ) =
∫

ϕ(x)ν(dx) =
∫

ϕ(x)s(x)dx.

The limiting relation (1.3) is straightforward when X is a compound Poisson
process. A proof of (1.3) for a general Lévy process can be found in [29] (see his
Corollary 8.9). Let us remark that (1.3) is also valid for certain unbounded func-
tions ϕ, which does not necessarily vanish in a neighborhood of the origin, but
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rather converge to 0 at a proper rate (see [15] for more details). The second key
property is related to the decomposition of X into two independent processes: one
accounting for the “small” jumps and a compound Poisson process collecting the
“big” jumps. Concretely, let

X̃ε
t :=

∑
s≤t

ΔXs1{ |ΔXs |>ε},

be the piece-wise constant process associated with those jumps of X with sizes
larger than ε. Then, X̃ε is a compound Poisson process independent of X − X̃ε.

1.2. The Statistical Problems and Methodology

We are interested in estimating the Lévy density s on a window of estimation
D := [a, b] ⊂ R\ {0}, based on discrete observations of the process on a finite
interval [0, T ]. We remark that the domain D is “separated” from the origin; that is
to say, the estimation window D lies outside of a neighborhood of the origin. If the
whole path of the process were available (and hence, the jumps of the process would
be available), the problem would be identical to the estimation of the intensity of
a non-homogeneous Poisson process on a fixed time interval, say [0, 1], based on T
independent copies of the process. However, under discrete-sampling, the times and
sizes of jumps are latent (unobservable) variables, whose statistical properties can
be assessed when the frequency of observations increase to infinity at a certain speed
relative to the time horizon. Hence, we will aim at determining the performance of
our estimation method as both frequency and time horizon increase.

We adopt the so-called method of sieves originally proposed by [18] and im-
plemented by Birgé, Massart, and others (see e.g. [3] & [5]) in several classical
nonparametric problems such as density estimation and regression. This approach
consists of the following general steps. First, choose a family of finite-dimensional
linear models of functions, called sieves, with good approximation properties. Com-
mon sieves are splines, trigonometric polynomials, or wavelets. Second, specify a
distance between functions relative to which the best approximation to s, in a given
linear model, is going to be defined and characterized. Finally, devise an estimator,
called the projection estimator, for the best approximation of s in the given linear
model. It is important to point out that in principle there is no guarantee that the
projection estimator will be nonnegative. In practice, one barely faces this prob-
lem when working with a large sample size, which is exactly the situation when
nonparametric methods are recommended.

A linear model has the generic form

(1.4) S := {β1ϕ1 + · · · + βdϕd : β1, . . . , βd ∈ R},

where ϕ1, . . . , ϕd are given functions, typically taken to be orthonormal with respect
to the inner product 〈p, q〉 :=

∫
D

p(x)q(x)dx. In the sequel, ‖ · ‖ stands for the
associated norm 〈·, · 〉1/2 on L

2(D, dx). Relative to the distance induced by ‖ · ‖, the
element of S closest to s, i.e. the orthogonal projection of s on S, is

(1.5) s⊥(x) :=
d∑

j=1

ν(ϕj)ϕj(x),

where ν(ϕj) := 〈ϕj , s〉 =
∫

ϕj(x)s(x)dx. Then, the method of sieves boils down
to estimate the orthogonal projection (1.5) on an “adequate” sieve S. The core
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problem in this paper is to determine what a good sieve is. A very large linear
model S will allow to attain a close approximation to s, but will entail necessarily
a high estimation variance as the result of the large number of coefficients βi to be
estimated. Therefore, an essential task, called model selection, consists of selecting
a linear model S accomplishing a good tradeoff between the error of approximation
(or mis-specification error) and the standard error of the estimation. Concretely,
one wishes to minimize the risk of the estimator ŝ, which in turn can be decomposed
into two antagonist terms as follows:

(1.6) E ‖s − ŝ‖2 = ‖s − s⊥ ‖2 + E ‖s⊥ − ŝ‖2.

The first term, called the bias term, accounts for the error of the approximation,
while the second, called the variance term, accounts for the standard error of the
estimation.

1.3. The Sieve Estimators and an Overview of Results

We assume that the Lévy process {Xt}t≥0 is being sampled over a time horizon
[0, T ] at discrete times 0 < tn1 < · · · < tnn = T . In the sequel, tn0 := 0, πn := {tnk }n

k=0,
and π̄n := maxk {tnk − tnk−1}, the so-called mesh of the partition. We shall sometimes
drop the superscript n in πn and tni . The following statistics are the main building
blocks of our estimators:

(1.7) β̂πn

(ϕ) :=
1
tn

n∑
k=1

ϕ
(
Xtn

k
− Xtn

k−1

)
.

In the case of a quadratic function ϕ(x) = x2,
∑n

k=1 ϕ(Xtn
k

− Xtn
k−1

) is called the
realized quadratic variation (or variance) of the process. Thus, the statistics (1.7)
can be interpreted as the average realized ϕ-variation of the process per unit time
based on the observations Xtn

1
, . . . , Xtn

n
.

To explain the motivation behind the estimator in (1.7), let us assume for now
that the sampling observations are equally-spaced in time so that Δn := tni − tni−1 =
T/n for all i, and hence,

E {β̂πn

(ϕ)} =
1

Δn
E ϕ (XΔn) ,

Var
{

β̂πn

(ϕ)
}

=
1
T

(
1

Δn
E ϕ2 (XΔn)

)
− 1

n

(
1

Δn
E ϕ (XΔn)

)2

.

In view of (1.3), it is now evident that

(1.8) lim
n→∞

E {β̂πn

(ϕ)} =
∫

ϕ(x)s(x)dx, and lim
T →∞

sup
n

Var
(
β̂πn

(ϕ)
)

= 0,

if ϕ is ν-continuous, bounded, and vanishing in a neighborhood of the origin. In
statistical terms, (1.8) means that the statistic β̂πn

(ϕ) is an asymptotically unbi-
ased estimator of

∫
ϕ(x)s(x)dx with associated risk vanishing uniformly when time

horizon T increases. The previous argument leads us to propose

(1.9) ŝπn

(x) :=
d∑

j=1

β̂πn

(ϕj)ϕj(x),
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as a natural estimator for the orthogonal projection s⊥ defined in (1.5). In view of
(1.8), ŝπn

is a “consistent” estimator for s⊥, in the integrated mean-square sense, as
both the time horizon T = tnn and the sampling frequency n/tnn go to ∞. The general
sampling case will be considered in Section 2 as well as other statistical properties.
It is worth pointing out that ŝπn

is independent of the specific orthonormal basis of
S as it can be proved that ŝπn

is the unique solution of the minimization problem

min
f ∈S

γπ
D

(f),

where γπn

D
: L2(D, dx) → R is given by

(1.10) γπn

D
(f) ≡ − 2

tnn

n∑
k=1

f(Xtn
k

− Xtn
k−1

) +
∫

f2(x)dx.

In the literature of model selection (see e.g. [4] and [25]), γπn

D is called the contrast
function.

Finding the best sieve S to estimate s, even if we stick with using the class of
projection estimators in (1.9), is impossible because s is unknown. However, it is
possible to select a reasonably good model under certain qualitative assumptions
on the parameter s, typically expressed by requiring s to be a member of a certain
class Θ of smooth functions. Concretely, suppose we are interested in selecting a
good model out of a family of linear models {Sm}m∈M (here, M is a suitable set
of labels). Let m∗ := m∗(π) be the optimal minimax element of {ŝm}m∈M on Θ,
defined as

m∗ := arginfm∈M

{
sup
s∈Θ

E ‖s − ŝm‖2
}

.

By requiring certain conditions on Θ and by choosing a suitable family of sieves
{Sm}m∈M, we can ensure that

(1.11) E ‖s − ŝm∗(π)‖2 → 0

as the mesh of the partition π = {tk }k≥1 vanishes and the time horizon T := tn goes
to infinity. Our goal will be to select a linear model m̂(π) ∈ M so that the projection
estimator on this model, ŝm̂(π), “attains” the minimax rate of convergence in (1.11),
in the sense that

(1.12) lim sup
E ‖s − ŝm̂(π)‖2

E ‖s − ŝm∗(π)‖2
< ∞,

where the limit is taken as π̄ → 0 and T → ∞. In order to be able to determine
in a “simple” way the rate of convergence of ŝm̂(π), we shall control the sampling
frequency, measured by π̄, in terms of the time horizon T . It is intuitive that in gen-
eral the sampling frequency will depends on how close the window of estimation D
is to the origin (see Section 3.4). The limit result (1.12) and the rate of convergence
of projection estimators for a certain class of smooth Lévy densities are addressed
in Section 3.

In this paper, we will show that the rate of convergence that can be attained
using projection estimation on sieves is actually the best possible among all feasible
estimators, given the information available on s (namely, that s belongs to a certain
class Θ of smooth functions), and even if the estimators were based on continuous-
time sampling of the process. Concretely, define ŝ∗

T
be the minimax estimator,

ŝ∗
T

:= arg inf
ŝ

sup
s∈Θ

E ‖s − ŝ‖2 < ∞,
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where the infimum is over all the estimators ŝ of s based on {X(t)}0≤t≤T . Then,
by sampling at a high enough frequency (relative to T ), we can accomplish that

lim sup
T →∞

E ‖s − ŝm̂‖2

E ‖s − ŝ∗
T

‖2
< ∞.

The rate of convergence of the minimax estimator will be provided in Section 4.
Let us finish by pointing out that the model selection problem was already ana-

lyzed in Figueroa-López & Houdré (2006) using the statistics

(1.13) β̂c(ϕ) :=
1
tn

∑
t≤tn

ϕ (ΔXt) ,

which intrinsically required continuous-time sampling of the process to determine
the jumps ΔXt. In the cited paper, the statistics (1.7) were proposed as good proxies
of (1.13). Indeed, convergence in distribution is not hard to check, but moreover,
recently [20] prove that (1.7) converges in probability to (1.13) when n → ∞ (for
fixed T ). To the best of our knowledge, an analysis of the model selection problem
for Lévy densities, under discrete sampling schemes, has not been considered before
the present work.

1.4. Outline

The paper is structured as follows. In Section 2, we introduce the estimators pro-
posed in this paper and study some basic statistical properties. In particular,
we prove a CLT for the estimator β̂π(ϕ) of (1.7) centered at the inner product
β(ϕ) =

∫
ϕ(x)s(x)dx. In Section 3, we describe how to control the risk of the pro-

jection estimators by imposing three conditions. First, the time horizon T should be
large enough (compared to the complexity of the sieves). Second, the time span be-
tween consecutive observations should be small enough compared to the time hori-
zon. Finally, the sieves should have good approximating properties in general classes
of smooth functions. We show that by ensuring the three previous conditions and by
suitably choosing the dimension of the sieve (in terms of the presumed smoothness
of the function s), the rate of convergence of the risk is of order O(T −2α/(2α+1)) as
T → ∞ provided that the parameter s has “degree of smoothness” α.

In Section 4, the minimax risk of estimation, defined by

inf
ŝ

T

sup
s∈Θ

E s‖s − ŝT ‖2,

is studied. Here, the infimum is over all estimators ŝ
T

which can be computed from
the whole sample paths of X on the interval [0, T ] and the supremum is over all Lévy
densities in a class Θ of functions that are smooth in D = [a, b]. We found that the
minimax risk converges at an order of O(T −2α/(2α+1)), where α is a parameter that
measures the smoothness of the functions on Θ. For instance, if s has d continuous
derivatives in D, then α ≥ d. The rate of convergence of the estimation is faster
when α increases. Sections 3 and 4 justify the claim of the abstract: “...we show that
it is feasible to choose the dimension of the sieve so that the rate of convergence
of the risk of estimation off the origin is the best possible from a minimax point
of view, and even if the estimation were based on the whole sample path of the
process”.
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In Section 5, we propose a data-driven selection method for the sieve. Instead
of deciding the dimension of the sieve from a presumed degree of smoothness of s
(as it was suggested in Section 3), we propose to choose the sieve that minimizes
an unbiased estimator of the risk of the projection estimator corresponding to that
sieve. Since the proposed estimator of the risk will require the knowledge of all
jumps of X up to time T , we replace it by a natural discrete-based proxy, where
the jumps ΔXt are replaced by the increments Xtk

−Xtk−1 . Section 6 illustrates the
statistical methods using simulation experiments in the case of a variance gamma
Lévy model. We finish with an Appendix where some technical proofs are given.

2. First Properties at the Estimators

In this section, our goal is to survey some statistical properties of the estimators
(1.7) and (1.9). We already mentioned a few of these in the case of regular sampling1

and of bounded ν-continuous test functions ϕ vanishing in a neighborhood of the
origin. In the framework of this paper, this kind of test functions indeed suffices
to recover and estimate the Lévy density off the origin. Our first result is a simple
application of the Central Limit Theorem (CLT) for independent random variables
(cf. [20] [Theorem 3.2] for the case of regular sampling). In the following results, Z
stands for a standard Normal random variable.

Proposition 2.1. Let ϕ be ν-continuous, bounded, and such that ϕ(x) = o(|x|), as
x → 0. Then,

(2.1)
√

tn

(
β̂π(ϕ) − E β̂π(ϕ)

)
D−→ ν(ϕ2)

1
2 Z,

as tn → ∞ and π̄ → 0.

Proof. Let Γt(ϕ) := E ϕ2(Xt) − { E ϕ(Xt)}2 and Δk := tk − tk−1. We can write

√
tn

(
β̂π(ϕ) − E β̂π(ϕ)

)
=

n∑
k=1

ξπ
k ,

where ξπ
k = 1√

tn
{ϕ(Xtk

− Xtk−1) − E ϕ(Xtk −tk−1)}. Under the assumption of this
Proposition, it turns out that limt→0

1
t Γt(ϕ) = ν(ϕ2) (see Lemma 5.5 in Jacod

(2007)), and thus,

σ̄2
n,π := Var

n∑
k=1

ξπ
k =

1
tn

n∑
k=1

ΓΔk
(ϕ) −→ ν(ϕ2),

as the mesh π̄ := maxk {tk − tk−1} → 0. Due to the boundedness of ϕ, we have
that, for π̄ small enough,

|ξπ
k |

σ̄n,π
≤ C

1√
tn

→ 0,

as tn → ∞. Then, (2.1) follows from the Central Limit Theorem for independent
random variables (see e.g. the Corollary following Theorem 7.1.2 in [10]).

In order to provide an explicit centering in (2.1), we need to estimate the rate
of convergence of the bias E β̂π(ϕ) − ν(ϕ). Since

E β̂π(ϕ) − ν(ϕ) =
1
tn

n∑
k=1

Δk

{
1

Δk
E ϕ(XΔk

) − ν(ϕ)
}

,

1Sampling equally spaced in time.
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the problem is equivalent to analyzing the rate of convergence in (1.3). To achieve
this goal, we need to impose some regularity on either the Lévy process or the
moment functions ϕ. Following the second approach, [15] shed light on this problem
for functions ϕ ∈ C2

b (R); namely, twice-continuously differentiable functions ϕ such
that lim sup|x|→∞ |ϕ(i)(x)| < ∞, for i = 0, 1, 2. Below, ∗ denotes the convolution
operator ν1 ∗ ν2(ϕ) :=

∫∫
ϕ(x1 +x2)ν1(dx1)ν2(dx2), and L denotes the infinitesimal

generator of the process X (see e.g. Sato (1999)), which is known to be given by

(2.2) (Lϕ)(x) :=
σ2

2
ϕ′ ′(x)+bϕ′(x)+

∫ (
ϕ(y + x) − ϕ(x) − yϕ′(x)1{ |y|≤1}

)
ν(dy);

see Theorem 31.5 in [29] and also in Proposition 2.3 in [15]. The following result
can be found in [15] (see Proposition 3.1), where a proof is provided for a certain
class of unbounded functions ϕ:

Lemma 2.2. If ϕ ∈ C2
b (R) vanishes in a neighborhood of the origin, then

(2.3) lim
t→0

1
t

{
1
t

E ϕ(Xt) − ν(ϕ)
}

= νε(Lϕ) − 1
2

νε ∗ νε(ϕ),

where νε(dx) := 1{ |x|≥ε}ν(dx).

The following is an easy consequence of the previous two results.

Theorem 2.3. Under the assumptions of Lemma 2.2,

(2.4)
√

tn

(
β̂π(ϕ) − ν(ϕ)

)
D−→ ν(ϕ2)

1
2 Z

as tn → ∞ and π̄ → 0 so that π̄
√

tn → 0.

Proof. It suffices to prove that

Dn :=
√

tn

(
E β̂π(ϕ) −

∫
ϕ(x)ν(dx)

)
−→ 0.

Writing Δk = tk − tk−1 and using (2.3), for π̄ = maxk Δk small enough, there exists
a constant C such that

|Dn| ≤ 1√
tn

n∑
k=1

Δk

∣∣∣∣ 1
Δk

E ϕ(XΔk
) − ν(ϕ)

∣∣∣∣ ≤ C
1√
tn

n∑
k=1

Δ2
k ≤ Cπ̄

√
tn → 0,

by assumption.

Remark 2.4. As a direct consequence, it follows that β̂π(ϕ) is a consistent esti-
mator for ν(ϕ) as tn → ∞ and π̄ → 0 so that π̄

√
tn → 0. As a matter of fact, it

suffices that tn → ∞ and π̄ → 0, provided that e.g. f is ν-continuous, bounded, and
f(x) = o(|x|2), as x → 0. A proof of this statement is outlined in [32] for regular
sampling observations, while the general case is considered in [14].

In view of the linearity of β̂π(·) and ν(·), we conclude that

Corollary 2.5. Let Ξ be the class of functions ϕ ∈ C2
0 (R) that vanish in a

neighborhood of the origin. Suppose that the linear model S in (1.4) is such that
{ϕj }d

j=1 ⊆ Ξ. Then, the projection estimator ŝπ(x) in (1.9) satisfies the limiting
relation

(2.5)
√

tn
(
ŝπ(x) − s⊥(x)

) D−→ V 1/2(x) Z
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as tn → ∞ and π̄ → 0 so that π̄
√

tn → 0, where V (x) :=
∫

f2(y)ν(dy) with
f(y) :=

∑d
j=1 ϕj(x)ϕj(y).

Remark 2.6. Notice that we have the following bound for the variance

V (x) ≤ ‖s‖∞,D

d∑
j=1

ϕ2
j (x),

where ‖s‖∞,D := sup
y∈D

s(y).

We can relax the regularity conditions on the moment functions ϕ by using a
simple integration by parts formula (see Remark 3.3 below). A different approach
could be to impose additional regularity conditions on the Lévy process itself. In
this direction, [28] studies series expansions for the transition density pt(x) of Xt

as powers of t. For instance, one of their results states that if pt is monotonically
decreasing for x > b and x < −c, for some b, c > 0, then for any η > 0, there exists
ε′ > 0 and t0 > 0, such that

(2.6)
1
t
pt(x) = e

−
∫

{ |y|>ε}
s(y)dy

s(x) + Oε,η(t),

for |x| > η. Such a result will allow us to estimate the rate of convergence in (1.3)
if ϕ vanishes around the origin, since

1
Δ

E ϕ(XΔ) − ν(ϕ) =
∫

ϕ(x)
{

1
Δ

pΔ(x) − s(x)
}

dx.

However, we should warn that the derivation of (2.6) in [28] is not completely
formal2, and hence, we avoid to use such an approach in the sequel. See [17] for
more insight on the small-time polynomial expansions of the transition distributions
of the Lévy process.

3. The Model Selection Problem

In this part we describe how to control the risk (1.6) of the projection estimators
by imposing two conditions. First, the time horizon T should be large enough
(compared to the complexity of the sieves), while the sampling frequency is kept
small compared to the time horizon. These conditions will ensure that the variance
term of (1.6) is of order O(T −1). Second, the sieves should have good approximating
properties in general classes of smooth functions so that when the Lévy density is
presumed to have “degree of smoothness α”, the bias term of (1.6) is of order
O(m−α), where m is the dimension of the sieve (see Section 3.2 for the details). We
prove that under the above conditions, we can tune up the dimension of the sieve
to the presumed smoothness of s so that the rate of convergence of the risk is of
order O(T −2α/(2α+1)).

2The main problem arises from the application of Lemma 1 in [28]. The value of t0 actually
depends on δ. Later on in their proof, δ is taken arbitrarily small, which is likely to result in t0 → 0
(unless otherwise proved).



Nonparametric Estimation for Lévy Models 127

3.1. Analysis of the Variance Term

Consider the setting and notation of the introduction. For simplicity, we focus on
estimation windows D in the positive reals (that is, D := [a, b], for some 0 < a <
b ≤ ∞). By making the sampling frequency per unit time high enough relative to
the sampling horizon T , we can estimate the rate at which the variance term of
the risk (1.6) decreases in the time horizon T . In the subsequent sections, we will
see that this estimate actually leads to a rate of convergence for the risk which is
optimal, even if our estimation were based on the whole sample path {Xt}t≤T . We
shall need the following technical lemma, which we prove in the appendix for the
sake of completeness.

Lemma 3.1. For any T > 0, there exist δT > 0 and k > 0 (independent of T )
such that

sup
y∈D

∣∣∣∣ 1
Δ

P [XΔ ≥ y] − ν([y, ∞))
∣∣∣∣ < k

1
T

for all Δ < δ
T
.

The mesh size δT will play a very important role below as the asymptotic results
in the sequel will hold true as far as the sampling frequency, measured by π̄ :=
max {tk −tk−1}, is such that π̄ < δT . Thus, from a practical point of view, estimating
δT is crucial. We will discuss this point in more detail in the Section 3.4.

The following easy estimate will be useful in the sequel.

Lemma 3.2. Suppose that ϕ has support [c, d] ⊂ R+\{0}, where ϕ is continuous
with continuous derivative. Then,∣∣∣∣ E ϕ (XΔ)

Δ
− ν(ϕ)

∣∣∣∣ ≤
(

|ϕ(c)| +
∫ d

c

|ϕ′(u)| du

)
MΔ([c, d]),

where MΔ([c, d]) := supy∈[c,d] | 1
Δ P [XΔ ≥ y] − ν([y, ∞))|.

Proof. The result follows from the following identities

E ϕ(XΔ) = ϕ(c) P [XΔ ≥ c] +
∫ ∞

c

ϕ′(u) P [XΔ ≥ u] du,∫
ϕ(x)ν(dx) = ϕ(c)ν ([c, ∞)) +

∫ ∞

c

ϕ′(u)ν ([u, ∞)) du.

These are standard consequences of Fubini’s Theorem.

Remark 3.3. We can apply the previous two lemmas to obtain CLTs for β̂π

and ŝπ. Indeed, if ϕ is as in Lemma 3.2 and, for each T , the partition π
T

has
mesh smaller than δT , the critical value in Lemma 3.1, then (2.3) hold true. The
projection estimator ŝπ will satisfy (2.5) provided that the basis functions ϕ are as
in Lemma 3.2.

We are now ready to estimate the variance term. We shall impose conditions
on the approximating linear models so that the estimates of the above lemmas are
applicable.

Standing assumption 1. The linear model S of (1.4) is generated by an ortho-
normal basis G := {ϕj }d

j=1 such that each ϕj is bounded with continuous derivative
on the interior of its support, which is assumed to be of the form [xj−1, xj ] ⊂ D.
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In the sequel, we will need the following notation:

D1(S) := inf
G

max
{

‖ϕ‖2
∞ : ϕ ∈ G

}
,(3.1)

D2(S) := inf
G

max
{

‖ϕ′ ‖2
1 : ϕ ∈ G

}
,(3.2)

where the infimums are over all orthonormal bases G of S.

Proposition 3.4. There exists a constant K > 0 such that

(3.3) E ‖s⊥ − ŝπ ‖2 ≤ K
dim(S)

T
,

for any linear model S satisfying the Standing Assumption 1, and for any partition
π : 0 = t0 < · · · < tn = T such that T > max{D1(S), D2(S)} and π̄ < δT , where
δ

T
is the “critical” mesh size introduced in Lemma 3.1.

Proof. Fix an orthonormal basis G := {ϕj }d
j=1 of S. Let Dt(ϕ) := 1

t E ϕ(Xt) − ν(ϕ).
For any ϕj ∈ G, we have

E

{
β̂π(ϕj) − ν(ϕj)

}2

≤ 1
tn

∫
ϕ2

j (x)ν(dx)

+
1
t2n

n∑
k=1

∣∣DΔk
(ϕ2

j )
∣∣Δk +

{
1
tn

n∑
k=1

|DΔk
(ϕj)| Δk

}2

,

where Δk := tk − tk−1. Then, from the previous two lemmas, when π̄ < δT ,

E

{
β̂π(ϕj) − ν(ϕj)

}2

≤ 1
T

∫
ϕ2

j (x)ν(dx)

+
k

T 2

(
|ϕ2

j (xj−1)| +
∫ xj

xj−1

∣∣2ϕj(u)ϕ′
j(u)

∣∣ du

)

+
k2

T 2

(
|ϕj(xj−1)| +

∫ xj

xj−1

∣∣ϕ′
j(u)

∣∣ du

)2

,

which can be simplified further as follows

E

{
β̂π(ϕj) − ν(ϕj)

}2

≤ 1
T

∫
ϕ2

j (x)ν(dx) +
2k2

T 2

(
‖ϕj ‖ ∞ + ‖ϕ′

j ‖1

)2

≤ ‖s · χD ‖ ∞
T

+ 8k2
maxj′ ‖ϕj′ ‖2

∞ + ‖ϕ′
j′ ‖2

1

T 2
.

Then,

E ‖s⊥ − ŝπ ‖2 ≤ dim(S)
T

{
‖s · χ

D
‖ ∞ + 8k2

maxj′ ‖ϕj′ ‖2
∞ + ‖ϕ′

j′ ‖2
1

T

}
.

Now, it is evident that (3.3) holds whenever T > max{D1(S), D2(S)}.

3.2. The Approximation Error for Besov Type Smooth Functions

As it is customary, the bias term in (1.6) will be estimated by imposing certain
degree of smoothness on the function s. Concretely, the restriction of the Lévy
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density s to D := [a, b] is assumed to belong to the Besov space Bα
∞(Lp([a, b]))

for some p ∈ [2, ∞] and α > 0 (see for instance [12] and references therein for
background on these spaces). The space Bα

∞(Lp([a, b])) consists of those functions
f belonging to Lp([a, b]) if 0 < p < ∞ (or being uniformly continuous if p = ∞)
such that

|f | Bα
∞(Lp) ≡ sup

δ>0

1
δα

sup
0<h≤δ

‖Δr
h(f, ·)‖p < ∞,

with r := [α] + 1. Here, Δh(f, x) ≡ f(x + h) − f(x) and Δr
h(f, x) is the rth-order

difference of f defined recursively by

Δr
h(f, x) ≡ Δh(Δr−1

h (f, ·), x),

for x’s such that x + rh ∈ D and r ∈ N.
The Besov class is closely related to the so-called class of Lipschitz functions.

For constants k ∈ N and β ∈ (0, 1], f is said to belong to Lip(k + β, Lp([a, b])) if
f, . . . , f (k−1) are absolutely continuous (on [a, b]) and f (k) belongs to Lp((a, b)) and
satisfies

(3.4) sup
h>0

1
hβ

‖Δh(f (k), ·)‖p < ∞.

It is known that if β < 1 and 1 ≤ p ≤ ∞, then f ∈ Lip(k + β, Lp([a, b])) if and
only if f is a.e. equal to a function in Bα

∞(Lp([a, b])) with α := k + β. In general,
Lip(k + β, Lp([a, b])) ⊂ Bk+β

∞ (Lp([a, b])), for any 0 < p ≤ ∞ (see e.g. [12]). Notice
that when p = ∞, the condition (3.4) takes the form:

(3.5) |f (k)(x) − f (k)(y)| ≤ L|x − y|β ,

for all x, y ∈ (a, b) and some L < ∞.
An important reason for working with the Besov-type smooth functions is the

availability of estimates of the approximation error by splines, trigonometric polyno-
mials, and wavelets (see [12] and [3] for more details). For instance, if Sk,m denotes
the space of piecewise polynomials of degree at most k, based on a regular partition
of [a, b] with m classes, and s ∈ Bα

∞(Lp([a, b])) with α < k + 1, then there exists a
constant c[α] < ∞ such that

(3.6) inf
f ∈Sk,m

‖s − f ‖p ≤ c[α]|s| Bα
∞(Lp)(b − a)αm−α.

Thus, when p ≥ 2, the orthogonal projection of s on Sk,m, denoted by s⊥
m, is such

that

(3.7) ‖s − s⊥
m‖ ≤ c[α](b − a)

1
2 − 1

p +α|s| Bα
∞(Lp)m

−α.

Notice that the elements of Sk,m are not necessarily smooth (not even continuous)
and hence, they are not “splines” in the standard sense of the literature, where a
spline is understood as a smooth piece-wise polynomial. The upper bound (3.6)
is actually true if we restrict to certain splines of Sk,m (say B-splines) (see (10.1)
in Chapter 2 of [12]). For the sake of completeness let us describe in detail the
space Sk,m as well as give estimates for the constants (3.1)-(3.2). Let Qj be the
Legendre polynomials of order j on L

2([−1, 1], dx). The space Sk,m is generated by
the orthonormal functions

ϕ̂i,j(x) :=

√
2j + 1

xi − xi−1
Qj

(
2x − (xi + xi−1)

xi − xi−1

)
1(xi−1,xi)(x),
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for i = 1, . . . , m and j = 0, . . . , k, and where a = x0 < · · · < xm = b are equally-
spaced points. It is well-known that |Qj(x)| ≤ 1 and |Q′

j(x)| ≤ Q′
j(1) = j(j+1)

2 .
Then, fixing Δx := xi − xi−1 = b−a

m , we have that

ϕ̂′
i,j(x) = 2

√
2j + 1 Δ−3/2

x Q′
j

(
2x − (xi + xi−1)

xi − xi−1

)
1(xi−1,xi)(x),

‖ϕ̂′
i,j ‖1 ≤ 2

√
2j + 1Δ−3/2

x

∫ xi

xi−1

sup
u

|Q′
j(u)|dx ≤

√
2j + 1Δ−1/2

x (j)(j + 1).

It is now clear that

D2(Sk,m) ≤ max
i,j

{
‖ϕ′

i,j ‖2
1

}
≤ (k + 1)2k2(2k + 1)

b − a
m.

In a similar manner one can check that

D1(Sk,m) ≤ (k + 1)2(2k + 1)
b − a

m.

3.3. Rate of Convergence for Smooth Functions Via Splines

As a consequence of the variance and bias term estimates given in the previous two
parts, we now estimate the rate of convergence on D of the projection estimators
(1.9), using the regular piece-wise polynomials {Sk,m}m≥1 as sieves assuming that
the Lévy density s is in the Besov class Bα

∞(Lp([a, b])) with p ≥ 2 and α < k + 1.
It turns out that under the stated conditions, projection estimators converge at a
rate at least as good as T −2α/(2α+1). The following result is valid provided that,
for each time horizon T , the mesh of the sampling times π

T
is smaller than the

critical mesh δ
T

introduced in Lemma 3.1. In Section 4, we will see that this rate
is actually the best possible even under continuous sampling.

Proposition 3.5. Let m̂
T

:= [T 1/(2α+1)] and let Θ(R, L) be the class of Lévy
densities s such that ‖s · χ

D
‖ ∞ < R, and such that the restriction of s to D := [a, b]

is a member of Bα
∞(Lp([a, b])) with |s| Bα

∞(Lp) < L and p ≥ 2. Then,

(3.8) lim sup
T →∞

T 2α/(2α+1) sup
s∈Θ(R,L)

E
[

‖s − ŝT ‖2
]

< ∞,

where for each T , the estimator ŝ
T

is given by (1.7) and (1.9) with S = Sk,m̂
T
,

k > α − 1, and a mesh π̄T smaller than δT .

Proof. From the two previous parts, there exists a constant K (depending on
k, a, b, α, R, p, L) such that

‖s − s⊥
m‖ ≤ K m−α and E ‖s⊥ − ŝπ

m‖2 ≤ K
m

T
,

for m ∈ MT := {m′ : T > Km′ } and π̄ < δT . Then for a constant M and for large
enough T ,

sup
s∈Θ(R,L)

E
[

‖s − ŝT ‖2
]

≤ M
{[

T 1/(2α+1)
]−2α +

[
T 1/(2α+1)

]
T −1

}
.

The limit (3.8) is now clear.
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Example 3.6. If s has continuous bounded derivative on D := [a, b] ⊂ R\{0}
(hence, s ∈ Bα

∞(L∞([a, b])), for any α < 1), then one can construct regular his-
togram estimators converging to s on D at a rate faster than T −1/2 if one selects
the number of classes approximately equal to T 1/2 and the mesh of the partition π
smaller than δT .

3.4. About the Critical Mesh

The critical mesh, introduced in Lemma 3.1, gives a bound on the mesh of the sam-
pling frequency needed to estimate in a simple way the rate of convergence of the
variance term (see Proposition 3.4). Of course, any hope for a feasible implementa-
tion of this estimation scheme will require an explicit estimate of this critical mesh.
In the compound Poisson case (when ν(R\{0}) < ∞), it turns out that δ

T
= o( 1

T )
suffices. In the general case, we have the following result, which tell us, in partic-
ular, that the sampling frequency needs to be higher when one wishes to estimate
the Lévy density closer to the origin.

Proposition 3.7. Let ρ > 0 such that aρ > 1. Then, there exists T0(ρ) > 0 and
k > 0 such that

sup
y∈D

∣∣∣∣ 1
Δ

P [XΔ ≥ y] − ν([y, ∞))
∣∣∣∣ < k

1
T

for all T > T0 and Δ < T − 1
ρ T .

Proof. As in the proof of Lemma 3.1, we can obtain

sup
y∈D

∣∣∣∣1t P [Xt ≥ y] − ν([y, ∞))
∣∣∣∣ ≤ 1

t
P [Xε

t ≥ a] + 2c
1
T

+ ν([a, ∞)) P [|Xε
t | ≥ η]

+ λε P [|Xε
t | ≥ η] + ν([a, ∞)) λεt + λ2

εt,

valid for T > 1/a, η = 1
T , and 0 < ε < a − η (here c := supa−η≤x≤b+η s(x)). Fix

ε > 0 sufficiently small so that ρ < 1
ε . Let us recall that there exists y0 := y0(ρ)

such that

P [|Xε
t | ≥ y] ≤ exp{ρy0 log y0} exp {ρy − ρy log y} tyρ

for all t < y
y0(ρ) (see e.g. [28]). In particular, when y = η = 1

T and t < T − 1
ρ T , for T

sufficiently large that T − 1
ρ T+1 < 1

y0(ρ) ,

P [|Xε
t | ≥ η] ≤ kT −1.

Similarly, when y = a and t < T − 1
ρ T ,

1
t

P [Xε
t ≥ a] ≤ ktaρ−1 < kT − 1

ρ T (aρ−1) < kT −1,

if T > ρ
aρ−1 . This proves the result since ε is fixed.

Remark 3.8. The estimate of the critical mesh given in Proposition 3.7 can be
improved substantially. Indeed, in a forthcoming paper, we will show that it suffices
that Δ = o(T −1).
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4. Minimax Risk of Estimation for Smooth Lévy Densities

In this section, we show that the rate of convergence O(T −2α/(2α+1)) attained by
projection estimators is the best possible, in the sense that there is no estimator
ŝ∗

T
that can converge to s faster than T −2α/(2α+1), for any s ∈ Θ, even assum-

ing continuous-time sampling. In order to prove this, we will assess the long-run
behavior of the minimax risk on Θ, roughly defined as

inf
ŝ

sup
s∈Θ

E s [d (s, ŝ)] ,

where the infimum is taken over all possible estimators ŝ, and d(s, ŝ) measures the
distance between ŝ and s.

Traditionally, the performance of nonparametric estimators is gauged by compar-
ing the rate of convergence of the estimator in question to the rate of convergence
of the minimax risk when the available data increases. The rates of convergence
of minimax risks are available in most of the traditional nonparametric problems.
For instance, Ibragimov and Has’minskii [19] and Barron et al. [2] provided this
kind of asymptotics for the problem of density estimation based on i.i.d. random
variables, while Kutoyants [22] and Reynaud-Bouret [25] considered the problem
of intensity estimation of a finite Poisson point processes. This last set-up is rel-
evant for our problem since the jumps of a Lévy process can be associated with
a (possibly infinite) Poisson point process on R+ × R\{0} (see e.g. Theorem 19.2
in [29]). Using this connection, we adapt below a result from [22] to obtain the
long-run asymptotics of the minimax risk of estimation of the Lévy density off the
origin. The idea of the proof, due to Ibragimov and Has’minskii [19], is based on
the statistical toolbox for distributions satisfying the Local Asymptotic Normality
(LAN) property (see Chapters II and Section IV.5 of [19]).

Let us introduce some notation. Here, � : R → R stands for a loss function
satisfying the following:

(i) �(·) is nonnegative, �(0) = 0 but not identically 0, and � continuous at 0;
(ii) � is symmetric: �(u) = �(−u) for all u;
(iii) {u : �(u) < c} is a convex set for any c > 0;
(iv) �(u) exp{ε|u|2} → 0 as |u| → ∞ for any ε > 0.

We consider Lévy densities s : R\ {0} → R+ that are k times differentiable on an
interval [a, b] ⊂ R\ {0} and satisfy (3.5) for all x, y ∈ [a, b]. For given k ∈ N and
β ∈ (0, 1], we denote such a class of functions by Θk+β(L; [a, b]). The proof of the
result below is presented in the Appendix A.

Theorem 4.1. If x0 is an interior point of the interval [a, b], then

(4.1) lim inf
T →∞

{
inf
ŝ

T

sup
s∈Θ

E s

[
�
(
Tα/(2α+1) (ŝ

T
(x0) − s(x0))

)]}
> 0,

where α := k + β, Θ := Θα(L; [a, b]) and the infimum is over all the estimators ŝ
T

of s based on {X(t)}0≤t≤T .

The previous result can be strengthen to be uniform in x0 ∈ (a, b) and as a
consequence, the long-run behavior of the minimax risk under the integrated mean-
square distance can be assessed. The proof of the next result is given in Appendix A.
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Corollary 4.2. Under the notation and conditions of Theorem 4.1, the following
two limits hold:

lim inf
T →∞

{
inf
ŝ

T

inf
x∈(a,b)

sup
s∈Θ

E s

[
�
(
Tα/(2α+1) (ŝ

T
(x) − s(x))

)]}
> 0,(4.2)

lim inf
T →∞

T 2α/(2α+1)

{
inf
ŝ

T

sup
s∈Θ

E s

[∫ b

a

(ŝ
T
(x) − s(x))2 dx

]}
> 0.(4.3)

Remark 4.3. The previous result is also valid for classes slightly smaller than
Θα(L; [a, b]) such as

Θ = Θα(L; [a, b]) ∩ {s : ‖s‖L∞([a,b]) < R},

which is closely related to the Besov class Θ(R, L) of (3.8). Indeed, Θα(L; [a, b]) is
contained in Bα

∞(L∞([a, b])) (see Section 2.9 of [12]), and thus,

(4.4) lim inf
T →∞

T 2α/(2α+1)

{
inf
ŝ

T

sup
s∈Θ(R,L)

E s

[∫ b

a

(ŝ
T
(x) − s(x))2 dx

]}
> 0.

We conclude that there is no reasonable estimator ŝ
T

of s capable of outperforming
the rate T −2α/(2α+1) uniformly on Θ: there is always an s ∈ Θ for which

T 2α/(2α+1)
E s

[
‖ŝ

T
− s‖2

]
> B,

for some B > 0 and for large enough T . Therefore, the estimator described in Propo-
sition 3.5 achieves the optimum rate of convergence on Θ(R, L) from a minimax
point of view.

5. A Data-Driven Selection Method and Adaptability

The model selection criterion described in Section 3.3, where one tunes up the num-
ber of classes m to the “smoothness” of s, has the obvious drawback of requiring
(or at least presuming) the smoothness parameter α. In the literature of nonpara-
metric statistics, one wishes to devise data-driven selection methods that can adapt
to arbitrary degree of smoothness (see e.g. Birgé and Massart [5] for an extensive
exposition of the topic).

A typical approach for adaptive model selection schemes consists of minimizing
an unbiased estimator of the risk of estimation. This approach was developed in
[13] in the context of Lévy density estimation. Let us briefly discuss the findings
there. The key idea comes from the following refinement of (1.6):

(5.1) E
[

‖s − ŝc‖2
]

= ‖s‖2 + E
[

−‖ŝc‖2 + penc(S)
]
,

where ŝc is as in (1.9) substituting β̂π(ϕ) by the statistics β̂c(ϕ) of (1.13), s⊥ is the
orthogonal projection in (1.5), and penc(S) is defined in terms of an orthonormal
basis G := {ϕ1, . . . , ϕd} of S by the formula:

(5.2) penc(S) ≡ 2
T 2

∑
t≤T

∑
ϕ∈G

ϕ2(ΔXt).

Equation (5.1) shows that the risk of ŝc moves “parallel” to the expectation of the
observable statistics −‖ŝc‖2 + penc(S), suggesting the selection of the model that
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minimizes such statistics. Concretely, given a collection of sieves {Sm, m ∈ M }, we
should choose the projection estimator s̃c ≡ ŝc

m̂, where

m̂ ≡ argmin
m∈M

{
−‖ŝc

m‖2 + penc(Sm)
}

.

Such an estimator s̃c is called a penalized projection estimator (p.p.e.) since the
role of penc(S) is to penalize large linear models.

In [16], it is shown that the p.p.e. s̃c is adaptive in the class of Besov Lévy
densities of Section 3.2 in the sense that s̃c attains the optimal rate of convergence
O(T −2α/(2α+1)) without using the knowledge of α. Unfortunately, the previous
approach intrinsically requires continuous-time sampling of the process to determine
the jumps ΔXt. However, the analysis could still be useful if one uses the natural
discrete-based proxies of β̂c and penc, where the jumps ΔXt are replaced by the
increments Xtk

− Xtk−1 . This idea leads to the estimators ŝπ in (1.9) and to the
statistic

(5.3) penπ(S) =
2

T 2

n∑
k=1

∑
ϕ∈G

ϕ2(Xtk
− Xtk−1)

as the penalization term. In the light of the previous arguments, we proposed a
discrete-based model selection criterion as follows

m̂π ≡ argmin
m∈M

{
−‖ŝπ

m‖2 + penπ(Sm)
}

(5.4)

= argmin
m∈M

⎧⎨⎩−
∑

ϕ∈Gm

{β̂π(ϕ)}2 + penπ(Sm)

⎫⎬⎭ ,

where Gm is an orthonormal basis of Sm, β̂π is given by (1.7), and penπ is given by
(5.3). The resulting estimator

(5.5) s̃ := sπ
m̂π

will be called (discrete-based) penalized projection estimator.
We hope to extend in a future work the adaptability result in [16] for this discrete-

based p.p.e. In the sequel, we illustrate the performance of these estimators for an
infinite-jump activity Lévy process of relevance in the area of mathematical finance.

6. An Example: Estimation of Variance Gamma Processes.

6.1. The Model

Variance Gamma processes were proposed in [23] (see also [8]) as substitutes to the
Brownian Motion in the Black-Scholes model. Since their introduction, this kind of
processes have received a great dealt of attention, even in the financial industry. For
an introduction to many basic properties of variance Gamma processes and other
related processes, the reader is referred to Knotz et al. [21].

There are two useful representations for this type of processes. A variance Gam-
ma process X = {X(t)}t≥0 is a Brownian motion with drift, time changed by a
Gamma Lévy process. Concretely,

(6.1) X(t) = θU(t) + σW (U(t)),
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where {W (t)}t≥0 is a standard Brownian motion, θ ∈ R, σ > 0, and U = {U(t)}t≥0

is an independent Gamma Lévy process with density at time t given by

(6.2) ft(x) =
xt/ν−1 exp

(
− x

ν

)
νt/νΓ

(
t
ν

) .

Notice that E[U(t)] = t and Var[U(t)] = νt; therefore, the random clock U has a
“mean rate” of one and a “variance rate” of ν. There is no loss of generality in
restricting the mean rate of the Gamma process U to one since, as a matter of fact,
any process of the form

θ1V (t) + σ1W (V (t)),

where V (t) is an arbitrary Gamma Lévy process, θ1 ∈ R, and σ1 > 0, has the
same law as a process of the form (6.1) with suitably chosen θ, σ, and ν. This a
consequence of the self-similarity3 property of Brownian motion and the fact that
ν in (6.2) is a scale parameter.

The process X is itself a Lévy process since Gamma processes are subordinators
(see Theorem 30.1 of [29]). Moreover, it is not hard to check that “statistically” X
is the difference of two Gamma Lévy processes (see e.g. (2.1) of [6]):

(6.3) {X(t)}t≥0
D= {X+(t) − X−(t)}t≥0,

where {X+(t)}t≥0 and {X−(t)}t≥0 are Gamma Lévy processes with respective Lévy
measures

ν±(dx) = α exp
(

− x

β±

)
dx, for x > 0.

Here, α = 1/ν and

β± =

√
θ2ν2

4
+

σ2ν

2
± θν

2
.

As a consequence of this decomposition, the Lévy density of X takes the form

(6.4) s(x) =

⎧⎨⎩
α

|x| exp
(

− |x|
β−

)
if x < 0,

α
x exp

(
− x

β+

)
if x > 0,

where α > 0, β− ≥ 0, and β+ ≥ 0 (of course, |β− | + |β+| > 0). As in the case
of Gamma Lévy processes, α controls the overall jump activity, while β+ and β−

take respectively charge of the intensity of large positive and negative jumps. In
particular, the difference between 1/β+ and 1/β− determines the frequency of drops
relative to rises, while their sum measures the frequency of large moves relative to
small ones.

6.2. The Simulation Procedure

The above two representations provide straightforward methods to simulate a vari-
ance Gamma model. One way will be to simulate the Gamma Lévy processes
{X+(t)}0≤t≤T and {X−(t)}0≤t≤T of (6.3) using the series representation method
introduced in Rosiński [26]. The other approach is to generate the random time
change {U(t)}0≤t≤T of (6.1), and then construct a discrete skeleton from the incre-
ments X(iΔt)−X((i−1)Δt), i ≥ 1. The increments of X are simply simulated using
normal random variables with mean and variances determined by the increments
of U .

3Namely, {W (ct)}t≥0
D
= {c1/2W (t)}t≥0, for any c > 0.
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6.3. The Numerical Results

In this part we illustrate the performance of the projection estimators (1.9) and
the model selection criterion described in Section 5 using simulation experiments.
The approximating linear models Sm considered here are the span of the indicator
functions χ[x0,x1] , . . . , χ(xm−1,xm] , where x0 < · · · < xm is a regular partition of an
interval D ≡ [a, b], with 0 < a or b < 0. We perform the following numerical exper-
iment. First, we simulate the variance gamma Lévy process with specified (known)
parameter settings. Then, we apply the penalized projection estimator defined by
(5.4)-(5.5). Finally, to assess the accuracy of the nonparametric estimator, the true
parametric model of s is subsequently fit to the nonparametric estimator using a
least-square errors method. Concretely, if s̃ := ŝπ

m̂π is the discrete-based p.p.e. and
sθ is the function (6.4), where we set θ := (α, β−, β+), then we find

(6.5) θ̂
NP

:= argmin
θ

m̂π −1∑
i=0

(s̃(x̄i) − sθ(x̄i))2,

where x̄i is the midpoint of the interval [xi, xi+1]. This approach provides a non-
parametric based estimators for the parameters of the variance Gamma process.

Notice that, from an algorithmic point of view, the estimation for the variance
Gamma model using penalized projection is not different from the estimation for
the Gamma process. We can simply estimate both tails of the variance Gamma
process separately. However, from the point of view of maximum likelihood estima-
tion (MLE), the problem is numerically challenging. Even though the marginal den-
sity functions have “closed” form expressions4 (see [8]), there are well-documented
issues with MLE (see for instance [24]). The likelihood function is highly flat for
a wide range of parameters and good starting values as well as convergence are
critical. Also, the separation of parameters and the identification of the variance
Gamma process from other classes of the generalized hyperbolic Lévy processes is
difficult. In fact, difference between subclasses in terms of likelihood is small. It is
important to mention that these issues worsen when dealing with “high-frequency”
data.

Let us consider a numerical example motivated by the empirical findings of [8]
based on daily returns on the S&P stock index from January 1992 to Septem-
ber 1994 (see their Table I). Using maximum likelihood methods, the annualized
estimates of the parameters for the variance Gamma model were reported to be
θ̂ML = −0.00056256, σ̂2

ML
= 0.01373584, and ν̂ML = 0.002, from where we obtain

α̂
ML

= 500, β̂+
ML

= 0.0037056, and β̂−
ML

= 0.0037067.
Figures 1 and 2 show respectively the left- and right- tails of the true Lévy

density and the (discrete-based) penalized projection estimator as well as their cor-
responding best-fit variance Gamma Lévy densities using (6.5), and their marginal
probability density functions (pdf) scaled by 1/Δt (the reciprocal of the time span
between observations). The estimation was based on 5000 simulated increments
with Δt equal to one-eight of a day. The figures seem quite comforting. To get a
better idea of the performance of the method, Figures 3 and 4 show the sampling
distributions of the estimates of α− and β+ obtained from applying the least-square
method to the penalized projection estimators. The histograms are based on 1000
samples of size 5000 with Δt = 1/8 of a day. This experiment shows clear, though

4More concretely, the density is terms of Bessel special functions of third kind. For more
information, see also Section 4.1 in Knotz et al. [21].
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Table 1

Sampling mean in bold and standard errors in parenthesis of the estimators of α+, β+, and υ
in the CGMY model with theoretical values α− = 0, β+ = 1, α+ = 1, and υ = .1. Sample size is

100 paths

Δt Penalized Projection Estimators/Least-Squares Fit Misspecified Gamma MLE

α̂+
NP

β̂+
NP

υ̂Zolotarev α̂+
MLE

β̂+
MLE

.01 1.03 (0.15) 0.97 (0.14) 0.09 (0.0002) 1.2 (0.08) 0.89 (0.079)

not critical, underestimation of the parameter α and overestimation of the para-
meters β’s. A simple method of moments (based on the first four moments) yields
better results (see Figures 5 and 6). Nonparametric methods are not free-lunches
and usually the gain in robustness is paid by a loss in efficiency.

To illustrate the seriousness of applying an efficient estimation method to a
misspecified model let us consider a close relative of the variance Gamma process:
the CGMY model in [6]. This is defined as a pure-jump Lévy process with Lévy
density of the form

(6.6) sm(x) =

⎧⎨⎩
α−

|x|υ+1 exp
(

− |x|
β−

)
if x < 0,

α+

xυ+1 exp
(

− x
β+

)
if x > 0,

where υ > 0. In the case when α− = 0 and ν = 0, we recover a Gamma Lévy
process, for which MLE are widely available. Let us take α+ = β+ = 1 and υ = .1.
We can estimate the parameter υ using a Zolotarev type estimator. This can be
done so since the CGMY Lévy process is a tempered stable Lévy process, whose
short-term increments behave like stable processes (see Rośinski [27] for details).

Table 1 shows the sampling average and standard deviations of the estimators
of α+, β+, and υ by two methods based on 100 simulation runs. The first method
estimates υ using the Zolotarev’s estimator υ̂, then computes the piece-wise con-
stant p.p.e. s̃ of (5.5), and finally, estimate α+ and β+ via the LSE method (6.5)
replacing sθ by the Lévy density sm of (6.6) with θ = (α+, β+) and fixing α− = 0
and υ = υ̂. The second method assumes (erroneously) that the underlying model
is a Lévy gamma process and performs maximum likelihood estimation.

The results above shows that sometime a modestly efficient robust nonparametric
method is preferably to a very efficient estimation method.

Appendix A: Technical Proofs

Proof of Lemma 3.1. The idea is to exploit the well-known decomposition of the
Lévy process as a compound Poisson process X̃ε plus an independent Lévy process
Xε := X − X̃ε with compactly supported Lévy measure νε(dx) := 1{ |x|≤ε} ν(dx),
for a suitable chosen ε > 0. Concretely, here

X̃ε
t =

Nt∑
i=1

ξi,
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for a homogeneous Poisson process {Nt}t≥0 with intensity λε := ν({|x| > ε}) and
for independent random variables {ξi} with distribution 1

λε
1{ |x|>ε}ν(dx). Clearly,

1
t

P [Xt ≥ y] =
1
t

P [Xε
t ≥ y] e−λεt + P [Xε

t + ξ1 ≥ y] e−λεt(λε)

+
∞∑

n=2

P

[
Xε

t +
n∑

i=1

ξi ≥ y

]
e−λεtλn

ε tn−1.

Then, we have∣∣∣∣1t P [Xt ≥ y] − ν([y, ∞))
∣∣∣∣ ≤ 1

t
P [Xε

t ≥ y] + |λε P [Xε
t + ξ1 ≥ y] − ν([y, ∞))|

+ ν([y, ∞)) λεt + λ2
εt.

The second term on the right hand side of this inequality can itself be decomposed
as follows:

|λε P [Xε
t + ξ1 ≥ y] − ν([y, ∞))| ≤

∫ y+η

y−η

s(x) dx + λε P [|Xε
t | ≥ η]

+ ν([y, ∞)) P [|Xε
t | ≥ η]

for each η > 0 such that a − η > ε. Since s is bounded off the origin, there exists a
k > 0 such that ∫ y+η

y−η

s(x)dx ≤ k η

for all y ∈ D. Fix 0 < η < 1
T ∧ a and 0 < ε < a − η. Then,

sup
y∈D

∣∣∣∣1t P [Xt ≥ y] − ν([y, ∞))
∣∣∣∣ ≤ 1

t
P [Xε

t ≥ a] +
k

T
+ ν([a, ∞)) P [|Xε

t | ≥ η]

+ λε P [|Xε
t | ≥ η] + ν([a, ∞)) λεt + λ2

εt.

Finally, since limt→0
1
t P [Xε

t ≥ a] = 0 and limt→0 P [|Xε
t | ≥ η] = 0, we can choose

δT > 0 sufficiently small to make each of the terms smaller than 1/T when t <
δT .

Proof of Theorem 4.1.

(i) Fix a Lévy density s0 ∈ Θα(L/2; [a, b]) such that s0(x) > 0, for all x ∈ R0 :=
R\{0}, and a constant κ > 0. Also, let g : R → R+ be a symmetric function
with compact support Kg, satisfying (3.5) with L/2 (instead of L). Moreover,
the support of x → g(κ(x − x0)), denoted by K, does not contain the origin
and also,

s0(x) − κ−αg (κ(x − x0)) > 0, ∀x ∈ R0.

Let
sθ(x) := s0(x) + θT − α

2α+1 g
(
κT

1
2α+1 (x − x0)

)
, x ∈ R0,

and notice that sθ ∈ Θ whenever |θ| < κ−α.
(ii) Without loss of generality we assume that K ∩ [−1, 1] = ∅. We follow the

notation in [29] (Section 33). Let P
(T )
θ be the distribution (on D[0, T ]) of a

Lévy process {X(t)}0≤t≤T with Lévy density sθ (the other two parameters
of the generating triplet remain constant). We proceed to prove that { P

(T )
θ :
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θ ∈ (−κ−α, κ−α)} is LAN at θ = 0 (see e.g. Definition II.2.1 in [19]). By
Theorems 33.1 and 33.2 in [29], P

(T )
θ ≈ P

(T )
0 and the likelihood function,

Lθ(ω) := d P
(T )
θ

d P
(T )
0

(ω) is given by

Lθ(ω) := exp

{∫ T

0

∫
K

ln

[
1 +

θT − α
2α+1

s0(x)
g
(
κT

1
2α+1 (x − x0)

)]
ξ(dt, dx; ω)

− θT 1− α
2α+1

∫
K

g
(
κT

1
2α+1 (x − x0)

)
dx

}
,

where ξ(dt, dx; ω) is the random measure on R+ × R0 associated with the
jumps of ω ∈ D[0, T ]; that is,

ξ(A; ω) := #{(t, x) : Δwt := wt − wt− = x}, A ⊂ R+ × R0.

Under P
(T )
0 , ξ is a Poisson random measure with mean measure s0(x)dxdt.

We denote ξ̄(dt, dx; ω) := ξ(dt, dx; ω) − s0(x)dxdt. The likelihood Lθ(ω) can
be written as follows:

Lθ(ω) = exp
{

θΔ
T

− θ2

2
σ2

T
+ r

T
(θ)

}
,

where

Δ
T

= T − α
2α+1

∫ T

0

∫
K

s−1
0 (x)g

(
κT

1
2α+1 (x − x0)

)
ξ̄(dt, dx),

σ2
T

= T 1− 2α
2α+1

∫
K

s−1
0 (x)g2

(
κT

1
2α+1 (x − x0)

)
dx,

r
T
(θ) = − θ2

2
T − 2α

2α+1

∫ T

0

∫
K

s−2
0 (x)g2

(
κT

1
2α+1 (x − x0)

)
ξ̄(dt, dx)

+
∫ T

0

∫
K

R
(
θT − α

2α+1 s−1
0 (x)g

(
κT

1
2α+1 (x − x0)

))
ξ(dt, dx),

and R(u) := ln(1 + u) − u + u2

2 . We want to prove that there are nomalizing
constants ϕT > 0 such that

L
P

(T )
0

(ϕT Δ
T
) D→ N (0, 1), ϕ2

T σ2
T

→ 1, and r
T
(θ)

P
(T )
0→ 0

as T → ∞. To prove the first limit, we invoke the CLT for Poisson integrals by
verifying the Liapunov condition (see Theorem 1.1 and Remark 1.2 of [22]).
Indeed, for T > 1, we have that

T − α(2+δ)
2α+1

∫ T

0

∫
K

s−2−δ
0 (x)g2+δ

(
κT

1
2α+1 (x − x0)

)
(s0(x)) dxdt

= κ−1T 1− α(2+δ)
2α+1 − 1

2α+1

∫
Kg

s−1−δ
0 (κ−1T − 1

2α+1 u + x0)g2+δ (u) du
T →∞−→ 0.

Similarly, for large enough T ,

Var (Δ
T
) = T − 2α

2α+1

∫ T

0

∫
K

s−2
0 (x)g2

(
κT

1
2α+1 (x − x0)

)
(s0(x)) dxdt

T →∞−→ κ−1s−1
0 (x0)

∫
Kg

g2(u)du.
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Then, L
P

(T )
0

(ΔT ) D→ N (0, I2
0 ) with I2

0 := κ−1s−1
0 (x0)

∫
Kg

g2(u)du, and σ2
T

→
I2
0 . We now verify that r

T
(θ) vanishes in probability. Notice that the first

term of rT converges to 0 since its mean is 0 and its variance vanishes.
Similarly, the second term of rT (θ) converges to 0 in probability because its
mean and variance both goes to 0. Indeed, using that |R(u)| ≤ |u|3/3, the
absolute value of its expectation satisfies∣∣∣∣∣

∫ T

0

∫
K

R
(
θT − α

2α+1 s−1
0 (x)g

(
κT

1
2α+1 (x − x0)

))
(s0(x))dxdt

∣∣∣∣∣
≤ |θ|3

3
T 1− 3α

2α+1

∫
K

s−2
0 (x)g3

(
κT

1
2α+1 (x − x0)

)
dx

T →∞−→ 0.

A similar reasoning applies to the variance. Therefore, { P
(T )
θ }θ∈(−κ−α,κ−α)

is Locally Asymptotically Normal (LAN) at θ = 0 (with the normalizing
constants ϕT := I−1

0 ).
(iii) By Theorem II.12.1 and Remark II.12.2 in [19], if θ̂

T
is any estimator of θ

based on {X(t)}0≤t≤T , then

(A.1) lim inf
T →∞

sup
|θ|<κ−α

E θ

[
�0

(
I0

(
θ̂

T
− θ

))]
≥ B,

where B := E [�0(Z)χ[|Z|<I0κ−α/2]] and Z ∼ N (0, 1). Now, let ŝT (·) be an
arbitrary estimator based on {X(t)}0≤t≤T and let

θ̂T := T
α

2α+1 g−1(0) (ŝT (x0) − s0(x0)) .

Since θ = T
α

2α+1 g−1(0)(sθ(x0) − s0(x0)), we can write

g(0)
(
θ̂T − θ

)
= T

α
2α+1 (ŝT (x0) − sθ(x0)) .

If we take �0(u) := �(g(0)I−1
0 u), (A.1) becomes:

B ≤ lim inf
T →∞

sup
|θ|<κ−α

E θ

[
�0

(
I0

(
θ̂T − θ

))]
= lim inf

T →∞
sup

|θ|<κ−α

E θ

[
�
(
T

α
2α+1 (ŝ

T
(x0) − sθ(x0))

)]
.

Since {sθ : θ ∈ (−k−α, k−α)} ⊂ Θ,

(A.2) lim inf
T →∞

sup
s∈Θ

E s

[
�
(
T

α
2α+1 (ŝT (x0) − s(x0))

)]
≥ B,

where

(A.3) B := 2−3/2π−1/2

∫
|z|<I0κ−α/2

�(g(0)I−1
0 z)e−z2/2dz.

This implies (4.1) because the lower bound B does not depend on the family
of estimators ŝ

T
. Indeed, for each ε > 0, let ŝ(ε)

T
be such that

sup
s∈Θ

E s

[
�
(
T

α
2α+1

(
ŝ
(ε)
T (x0) − s(x0)

))]
< inf

ŝ
T

sup
s∈Θ

E s

[
�
(
T

α
2α+1 (ŝ

T
(x0) − s(x0))

)]
+ ε.

Taking the lim inf as T → ∞ on both sides, we obtain (4.1) since ε is arbi-
trary.
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Proof of Corollary 4.2.

(i) Following the same reasoning as in Theorem 4.1, we first prove that for any
family of estimators {ŝ

T
}T>0 and arbitrary points {x

T
}T>0 ⊂ (a, b),

(A.4) lim inf
T →∞

sup
s∈Θ

E s

[
�
(
T

α
2α+1 (ŝ

T
(x

T
) − s(x

T
))
)]

≥ C

for some constant C > 0, which is independent of the family of estimators
and of the points. Fix a Lévy density s0 ∈ Θα(L/2; [a, b]) such that s0(x) > 0
for all x ∈ R0 := R\ {0}, and a constant κ > 0. Again, let g : R → R+

be a symmetric function with compact support Kg, satisfying (3.5) with L/2
(instead of L). Moreover, for any y ∈ (a, b), the support of x → g(κ(x − y))
does not contain the origin and

s0(x) − κ−αg (κ(x − y)) > 0, ∀x ∈ R0.

Let
s

θ,T
(x) := s0(x) + θT − α

2α+1 g
(
κT

1
2α+1 (x − x

T
)
)

, x ∈ R0,

for |θ| < κ−α. Let P
(T )
θ be the distribution (on D[0, T ]) of a Lévy process

{X(t)}0≤t≤T with Lévy density s
θ,T

. Following the proof of Theorem 4.1,
{ P

(T )
θ : θ ∈ (−κ−α, κ−α)} is LAN at θ = 0 with the normalizing constants

ϕ
T

:= κ2

(∫
Kg

s−1
0 (κ−1T − 1

2α+1 u + x
T
)g2 (u) du

)−2

,

where Kg denotes the support of g and it is being assumed that [−1, 1] ∩⋃
y∈[a,b]{y + κ−1

Kg } = ∅. Observe that there is an m > 0 for which
infT ≥1 ϕ

T
≥ m.

(ii) By Theorem II.12.1 and Remark II.12.2 in Ibragimov & Has’minskii (1981),
for any δ > 0,

(A.5) lim inf
T →∞

sup
|θ|<δϕ

T

E θ

[
�0

(
ϕ−1

T
(θ̂

T
− θ)

)]
≥ C,

where C := E [�0(Z)χ[|Z|<δ/2]] and Z ∼ N (0, 1). Since �0(|y|) is increasing in
y,

(A.6) lim inf
T →∞

sup
|θ|<δϕ

T

E θ

[
�0

(
m−1(θ̂T − θ)

)]
≥ C.

Now, setting,
θ̂T := T

α
2α+1 g−1(0) (ŝT (xT ) − s0(xT )) ,

it follows that

sup
s∈Θ

E s

[
�
(
T

α
2α+1 (ŝT (xT ) − s(xT ))

)]
≥ sup

|θ|<δϕ
T

E θ

[
�
(
g(0)(θ̂T − θ)

)]
.

Taking lim inf as T → ∞, (A.4) is obtained with

(A.7) C = 2−3/2π−1/2

∫
|z|<δ/2

�(g(0) mz)e−z2/2dz.
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(iii) To obtain (4.2), for each ε > 0, let ŝ(ε)
T

∈ Θ and x(ε)
T

∈ (a, b) be such that

sup
s∈Θ

E s

[
�
(
T

α
2α+1

(
ŝ
(ε)
T

(
x(ε)

T

)
− s

(
x(ε)

T

)))]
≤ inf

x∈(a,b)
inf
ŝ

T

sup
s∈Θ

E s

[
�
(
T

α
2α+1 (ŝ

T
(x) − s(x))

)]
+ ε.

Next, take the lim inf as T → ∞ on both sides above and apply (A.4).
(iv) We now prove (4.4). Fix a measurable estimator ŝ

T
and a s ∈ Θ. By Fubini’s

Theorem,

E s

[∫ b

a

(ŝ
T
(x) − s(x))2 dx

]
=

∫ b

a

E s

[
(ŝ

T
(x) − s(x))2

]
dx.

Now, for each ε > 0, there exists an x
(ε)
0 ∈ (a, b) satisfying

1
b − a

∫ b

a

E s

[
(ŝT (x) − s(x))2

]
dx ≥ E s

[(
ŝT

(
x

(ε)
0

)
− s

(
x

(ε)
0

))2
]

− ε.

Then,

1
b − a

sup
s∈Θ

E s

[∫ b

a

(ŝT (x) − s(x))2 dx

]

≥ sup
s∈Θ

E s

[(
ŝT (x(ε)

0 ) − s(x(ε)
0 )

)2
]

− ε

≥ inf
x∈(a,b)

sup
s∈Θ

E s

[
(ŝT (x) − s (x))2

]
− ε.

Letting ε → 0, (4.4) becomes a consequence of (4.2) with �(u) = u2.

Appendix B: Figures

Fig 1. Penalized projection estimation of the left-tail of the variance gamma Levy density.
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Fig 2. Penalized projection estimation of the right-tail of the variance Gamma Levy density.

Fig 3. Sampling Distribution for the Estimates of α− obtained from the PPE and the LSE method.
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Fig 4. Sampling Distribution for the Estimates of β+ obtained from the PPE and the LSE method.

Fig 5. Sampling Distribution for the Estimator of α obtained by the Method of Moments.
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Fig 6. Sampling Distribution for the Estimator of β+ obtained by the Method of Moments.
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[3] Barron A., Birgé L., and Massart P. (1999). Risk bounds for model
selection via penalization. Probab. Theory Related Fields 113 301–413.
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for Lévy processes. Mathematical Finance 13 345–382.

[8] Carr P., Madan, D., and Chang E. (1998). The variance Gamma process
and option pricing. European Finance Review 2 79–105.

[9] Carr P., and Wu, L. (2005). Time-changed Levy processes and option pric-
ing. Journal of Financial Economics 71 113–141.

[10] Chung K. L. (2001). A course in Probability Theory. Academic Press, San
Diego, CA.

[11] Cont R. and Tankov P. (2003). Financial modelling with Jump Processes.
Chapman & Hall.

[12] DeVore R. A., and Lorentz G. G. (1993). Constructive Approximation.
Springer, Berlin.
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tribution and Generalizations: A revisit with Applications to Communications,
Economics, Engineering, and Finance. Birkhauser, Boston.

[22] Kutoyants Y. A. (1998). Statistical Inference for Spatial Poisson Processes.
Springer, New York.

[23] Madan D. B. and Seneta E. (1990). The variance Gamma model for share
market returns. Journal of Business 63 511–524.

[24] Prause K. (1999). The generalized hyperbolic model: estimation, financial
derivatives, and risk measures. Ph.D. thesis, Univ. Freiburg.

[25] Reynaud-Bouret P. (2003). Adaptive estimation of the intensity of inho-
mogeneous Poisson processes via concentration inequalities. Probab. Theory
Related Fields 126 103–153.
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