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Abstract: The size of the bootstrap test of hypotheses is studied for the
normal and exponential one and two-sample problems. It is found that the
size depends not only on the problem, but on the choice of test statistic and
the nominal level. In some special cases, the bootstrap test is UMP, but in
other cases, it can be totally useless, such as being completely randomized or
rejecting the null hypothesis with probability one. More importantly, the size
is usually greater than the nominal level, even in the limit as the sample size
goes to infinity.
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1. Introduction

Owing to its practical convenience and wide applicability, the bootstrap method
[7] is used to test statistical hypotheses in many research studies. A sample of re-
cent applications includes evolutionary molecular biology [1], genetic structure [2],
gene frequency [11], cancer epidemiology [8], microscopy [3], quality of life [12],
economic cycles [5], livestock management [9], and meat demand [6]. Despite its
popularity, however, there have been few detailed studies of the theoretical validity
of the bootstrap for hypothesis testing. This article addresses this issue for some
simple parametric problems where the bootstrap null distributions can be stud-
ied analytically. Specifically, we consider one and two-sample problems involving
normally and exponentially distributed observations. Our goal is to determine the
finite-sample or limiting sizes of the bootstrap tests and compare them with those
of the traditional tests.

First, we recall some definitions. Let X,, = (X31,X3,...,X,) be a vector of
n independent observations from F),. In the bootstrap method, we first find an
estimate fip of p under Hy and estimate F), with F= F,. Given a test statistic § =
S(X,,) for which large values lead to rejection of Hy, let G, denote the distribution
function of S. Let X = (X7, X3,...,X,) be a vector of n independent observations
from F and define S* = S(X*). The distribution function G = G, of S* is the
bootstrap distribution function of S, i.e., G is the distribution of S under F.

For any nominal level of significance o (0 < o < 1), let ¢, (f10) be the upper-a
quantile of G. Thus ¢4 (fig) is the smallest value such that G(cq(fi0)) > 1 — a. The
nominal level-a bootstrap test rejects Hy with probability 1 if S > ca(f1o), and
with probability [ — 1 + G(ca(fi0))]/[G(calfto)) — G(ca(jio)—)] if S = calfio) and
Clcalfio)) > Glealiio) ).

2. Testing a Normal Mean

Let X1, Xa,..., X, be a random sample from N (u,0?), a normal distribution with
mean g and variance o2. Let ¢(x) and ®(z) denote the density and distribution
functions of the N(0,1) distribution and let z, be its upper-« critical value, that
is, 1 — ®(z,) = a. Consider testing

(2.1) Ho:p<0 vs. Hy:p>0.
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2.1. Known Variance

We assume without loss of generality that o? = 1. Let X,, = n=*>_"" | X;. The
unrestricted MLE of u is i = X,,. Let ji; be the MLE of pu under H; (i = 0,1).
Then fip = X, 1(X,, <0), fi1 = X, [(X,, > 0), and X{,X3,..., X is a bootstrap
random sample drawn from N(fig,1). Let X =n=1>" X/ .

2.1.1. Sample Mean Statistic

Theorem 2.1. If0 < a < 1/2, the bootstrap test based on X, is uniformly most
powerful (UMP), but if 1/2 < o < 1, the test rejects Hy with probability 1.

Proof. Recall that the UMP test rejects Hy if X,, > z4n /2. Since X is normal
with mean [io and variance n~!, its critical value is ca(fio) = fro + 2o~ 2 =
X, I(X, <0)+z4n"12. Therefore the bootstrap test rejects Hy if X, I(X,, > 0) >
Zan V2 10 < o < 1/2, then z, > 0 and the bootstrap test is the UMP test. If
1/2 < a < 1, then z, < 0 and the test rejects Hy w.p.1. O

2.1.2. Standard Likelihood Ratio Statistic

Given the data and values po and pq, let

L(po, 1, X 1og{H¢ H¢(l’i —Mo)}-

A general statistic for testing Hy is the log-likelihood ratio
L(fuo, f1, X,,) = log {SUPH¢($i - /sup [T }
12 i=1 pnEHy ;-

Throughout this article, we let Z denote the standard normal variable and z§ =
max(z4,0). We need the following lemma whose proof is given in the Appendix.

Lemma 2.1. Let 0 > 0. For fized 0 < a < 1, the function

(2.2) P(Z+6|>20)—(1—a)E{®(Z+0)" ' I1(Z+6>z])}
is mazximized at 6 = 0 with mazimum value

(2.3) min(2a,1) + (1 — «) log{1 — min(a, 1/2)}

which is greater than o for all 0 < a < 1.

Theorem 2.2. The size of the bootstrap test based on the standard likelihood ratio
is min(2a, 1) + (1 — @) log{1 — min(«, 1/2)}.

Proof. Since

n~ L{jio, f1, Xn) = X (i = Mo) (p? —Mo)/2
=Xn (X — o) — (X7 — 15)/2
= (Xn - ,UO) /2

=X2I(X, >0)/2

the test rejects Ho if S = X, I(X,, > 0) > ¢4 (fig), where the critical value is to be
determined. Let S* = X*I(X* > 0) and consider two cases.
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1. X,, > 0. Then S > 0, jip = 0, and X has a N(0,n~1) distribution. For any
x>0, P(S* <) = P(X} < x) = ®(n'/?). Therefore if 0 < a < 1/2,
ca(fio) = zan~ /2. Otherwise, if a > 1/2, then c4(jip) = 0 and the bootstrap
test rejects Hy w.p.1. Thus for all 0 < a < 1, ¢ (fig) = ztn=1/2.

2. X, <0. Then S =0, jip = X,, <0, and S* has a N(X,,,n"!) distribution
left-truncated at 0 with P(S* = 0) = P(X} < 0) = ®(—n'/2X,,). Thus

calfio) =1 o if X, +n1/22, <0.
= (X, +n" 22",

N {Xn—l—n_l/Qza,if X, +n"Y2z, >0,

Since S = 0, the bootstrap test never rejects Hy if X,, + n~ 2z, > 0.

Otherwise, the test is randomized and rejects Hp with probability {a =1+
d(—n'/2X,)}/®(-n'/?X,).

Thus for 0 < a < 1,

P{Reject Ho} = P{Reject Hy, X,, > 0} + P{Reject Hy, X,, < 0}
=P(S >z}, X, >0)
+ P{Reject Hy, X, + n 22, <0, X, < 0}
= P(X, > z:[n_l/z)
+ E[{a —1+®(—n'?X,)}/®(—n'?X,)| [(-n'/?2X,, > z})
=P(|W|>2z0) = (1 —a)E{@(W) "1 I(W > z})},

where W is normally distributed with mean —n'/?j and variance 1. By Lemma, 2.1,
the supremum of the rejection probability under Hj is attained when p = 0 and is
given by (2.3). Figure 1 shows a plot of this function. O

1.0
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Size
0.4
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0.0
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Fic 1. Size (2.3) of bootstrap test for the normal mean based on the standard likelihood ratio, for
known o. The dashed line is the identity function.
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2.1.3. Cox Likelihood Ratio Statistic

Cox (1961) proposed the following alternative likelihood ratio statistic for testing
separate families of hypotheses:

n n
L(fu, fi1, Xy,) = log {sup oG —w /sup 166 - u)} :
Moy Ho =4
For the current problem,
L(fio; fir, X)) = n{Xn(fn — fro) — (45 — f15)/2}
=n(Xn|Xn| — XulXn|/2)
=nX2sgn(X,)/2.

Therefore rejecting Hy for large values of L(jio, i1, X,,) is equivalent to rejecting
for large values of X,,, and the next theorem follows directly from Theorem 2.1.

Theorem 2.3. If0 < a < 1/2, the bootstrap test based on the Coz likelihood ratio
has size a and is UMP. If 1/2 < a < 1, it rejects Hy with probability 1.

2.2. Unknown Variance

Now suppose we test the hypotheses (2.1) without assuming that o is known. The
log-likelihood function is

U(1,0) = —nlogo — 37 (X: = p)?/(20°) - (n/2) log(2r)

and its derivatives are 9l /0pu = —0 =2 > (X;—p) and 91 /00 = —no~t+073 > (X; —
w)?. Hence the unrestricted and restricted (under Hy and H;) maximum likelihood
estimates (MLEs) of u and o? are, respectively,

= Xn, 62 =n""! Z(Xi*Xn)27
fio = X I(X, <0), 6o =n""Y (X — i),
i1 = X, I(X, > 0), 6t =n""Y (Xi— )

giving the log-likelihood ratio statistics:

Standard: nlog(6o/6) = (n/2)log{d(X; — fi0)?/ > (X; — X,)?}.
Cox: nlog(60/61) = (n/2)log{> (X; — fio)*/ > (X; — fu1)?}.

The corresponding bootstrap tests reject Ho for large values of » (X; — f0)?/
S(X; — X)? and S2(X; — f10)?/ S2(X; — f11)?, respectively.

2.2.1. Standard Likelihood Ratio Statistic

Let

(2.4) T, =n'/?X, {Z(Xi ~ X% (n— 1)}71/2 .
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The standard log-likelihood ratio statistic is

SXi —fu)? | X — X I(X, <0))?

Z(Xz - Xn)z a Z(Xz - Xn)2

1, if X,, <0,
STXZ/S(X - X)) if X, >0
_ ]-7 N B if X’ﬂ <0,
T 1+nX2/ (X - X0)Aif X, >0
1, if X, <0,
T\ 14+ (n— 17T X, > 0.

Thus Hy is rejected for large values of S = T,I(T, > 0). Let ¢, s denote the
noncentral t-distribution with v degrees of freedom and noncentrality parameter §
and let t, 5 denote its upper-« critical point.

Lemma 2.2. For any v and o, t, 5,4 1S an increasing function of 6.

Proof. Let Z denote a standard normal variable independent of x2. Since

P(t,s<z)=P (Z—_HS 3:)

A

Vxilv

:P<L<x— 0 )
VXo /v Xz/v

we see that P(t,,5 < ) is a decreasing function of §. Therefore ¢, 5 o is an increasing
function of 6. O

Theorem 2.4. If o is unknown, the size of the nominal level-o test of Hy : p <0
vs. Hy : pp > 0 based on the standard likelihood ratio has lower bound

. a—1+¢(—tnf1\/m) n
min(o,1/2) + F o (7tn_1 - 1)) 1 <tn11 / 1 < —zi) )

where t,—1 has a (central) t-distribution with n — 1 degrees of freedom. As n — oo,
the bound tends to (2.3), the size for the case where o is known and n is finite.

Proof. Again, consider two cases.

1. X,, > 0. Then S > 0 and figp = 0. The bootstrap distribution of T is a central
t,,_1-distribution and that of S* is a central t,,_-distribution left-truncated
at 0. If 0 < @ < 1/2, the test rejects Hy whenever T,, > t,_1,0,o- Otherwise,
if @ > 1/2, the test rejects Hy with probability 1.

2. X, <0. Then S =0, fto < 0, and S* has a left-truncated noncentral ¢,,_; s5-
distribution with n — 1 degrees of freedom and noncentrality parameter

(25) 5 =n"?lg/60 =nXn/\/D (Xi— Xpn)? =Tp/n/(n—1)

and probability P(X} < 0) = P{n'/?(X} — ji9)/60 < —n'/?fig/60} = ®(—0)
at 0.

If t,—1,6,6 > 0, the bootstrap test does not reject Hy because S = 0. Other-
wise, if t,—1,5,« < 0, the test is randomized and rejects Hy with probability
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{a =1+ ®(—0)}/P(—3). Note that the event ¢,_1 5 < 0 occurs if and only
if @ > P(T; >0 | ﬂ(),é’o). But

P(T;;< > 0|ﬂ0,&0) = P(X:; > Olﬂo,é'o) =1- CD(—(S)
Therefore t,,—1 5o < 0 if and only if § < —z,.

Let P, , denote probabilities when y = 1 and o = 7. The size of the test for
O<a<lis

sup P, »{Reject Hy}
Hy
= sup[P, ,{Reject Hy, X,, > 0} + P, ,{Reject Hy, X,, < 0}]
Hy
=sup P, ,[{TnI(T), > 0) > tp_10,0, Xn >0}
Hyp
+ P, o{Reject Ho, tn_150 <0, X, < 0}]
=sup[P, {1, > max(tn—1,0,a,0)}
Hyp

+ Eol{a—1+®(=0)}/®(—6)] I{6 < min(—z4,0)}]
> Poa{Tn > max(tn-1,0.0,0)} + Eoa[{a — 1+ &(=0)}/®(=0) I{d < =2 }]

a*1+‘b<*tn—1\/%) [

=min(a,1/2) + F 1 <tn_1 — < —Zi)
(I’(—t _ n ) n—1

n 1\/ n—1

by equation (2.5). Since t,,—1 — Z in distribution as n — oo, where Z is a standard
normal variable,

0= 14® (b, [72) -
lim E I (tnu/— < —ZZE)
n—o00 P <_tn71 L) n—1

-1

BB )

+

~@-n [ T B(2)/0(—2) d + B(—2h)

— 00

(a—1) / io 6()/D(2) dz + min(a, 1/2)

(1 — a)log ®(z}) + min(a, 1/2)

(1 - a)log{max(l — a,1/2)} + min(«, 1/2)
(1 —a)log{l — min(a, 1/2)} + min(«, 1/2).

Thus the limiting size is 2min(«, 1/2) + (1 — @) log{1 — min(«, 1/2)} > a. O

2.2.2. Cox Likelihood Ratio Statistic

Theorem 2.5. If 02 is unknown, the size of the bootstrap test of (2.1) based on
the Cozx likelihood ratio has lower bound

min(a, 1/2) + P(tnfl,tn,l\/m,a <tph_1 < 0) > .
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Proof. The Cox log-likelihood ratio statistic is

—fw)® _ 3AX - XnI(X, <0)}°

Y(Xi—n)? AN — Xal (X, > 0)}2

{1+ @m-1)T2}1if X, <0,
={1, if X,, =0,
1+ (n—1)T2, if X,, >0,

where T, is defined in (2.4). Thus rejecting for large values of the statistic is equiv-
alent to rejecting for large values of S = T,.

1. X,, > 0. Then io =0, T, >0, and T, has a central ¢-distribution with n —1
degrees of freedom. Thus the test rejects Ho if T, > t—1,0,q- f1/2 < a <1,
then ¢,,—1,0,o < 0 and the test rejects w.p.1.

2. X, < 0. Then fi9 < 0, T}, < 0, and T has a noncentral t-distribution with
n — 1 degrees of freedom and noncentrality parameter § given in (2.5). Hence
Hy isrejected if T,, > t,_1,5,o. Since T3, < 0, rejection occurs only if ¢, 5.0 <

0.
fo<a<1/2,

sup P, »(Reject Hy) = sup[P, »{Reject Ho, X, >0}
H() HO

If1/2<a<1,

+ P,.o{Reject Hy, X,, < 0}]
= SUP[PWT(Tn > tnfl,O,a) + Pu,a(tnfl,é,a <T, <0)]
H

0
> Po1(Th > th-1,00) + Po1(tn-1,50 < Tn <0)
=o+ P(tnfl’(;’a <tpo1 < 0)
> .

sup P, »(Reject Hy) = sup[P, »{Reject Hy, X,, > 0}
Hy Hy

by Lemma 2.2.

+ P, »{Reject Hy, X,, < 0}]
= s;p[ng(Xn >0) + Py o(tn-1,60 < T <0)]
0

> Poa1(X > 0)+ Poi(tn-15a <Tn <0)
= 1/2 + P(tn—l,é,a <tp-1 < 0)
> 1/2 + P(tnfl,o,a <tp-1 < O)

=«

3. Testing a Normal Variance, Mean Unknown

Let x2 denote a chi-squared random variable with v degrees of freedom, Xl%,a its
upper-a point, and ¥, (+) its cumulative distribution function.

Lemma 3.1. ¥,,_1(n?*/x2_,,) — a and ¥,,_1(n) — 1/2 as n — oco.
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Proof. Let Z1,Zs, ... be independent N(0,1) variables. Then

n—1
Vs ) =P (2 <)
(TS -y_ i e
=P < ;(n -1) : 2 {(" - 1)2X3L—1,a 1})
n2
ch( (nl)/2{(”_1)2X%—1,al}> as n — oo.

By the Wilson-Hilferty (1931) approximation, v/x7 , = 1 — 2o (2/V)2 +o(v7h).

Therefore
n2
(n—um{aqug:;—l}ﬁ—%
which yields the first result. The second result is similarly proved. O
Let X,, = (X1,X2,...,X,) be a vector of n independent observations from

N(p,0?), with p and o unknown, and let 62 = n=* > "  (X; — X,,)? denote the
unrestricted MLE of o2.

3.1. Hy:0°<1ws. HH:0%>1

Let 62 be the MLE of 02 under H; (i = 0,1). Then 63 = min(62,1) and 67 =
max(62,1). Define the log-likelihood ratio

[Lioy ooy (@i — m)}) ,

M (o, p1, 00,01, X,,) = log <H o5t ofogt(z — po)}
i90 0 A\

3.1.1. Standard Likelihood Ratio Statistic

Theorem 3.1. The size of the bootstrap test based on the standard likelihood ratio
for testing Hy : 0 < 1 vs. Hy : 0% > 1, with u unknown, is bounded below by

min{o,1 — ¥, _1(n)}
14 U, (022 2
L E o + 1(n*/xn-1) I{Xil < min (n, 2n >}1 .

U, _1(n?/x%2_,) 1,0

Proof. The standard log-likelihood ratio statistic is M (f, 1, 60, 6, X,,) and

(3.1)

277,71M(ﬂ, la7 6—03 (}7 Xn) = log((}g&iz) + (}2(5—0_2 - 672)

=6%,2 —log(6%65%) — 1
_fo, if 62 < 1,
162 —log(6?) — 1, otherwise.

Since the function x —log(z) — 1 increases monotonically from 0 for > 1, rejecting
for large values of the statistic is equivalent to rejecting for large values of

S = nmax(6?,1) = max {Z(X,- - )_(n)2,n} .

Let S* denote the bootstrap version of S under resampling from N(X,,53). To
find the critical point of the distribution of S*, consider two cases.
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1. 62> 1. Then S > n, 63 = 1, and the distribution of S* is x2_; left-truncated
at n, i.e., it has probability mass ¥,,_1(n) at n. If 0 < o < 1 —¥,,_;(n), the
critical point of the bootstrap distribution is X%q,ou Otherwise, the critical
point is n and the test rejects Hy w.p.1.

2. 62 < 1. Then S = n, 63 = 62, and the distribution of S* is 62x2_, left
truncated at n. Thus the test does not reject Hy if 62x2_, o > n. On the
other hand, if 62y2_, o < n, then the critical point is n and the test rejects

Hj randomly with probability {o — 1 + \I/n_l(n&o_2)}/\lln_1(n&0_2).
Since o« <1 —W,,_1(n) if and only if n < x2_, ,, we have

o(S > X2 Las né? >n),if n < X%,La,

P, »(Reject Hy, 6% > 1) = { o(né? >n), otherwise

b

by

Pll U(no— > Xn 1 a) if n < X?L—l,a?
P, -(né? >n), otherwise

1-

\I/n (0'7 Xn—l,a)v ifn < X?z—l,ou
1— U, (no—2), otherwise
=1-9, (07 max{n,xi_lﬂ}).

and

P, -(Reject Hy, & 2<1) = P, -(Reject Hy, &%{i_lﬂ <n, né* <n)
_E [a1+\11n 1(néy?)
e 0,1 (ndy?)

_ a—1+V, 1(n?c72/x2%_))

B U1 (n?0=2/x5 )

I(&gxi o <n,ne? < n)}

103 < a-zmin{n,nQ/xi_lﬂ})} .

The choice 02 = 1 yields the lower bound
sup P, »(Reject Hy)
Hy

> P,1(Reject Hy, 6% > 1) + P, 1(Reject Hy, 6% < 1)
=1-",_1(max{n, xn_l,a})

_(X—1+\Ifn_1(n2/X2_1) 9 n2 1
+E 222 T xe—1 < min | n,

i \Iln71(n2/X%71) ! %,1’0( |
=min{e,1 —¥,_1(n)}

[a— 140, 1(n?/x2 2 ]
+E « + l(n /anl) I{Xil S min (n’ 2”_)} .

W1 (n?/X5 1) n—la

Figure 2 shows graphs of the lower bound (3.1) for n = 5,10, 100, and 500. O

3.1.2. Cox Likelihood Ratio Statistic

Theorem 3.2. If i is unknown, the bootstrap test of Hy : 0? < 1 vs. Hy : 0% > 1
based on the Cox likelihood ratio has size o and is UMP for Xifl,a > n. It rejects
Hy w.p.1 for other values of «.
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FIG 2. Lower bounds (8.1) on the size of the bootstrap test of Ho : 02 < 1 vs. Hy : 02 > 1 based
on the standard likelihood ratio, for n = 5,10,100, and 500. The 45-degree line is the identity
function.

Proof. The Cox log-likelihood ratio statistic is M (4, f, 69,01, X, ). Since

o a2 {&2, if 62 <1,

%071 “2if 52 > 1,
and
572 _ 52 672 —-1,if6%2 <1,
0 1 1-672,if 62> 1,
we have

which is strictly increasing in 2. Therefore rejecting for large values of the statistic
is equivalent to rejecting for large values of 62. Since the bootstrap null distribution
of né? is 65X, _,, the bootstrap critical point of 6% is n~'6§x% 1 ,. Thus the
bootstrap test rejects Hy if 62 (}0_2 > n71X%_1,a7 or equivalently, max(c}Q,l) >
n~ % 1.o- If « is so large that n’lx?%lya < 1, the bootstrap test rejects Hy
regardless of the data. On the other hand, if n='x;_; , > 1, the test rejects Hy if

6% >n~'x}_, ,, which coincides with the UMP test [10, p. 88]. O

3.2. Hy:02>1wvs. H : 02 < 1

Next suppose we reverse the hypotheses and test Hy : 02 > 1 versus H; : 02 < 1.
Then 62 = max(62,1) and 6% = min(62,1).

3.2.1. Standard Likelihood Ratio Statistic

Theorem 3.3. For any 0 < a < 1 and p unknown, the size of the bootstrap test
for Hy : 02 > 1 vs. Hy : 0% < 1, based on the standard likelihood ratio, is bounded
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below by
(3.2)

min{a, ¥,,_1(n)} + F {Oé — \Ifn_l(nQ/XgL_l)

=W, 1 (n?/x5 1)

I (X%—l > max{nvnz/Xi—l,l—a}) .

Proof. Direct computation yields

62 —log(6?) —1,if 62 < 1,

1 A A A A _
2n= M(ji, i, 60, 6, Xon) = {O, otherwise.

Since the function  — log(xz) — 1 decreases monotonically for 0 < x < 1, the test
rejects Ho for small values of S = nmin(62,1). Let S* denote the bootstrap version
of S under resampling from N (X,,,53).

1. 62 < 1. Then 69 = 1 and the distribution of S* is x2_; right-truncated at
n, with probability mass 1 — ¥,,_1(n) there. If 0 < o < ¥,,_1(n), the critical
point of the bootstrap distribution is x%_m_a. Otherwise, the critical point
is n and the test rejects w.p.1, because S < n.

2. 62 > 1. Then 62 = 62, S = n and the distribution of S* is 6%x2_; right-
truncated at n. The test does not reject Ho if 6%x7_;_,, < n. Otherwise, if
6%X2_11_o = 1, the test rejects Hy with probability {o—W,,_;(n6~2)}/{1—
U, _1(n6=2)}.

Since o < W,,_1(n) if and only if X2, ; , <n,

P, (Reject Hy, 6* < 1)

[ P,s(S< X%_Ll_a, ne? <n),if 0 <a <V, i(n),
P, -(né? <n), otherwise

P, -(né? <n), otherwise

_J Puo ne? < Xp 11 a)if 0 <a <, 4(n),
P, -(né? <n), otherwise

= Puo(no® <min{x; 1, 4,n})

B (

B {PM o(n6% < X% 11 o m0% <n),if 0 <a < ¥, 4(n),
(

_ (

= ‘I’n—l(CF2 min{X?L—l,l—av n})

and

P, -(Reject Hy, 52 >1)
- PWU(RCJCCt Ho, 62X3L—1,1—0( >mn, &* > 1)

a—, 1(n6?)
= E o = I
- {1 —U,_1(no—2)
I e
1?2/ )

(&infl,ka > n, ne? > n)]

I(szi—l > max{nvnQ/Xi—l,l—a}):l .
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FIG 3. Lower bounds (3.2) on the size of the bootstrap test of Ho : 02 > 1 vs. Hy : 02 < 1 based
on the standard likelihood ratio My(Ll). The 45-degree line is the identity function.

Therefore

sup P, »(Reject Hy)
Hy
> \Iln_l(min{xi 1,1— an})
2
i [a a0 )
(n /anl)
= min{o, ¥, 1( )}

S Sl

n? /X5 1)

Figure 3 shows graphs of the lower bound (3.2) for n = 5,10, 100, and 500.

3.2.2. Cox Likelihood Ratio Statistic

Theorem 3.4. The bootstrap test of Hy

w.p. 1.

Proof. Since

c02 > 1 ws. Hy

I(Xi—1 > max{n, ”2/X721—1,1—a})}

I(X?L*l > max{n»n2/x%1,1a})} .

O

: 02 < 1 based on the
Coz likelihood ratio has size o and is UMP if Xi—l,a > n. Otherwise, it rejects Hy

2 A2 &‘2,1f&2 1,
9091 T 1462, if42>1,
and
A—2 A2 1—-6 2,1f5'2<1,
% T T \62_1if62 > 1,
we have
20~ M (ji, i, 60,61, Xn) = log(6367 %) + 62(6 2 — 67°)
[ —log(6?) + 6% —1,if 6% < 1,
“log(6?) — 6% +1, ifé?>1,
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a strictly decreasing function of 62. Thus the test statistic rejects Hy for small

values of 52. The bootstrap null distribution of 6% is n=163x?2_;, with critical value

n=163x2_11_- Hence the bootstrap test rejects Hy if 62652 <n~'x2_, ,_,. But
the left side of the inequality is never greater than 1, because

62&_2* 6’2,if(§'2<1,
0 711, otherwise.

Therefore, if « is so large that nilxi_lyl_a > 1, the bootstrap test rejects Hy
w.p.1. Otherwise, if n='x7 |, , < 1, the test rejects Hy if 6% < n™'x2 |, .
which coincides with the classical UMP unbiased test [10, pp. 154]. O

4. Testing Difference of Two Normal Means

Let Xi,..., X, and Y7,...,Y, be independent random samples from N (u,0?) and
N(n,7?), respectively, and N = m +n > 2. We want to test

(4.1) Ho:n<p vs. Hy:np>p.
The likelihood function for this case is
Lp, )
= (2m) " 2 e L (20%) 7 YK - ) - (20) 7 300 - 0)?)
= (2m)~(m+m)/2g=m—n exp{—(202)—1 S (X - X)? - @) S (Y - V)
= m(20%) 7 (1 = X)? = 0277 (0 - Ya)?}

and the unrestricted MLE of (u,7) is (21,1) = (X, Yn)-

4.1. Known Variances

Let V = (m7r%2X,, + no?Y,)/(m7? + no?). The MLE of (u,7n) under Hy is

0+710 (V,V), Yo > X,

and that under Hj is
(ir,ih) = (V.V), Yo > X,
PO = (X, Ya), Vi < X

4.1.1. Difference of Means Statistic

Theorem 4.1. The size of the bootstrap test of (4.1) based on Y, — X, is o if
a<1/2andis 1if a>1/2.

Proof. Let S =Y, — X,,. The bootstrap test statistic $* = Y,;* — X* has a normal
distribution with mean 7o — jio = SI(S < 0) and variance m~'0? + n=172. Thus
its nominal level-a bootstrap critical value is S I(S < 0) 4 zo{m~'o? + n=172}1/2
and the rejection region is max(S,0) > zo{m =10 +n~172}1/2. Clearly, the size of
the test is attained at the boundary p = n. If a < 1/2, the probability of rejecting
Hy when p = 7 is exactly a. On the other hand, if @ > 1/2, then 2z, < 0 and the
test rejects Hy w.p.1. O
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4.1.2. Standard Likelihood Ratio Statistic

Theorem 4.2. The size of the bootstrap test of (4.1) based on the standard likeli-
hood ratio is min(2a, 1) + (1 — a) log{1l — min(a, 1/2)} > a.

Proof. The log-likelihood ratio statistic is

log{L(j,7)/L(fw0,70)}
= {m(20*)7(V X

m)? + (27 )TNV =Y (Ya > Xin)
(Y, —

=mn(mr? +no?)” X)) I(Y, > Xpm).

Thus the test statistic is equivalent to S = (Y;, — X,,,) I(Y,, > X,,). The bootstrap
distribution of S* is normal with mean 7y — fig and variance n=1r2 4+ m~ 102, left-
truncated at 0 with P(S* = 0) = ®{(jig — flo)(n~? T + m*102) /2y, Let 0 =
(p—n)(n" 24+ m 0?)" V2 and W = (X, — V) (n 2+ m~10?)"1/2 ~ N(§,1).
We consider two cases.

1. Y, < X,,. Then S = 0, fjg—jig = Yy — Xy, and (W) > 1/2. If 1-®(W) < «,
the test is randomized and rejects Hy with probability {a —1+®(W)}/®(W).
Otherwise, if 1 — (W) > q, the test does not reject Hp.

2. Y, > X,n. Then S = m > 0,7 — jio = 0, and P(S" = 0) = 1/2.1¢
a < 1/2, then the test reJects Ho if Y, — X, > 2oa(n 172 +m~10?) 712 e,
W < —z,. Otherwise, if & > 1/2, then the critical value is 0 and the test
rejects w.p.1.

Therefore

P(Reject Hy)
= P(Reject Hy, Yy, < Xy, 1 — ®(W) < )
+ P(Reject Hy, Y, > X)) I(a < 1/2) + P(Reject Hy, Yy, > X,,) I(a > 1/2)
=E[®e(W) Ha -1+ W)} I(W > 2]
+PW < —2) [(a<1/2)+ P(W < 0) I(a > 1/2)
=E@eW) Ha—-1+dW)}I(W > zD)] + P(W < —z7)

and the result follows from Lemma 2.1. O

4.1.3. Coz Likelihood Ratio Statistic

Theorem 4.3. The bootstrap test of (4.1) based on the Cozx likelihood ratio statistic
is the same as that based on the difference of sample means; its size is o if < 1/2
and is 1 if a > 1/2.

Proof. The Cox log-likelihood ratio statistic is

L(fn, 1) _ mn(Y/n - Xm)Q 5 v
10g{L(ﬂ07$—0)} " 2(mr? + no?) {I(Y, > X)) — 1Y, < X))

Thus the test statistic is equivalent to S = Y,, — X,,, and the result follows from
Theorem 4.1. ]
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4.2. Unknown but Equal Variances
Suppose that 72 = ¢2 but their value is unknown. Then the likelihood function is
L(p,7,0) = (2m0?) "M exp | —(20%) 7' Y (Xi = w)* + > _(V; —n)?
? J

giving the unrestricted MLE

=62+ mnN"23(Y, — Xn)%

The corresponding MLEs under Hy and H; are, respectively,

(fioy i, 53) = { (Km: Yo, 6%), 0 ¥, < X,
0,710, Y0 (‘/"/’52), if Yn 2 Xm,
o JMVEY), i Y, < X,

(M1777170'1) - {(Xm,yn,(3'2), if Yn > Xm

4.2.1. Difference of Means Statistic

Suppose S =Y,, — X,,,. Then S* =Y,* — X, has a normal distribution with mean
flo — fio and variance N(mn)~163. Let T, denote the ¢ distribution function with
v degrees of freedom and let s = 32N (N — 2)~! be the usual unbiased estimate of

.

Theorem 4.4. The size of the bootstrap test of (4.1) based on Y, — X, is

sup P(Reject Hy)

Ho
0, ifa<1—®(VN),
(4.2) ={1-Tyos (zm /]y;%) Vif 1 - B(VN) < a < 1/2,
1, ifa>1/2
. {a, if a <1/2,
1, ifa>1/2,

as N — oo.

Proof. The hypothesis Hy is rejected if

Yn—Xm>ﬁ0—/:L0+Zaa'0 N/(mn)

_ Y, — Xon + 206/ N/(mn),if Y,, < X,
| 2a0+/N/(mn), if Y, > X,,.



Bootstrap tests 109

1.0

0.8

Size
0.4

0.2

0.0

00 02 04 06 O
Nominal o

FiG 4. Size of bootstrap test for a difference of normal means based on the difference of sample
means, for equal but unknown variances (4.2). The 45-degree line is the identity function.

1. a < 1/2. If Y,, < X, the test does not reject Hy. Otherwise, if Y;, > X,,,
the test rejects Hy if
(Y, — Xn)? > 2252 N/ (mn)
= (Y, — Xn)?(1 = N71'22) > Nz26%/(mn)
Y, — X N -2
— a>1-®(/N) and ,/%7>

2
s N — 22

Therefore if & < 1 — ®(v/N), the test does not reject Hy. Otherwise, if 1 —
®(vV/N) < a < 1/2, the rejection probability is maximized when n = p at
1= T2 (2aVIN = 2)/(N = 22)).

2. a > 1/2. The test rejects Hy w.p.1 because z, < 0.

Hence the result (4.2). The limit is due to T, (z) — ®(z) as v — oo, for every z.
Figure 4 plots the size function (4.2) for N = 3,5, 10, and 100. |

4.2.2. Standard Likelihood Ratio Statistic
The log-likelihood ratio statistic is
(N/2)1log(52/6*) I(Yy, > Xm) = (N/2) log{14+mnN2(Y,,—X,,)26 2} I (Y, > X )
which is equivalent to the positive part of the ¢-statistic:
S = /N5 (¥, — Xo)*.

Theorem 4.5. The size of the bootstrap test of (4.1) based on the standard likeli-
hood ratio is bounded below by

a—1+¢(¢ﬁﬂﬁi3ﬁN4)
o ( —N/(N =) tN_2) I (\/th—2 > Z;r)

— min(2a, 1) + (1 — a)log{l — min(e,1/2)}, N — .

min(a, 1/2)+E
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Proof. We again consider two situations.

1. Y, > X,,. The bootstrap distribution of S* is a ty_o distribution left-
truncated at 0 with probability 1/2. If @ < 1/2, then the test rejects Hp
if S > tn_9,4. Otherwise, if & > 1/2, the test rejects Hy w.p.1.

2. Y, < X,,. The bootstrap distribution of S* consists of the positive part of
a noncentral ¢ with N — 2 degrees of freedom and noncentrality parameter

§ = +/mn/Né& 1Y, — X,,) = Sy/N/(N — 2) and probability at 0 equal to
®(—4). Since S = 0, the test does not reject Hp if a <1 —P(—0) <= —0 <
Zo. Otherwise, if —§ > z,, then the test is randomized, rejecting Hy with
probability {a — 1 + ®&(—4)}/®(—9).

Thus

P(Reject Hy)

+ P(Reject Hy, =6 > zq,

=P(S>tn_2a)I(a<1/2)+(1/2)I(a > 1/2)
a—1+d(-9) _ _

—min(a71/2)+E{%j_5) - %

=min(a,1/2) + E {Ow I(-6> z;)} .
Evaluating this probability at u = n yields

sup P(Reject Hp)
Hyp

> min(a, 1/2)

a—1+0 (mtm)
" ( D Q)tN_Q) I (m tn_2 > z;)

— min(2a,1) 4+ (1 — a) log{1 — min(«, 1/2)

+E

as N — oo by Lemma 2.1. O

4.2.3. Cox Likelihood Ratio Statistic

Theorem 4.6. The size of the bootstrap test of (4.1) based on the Coz likelihood
ratio or the ordinary t-statistic is

Pty _gin o /W30 <tN-2 <O+ Pltn-a >ty 5,) > a.
Proof. The Cox log-likelihood ratio simplifies to
(N/2)1log{1l +mn(Y, — X,n)>°N 262 HI (Y, > X)) — I(Y, < X))}

which is an increasing function of the Student ¢ statistic S = \/mn/Ns=1(Y,,— X,,).
The bootstrap distribution of S is a noncentral ¢ xy_2 s with IV —2 degrees of freedom
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and noncentrality parameter

§ = /mn/Né&g* (i — fio)

Vmn /N6 Y, — X,.),if Y, < X,,,

0, ifY, > X,
N/ S, if Y, < X,,,

0, if Y, > X,

Therefore

P(Reject Ho) = (S >tn_ 2,86,a5 Y < X,n) +P(S > tN_QVO” Yn > Xm)
= P(tn-250 < S <0)+ P(S>t}_ 2.0)-

Evaluating the probabilities at p = n yields

: +
S}{l{f) P(Reject Ho) > P(tN72,tN_2\/m,a <tn_2o < 0) + P(thg > tN72,oz)
> P(thgy()’a <tn_2 < 0) + min(a, 1/2)
— (a—1/2) I(a > 1/2) + min(a, 1/2)
=aq. U

5. Testing an Exponential Location Parameter

Let Exp(f, 7) denote the distribution with density 7= exp{—7"1(x — 0)}, = > 0.
We consider testing hypotheses about 6 with 7 = 1. The likelihood for a sample
X1,..., X, from an Exp(0,1) distribution is []exp{—(z; — 0)}1(x1) > 0), where
x(1) is the smallest order statistic. The unconstrained MLE is 6 = X(1)-

5.1. H0:0S01)8.H1:0>0

The MLE of 0 is §p = min(X(;),0) and 6; = max(X(1),0) under Hy and H;,
respectively. Given X(;), the bootstrap data are independent observations from an
Exp(fo, 1) distribution.

5.1.1. Standard Likelihood Ratio Statistic

The standard log-likelihood ratio statistic is
— )} (X
. Zl exp{—(X: 0} (X)
exp{— ( - 00)}I(X(1)
= n(9 — 90)

_ {07 X(l) <0,
’I’L)((l)7 X(l) > 0.

~—

>
> éo)

Given 6, the bootstrap distribution of S is Exp(néo, 1), left-truncated at 0 with
probability mass 1 — exp(nfy) there.

1. X1y 2 0. Then S = nX(y), by = 0, the distribution of S* is Exp(0, 1) with
upper-« critical point log(1/a), and the test rejects Hg if nX (1) > —loga.
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2. X(1) £0. Then S =0, by = X (1), and the distribution of S* is Exp(nX ), 1),
left-truncated at 0 with probability 1 — exp(nX(y)) there. If a < exp(nX(y)),
the test never rejects Hy. Otherwise, the test rejects Hy with probability
{a —exp(nX(1))} /{1 — exp(nX(y))}.

Since nX (1) has an Exp(n#, 1) distribution,

Py{Reject Ho}

= Py{Reject Ho, X(1) > 0} + Py{Reject Hy, X1y <0}

= Py(nX(1) > —loga, X1y > 0)

+ Py{Reject Hy, X(1) <0, exp(nf) < exp(nX(y)) < a}

o — exp(nX(l))

= PQ(”X(I) > —loga) + Ey I(nb < nXy <log «)

1 —exp(nX())
aexp(nb), nf > loga,
aexp(nb) + fl o “{a— exp(y)} exp(nf — y) /{1 — exp(y)} dy, nf < log .

Now for nf < log «,

loga oy — ex
/ @ =D)Lt (g~ nd)} dy

o 1—exp(y)

@ a—z
= exp(nb) / ——dz
exp(nb) 22(1 - Z)

= exp(nd i az 2 —(1-a){z7' 4+ (1 —-2)"1)dz
pt) [ ot )
=exp(nf) [—az"' + (1 — a){log(1 — 2) — log Z}]caxp(ne)

=exp(nf)[(1 — a)log(a™ —1) — 1 + aexp(—nf) — (1 — a)log{exp(—nh) — 1}].

Therefore
aexp(nf), nd >loga,

Py{Reject Hy} = {ga(exp(nﬁ)), n6 < log o

where
ga(2) =a+2(1 —a)llogla™ —1) —log(z"' = 1) —1], 0<z<a.
Since lim, ¢ ga(2) = a, lim, 4 ga(2) = a2, and ¢”(z) > 0 for 0 < 2z < «, we

conclude that supy, Py{Reject Ho} = hmeﬂ,m Ja(exp(nd)) = «

5.1.2. Cox Likelihood Ratio Statistic

The Cox log-likelihood ratio statistic is
X — 00} (X
o Zl exp{~(X, = )} (X
exp{ ( — 90)}]()((1)

{ —00, X(l) <0,
TLX(l), X(l) > 0.

1)
0o)

AR

It follows that the bootstrap test behaves the same as that based on the standard
likelihood ratio. We therefore have the following theorem.

Theorem 5.1. For testing Hy : 0 <0 vs. Hy : 0 > 0 for a sample from an Exp (0,
1) distribution, the bootstrap tests based on the standard and Cozx likelihood ratios
have size a.
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52. Hy:0>0wvs. H : 06 <0

The MLEs under Hy and H, are 6, = max(X(),0) and 0, = min(Xy),0), respec-
tively.

5.2.1. Standard Likelihood Ratio Statistic

Theorem 5.2. The bootstrap test of Hy : 0 > 0 vs. Hy : 8 < 0 based on the
standard likelihood ratio test is completely randomized.

Proof. The standard log-likelihood ratio statistic is

N1 exp{—( —Aé)}I(Xu) > :)
E: Lmﬂ (Xi = 00)H (X (1) > 0o)
N { ,X(l) < 0,
10, X(l) > 0.

Since fy > 0, the distribution of S* is degenerate at 0. On the other hand, S =0
w.p.1 under Hy. Therefore the bootstrap test based on S is completely randomized.
O

5.2.2. Cox Likelihood Ratio Statistic

Theorem 5.3. The bootstrap test of Hy : § > 0 vs. Hy : 0 < 0 based on the Cox
likelihood ratio test rejects Hy w.p.1 for any 0 < o < 1.

Proof. The Cox log-likelihood ratio statistic is
Xi —0,) (X
. Zl lexp{ M (X
exp{—(X; — 90)}I(X(1)
. {OO, X(l) <0,
n(@l - 00), X(l) Z 0

:{m’ Xa) <0,
—’I”LX(l), X(l) > 0.

1)
0o)

>
>

1. X1y < 0. Then o = 0, the bootstrap data have an Exp(0, 1) distribution,
and the distribution of S* is the negative of an Exp(0, 1) distribution. Since
S = oo, the test rejects Hy w.p.1 for any 0 < o < 1.

2. X(1) 2 0. Then 6 > 0, and the bootstrap data have an Exp(X(1),1) distrib-
ution. The distribution of S* is the negative of an Exp(nX(y), 1) distribution,
with support (—oo, —nX(y)). Since S = —n.X(q), the test rejects Hy w.p.1 for
any 0 < a < 1. U

6. Conclusion

The results show that the size of the bootstrap test of hypotheses is unpredictable.
It depends on the problem as well as the choice of test statistic. For example, in the
case of testing a normal mean with known variance, the test based on the sample
mean or the Cox likelihood ratio is UMP for 0 < « < 1/2, but it is sub-optimal
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when it is based on the standard likelihood ratio. On the other hand, if o > 1/2,
the test often rejects Hy w.p.1. The overall conclusion is that the size of the test is
typically larger than its nominal level. This may explain the high power that the
test is found to possess in simulation experiments.

Appendix

Proof of Lemma 2.1. First note that

(A1) b(x) — ¢z — 0) { g 32 . Zéit

Let f(0) denote the function (2.2). We consider two cases.
1. a>1/2. Since 2} =0, we have f() =1— (1 —a) [;~ ¢(z — 0)/®(z) dz and

F0)—f(0) _ /“ oz —0) — §(x)
1—a 0 D(x)
[ gz - 0) — ¢(2) > ¢(z — ) — ¢(z)
=, o) ), e ©
0/2

22 [ ot o) - drt [ ot —0) o) v
=2{®(—0/2) — ®(—0) — ®(0/2) + 1/2} — P(—0/2) + 2(0/2)
—2{(0) - B(0/2))
> 07
where we use (A.1) in the first inequality. Hence
f(0) < £(0)
=1-(-0) [ o@)/o@)dr
=1+ (1—a)log(1/2).
2. a < 1/2. Write f(0) = J1(0) + J2(8), where
Ji(0) = a(l —a) 7 00 — 24) + P(—24 — ),
B (1-20)@(Z+6)— (1 —)?
“M”E{ (1—a)®(Z+0)

HZ+922@}.

Since

0J1(0)/90 = a1 — @)1 (0 — za) — ¢(0 + 2a)
= (0 + zo){a(1 — @) Lexp(20z4) — 1},
J1(0) is decreasing-increasing, with minimum at 6y = (2z4) !log{(1 — a)/
a} > 0. Further, J;(0) = limp_, o J1(0) = a(1—a) ™. Therefore J;1(0) < J1(0)

for 6 > 0.
To obtain a similar result for J, let

9(@) = {(1 - 20)®(2) — (1 — )*}/{(1 — ) ()}

which is increasing in x with g(z,) = —a/(1 — @) and g(z) — —a?/(1 — )
as x — oo. Hence g(z) < 0 for z > z,.
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(a) 0 <60 <2z, Since ¢p(z) < ¢z — 0) for z > z,,

120 /Oog da:—/:og(x)(b(x—G)dacZO.

%

(b) 6 > 2z,. From (A.1),
J2(0) — J2(6)

- / " g(@)ot) da - / " )l — 0) da
=/ o

0/2 )

— o — )] da + /9 LI@I) oz ) de

0/2 o2 00
/Z o) o0 = [ (0(w) ot~ 0)da

=a(l—a) '[—{2(0/2) - (1 —a) - ®(—0/2) + B(z, — )}
+ o ®(0/2) — ©(-6/2)}]
=a(l —a) H{K(0) + K2(0)},
where
K1(0) = ©(—6/2) — ®(2a — 0),
Ky(0)=1—a—®(0/2) + a®(0/2) — a®P(-0/2).

Now K;(0) > 0 for 0 > 2z,, K}(0) =

0 as 6 — oo. Thus J2(0) — J2(0) > 0.
Therefore f(8) < f(0) = 2®(—24) — (1 — ) f: o(z)/®(z)de = 2+ (1 —
a)log(l — a).

It remains to show that f(0) > « for all 0 < a < 1. Let h(a) = f(0) — . Then

(a—1/2)p(0/2) < 0, and K2(0) —

h(a) = a+(1—a)log(l —a),if0 < a<1/2,
YT 1—a-(1-a)log2, if1/2<a<]l,

and h is continuous with h(0) = k(1) =0, ~h(1/2) = (1 —log2)/2 > 0, and

W (o) = —log(l—a) >0,if 0 < a<1/2,
—14log2<0, ifl/2<a<l.

Therefore h(a) > 0 for 0 < a < 1, concluding the proof. O
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