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Abstract: We consider classes of models related to those introduced by
Lehmann [Ann. Math. Statist. 24 (1953) 23–43] and Sklar [L’Institut de Sta-
tistique de L’Universite de Paris 8 (1959) 229–231]. Recently developed algo-
rithms for finding profile NP likelihood procedures are discussed, extended and
implemented for such models by combining them with the MM algorithm. In
particular we consider statistical procedures for a regression model with pro-
portional expected hazard rates, and for transformation models including the
normal copula. A variety of likelihoods introduced to deal with semiparametric
models are considered. They all generate rank results, not only tests, but also
estimates, confidence regions, and optimality theory, thereby, to paraphrase
Lehmann [Ann. Math. Statist. 24 (1953) 23–43], demonstrating “the power of
ranks”.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.1 Lehmann Type Models. Cox Regression . . . . . . . . . . . . . . . . 68
1.2 Sklar Type Models. Copula Regression . . . . . . . . . . . . . . . . . 68

2 Proportional Hazard and Proportional Expected Hazard Rate Models . . 69
3 Rank, Partial and Marginal Likelihood . . . . . . . . . . . . . . . . . . . . 72
4 Profile NP Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5 Profile NP Likelihood for the PEHR Model . . . . . . . . . . . . . . . . . 74

5.1 The MM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 The MM Algorithm for the PEHR Model with θ ≥ 0 (SINAMI with

θ ≥ 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 The MM Algorithm for the SINAMI Model with θ ≤ 0 . . . . . . . . 76
5.4 The MM Algorithm for the SINAMI Model with θ ∈ R . . . . . . . . 76
5.5 Profile NPMLE Implementation . . . . . . . . . . . . . . . . . . . . . 76
5.6 Estimation of the Variance of the Profile NPMLE . . . . . . . . . . . 78

6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1 PEHR Model Estimates . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Model Fit for Misspecified Model . . . . . . . . . . . . . . . . . . . . 79

7 Estimation in the Normal Copula Model . . . . . . . . . . . . . . . . . . . 80
7.1 The One Covariate Case . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 The Multivariate Covariate Case . . . . . . . . . . . . . . . . . . . . 81

8 Transformation and NP Models . . . . . . . . . . . . . . . . . . . . . . . . 82
1Department of Statistics, University of Wisconsin, Madison, WI 53706, e-mail:

doksum@stat.wisc.edu
∗Supported in part by NSF grant DMS-0505651.
2Department of Statistics, University of Wisconsin, Madison, WI 53706, e-mail:

ozeki@stat.wisc.edu

AMS 2000 subject classifications: Primary 62G05, 62G20; secondary 62N02.
Keywords and phrases: Lehmann model, proportional hazard model, profile NP likelihood,

nonparametric maximum likelihood, MM algorithm, copula models, Box-Cox models.

67



68 Doksum and Ozeki

8.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.1.1 Correctly Specified Model . . . . . . . . . . . . . . . . . . . . 84
8.1.2 Misspecified Model . . . . . . . . . . . . . . . . . . . . . . . . 85

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

1. Introduction

We will focus on statistical inference for models where the distribution of the data
can be expressed as a parametric function of unknown distribution functions.

1.1. Lehmann Type Models. Cox Regression

Suppose T is a random variable with a continuous distribution function F. For
testing the null hypothesis H0 : F = F0, Lehmann [28] considered alternatives of
the form

(1.1) Fθ(·) = Cθ(F0(·)),
for some continuous distribution Cθ(·) on [0, 1], which is known except for the
parameter θ. We consider the problem of estimating θ when F0(·) is an unknown
baseline distribution. In this case, if T1, . . . , Tn are independent with Ti ∼ Cθi(F0(·))
and we set Ui = F0(Ti), then Ui has distribution Cθi(·) Moreover Ri ≡ Rank(Ti) =
Rank(Ui), which implies that the distribution of any statistical method based on
R1, . . . , Rn will not depend on F0.

For regression experiments with observations (Ti, xi), i = 1, . . . , n, where Ti is a
response and xi is a vector of nonrandom covariates, Cox [11] considered the para-
metrization θi = g(βT xi) with g(·) a known function and β a vector of regression
coefficients. He considered statistical inference procedures based on the Cox [11, 12]
partial likelihood in very general frameworks. These procedures are based on gen-
eralized ranks and show how powerful ranks are in generating statistical inference
procedures.

In this paper we consider a special case of (1.1) obtained from the Lehmann
models [F0(t)]N and 1 − [1 − F0(t)]N by letting N be a zero truncated Poisson
variable whose parameter depends on covariates and regression coefficients. We
call this model “SINAMI” after SIbuya [39] and NAbeya and MIura [30]. For a
subset of the parameter space, the model has proportional expected hazard rate
(PEHR). We show that semiparametric likelihood methods for the SINAMI model
give more weight to intermediate survival times than the Cox proportional hazard
model which heavily weights long survival times. Recently developed algorithms for
finding profile nonparametric maximum likelihood estimates (profile NPMLE’s) are
combined with the MM algorithm to produce estimates. In the two sample case, we
carry out a Monte Carlo comparison of the NPMLE with a parametric MLE and
a method of moment (MOM) estimate of the two sample parameter. The NPMLE
is nearly unbiased but only about 70% as efficient in terms of root MSE as the
parametric estimate if the parametric model is true. The MOM estimate is slightly
less efficient than the NPMLE.

1.2. Sklar Type Models. Copula Regression

Suppose X and Y are random variables with continuous joint distribution H(·, ·)
and marginals F1(·) and F2(·). Sklar [40] considered models that include models of
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the form

(1.2) Hθ(·, ·) = Cθ(F1(·), F2(·)),

for some continuous distribution Cθ(·, ·) on [0, 1] × [0, 1], which is known except for
the parameter θ. We consider the problem of estimating θ when F1(·) and F2(·) are
unknown baseline distributions. If we set U = F1(X), V = F2(Y ), then (U, V ) has
distribution Cθ(·, ·), and Cθ(·, ·) is called a copula. Note that if (X1, Y1), . . . , (Xn, Yn)
are independent with (Xi, Yi) ∼ Hθi(·, ·), then Ri ≡ Rank(Xi) = Rank(F1(Xi))
and Si ≡ Rank(Yi) = Rank(F2(Yi)), which shows that the distribution of any
statistical method based on these ranks will not depend on (F1, F2). This model
extends in the natural way to the d-dimensional case.

In this paper we consider the bivariate normal copula model where Cθ(u, v)
= Φθ(Φ−1(u), Φ−1(v)) with Cθ the bivariate N(0, 0, 1, 1, θ) distribution. We also
consider the multivariate normal copula model and show that in regression experi-
ments it can be used to construct a “transform both sides regression” transformation
model (copula regression model.) Klaassen and Wellner [26] have shown that the
normal scores correlation coefficient is semiparametrically efficient for the bivari-
ate normal copula. We use simulations to compare this estimate with the profile
MLE for the transform both sides Box-Cox regression model and a nonparametric
estimate based on splines thereby augmenting the comparisons made by Zou and
Hall [45]. The normal scores estimate is nearly as efficient as the parametric MLE
for estimating median regression when the transform both sides Box-Cox model is
correct. We also consider the performance of the estimates for models outside the
copula regression model and find that the normal scores based estimate of median
regression is remarkably robust with respect to both bias and variance. On the other
hand, the profile MLE of median regression derived from the transform both sides
Box-Cox model is very sensitive to deviations from the model. The nonparametric
spline estimate is the best for extreme deviations from the copula regression model.

2. Proportional Hazard and Proportional Expected Hazard Rate
Models

Interesting special cases of (1.1) are obtained by considering the distributions of
T1 = min(T01, . . . , T0k) and T2 = max(T01, . . . , T0k) where T01, T02, . . . are i.i.d. as
T0 ∼ F0. Then, for k ≥ 1,

(2.1) T1 ∼ F1(t) = 1 − [1 − F0(t)]k,

and

(2.2) T2 ∼ F2(t) = [F0(t)]k,

with t > 0, k = 1, 2, . . . . More general forms (Lehmann [28]; Savage [37]) are

(2.3) T1 ∼ F1(t) = 1 − [1 − F0(t)]Δ,

and

(2.4) T2 ∼ F2(t) = [F0(t)]Δ,
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with t > 0, Δ > 0. Here (2.3) can be derived by considering two-sample models
where the two samples follow distributions of the form (2.1) with different k’s
(Bickel and Doksum [6], Problem 1.1.12.)

For T1, the hazard rate is

(2.5) λ(t) ≡ f(t)
1 − F (t)

= � f0(t)
1 − F0(t)

≡ �λ0(t).

In regression experiments, we set �i = g(βT xi), and note that (2.5) is the Cox
proportional hazard (PH) model (Cox [11]).

Nabeya and Miura [30] proposed replacing k in (2.1) and (2.2) by a random
variable. In particular, they considered T1 = min(T01, . . . , T0N ), where N is in-
dependent of T01, T02, . . . , and has a zero truncated Poisson(θ) distribution with
θ > 0. They also considered T2 = max(T01, . . . , T0M ), T0i ∼ F0 where M is in-
dependent of T01, T02, . . . , and has a zero truncated Poisson(−θ) distribution with
θ < 0.

Using Sibuya [39], they found

T1 ∼ F1(t) =
1 − e−θF0(t)

1 − e−θ
, θ > 0,(2.6)

T2 ∼ F2(t) =
1 − e−θF0(t)

1 − e−θ
, θ < 0.(2.7)

Combining (2.6) and (2.7), we get

T ∼ F (t) =
1 − e−θF0(t)

1 − e−θ
, θ �= 0,

(2.8)
= F0(t), θ = 0.

Note that model (2.6) is a mixture of proportional hazard models for individuals
with the same baseline hazard rate λ0(·) but different hazard factors � in the
factorization (2.5) of the hazard rate. Let λ(t; k) denote the hazard rate of T1 given
N = k; then by (2.5)

Eλ(t; N) =
∞∑

k=1

kλ0(t)pθ(k) = τ(θ)λ0(t), θ > 0,(2.9)

where pθ(x) is the zero truncated Poisson(θ) probability and

τ(θ) = E(N) =
θ

1 − exp(−θ)
.(2.10)

Thus (2.6) is a model with proportional expected hazard rate. Note that (2.8) does
not have this property for θ < 0. We will refer to (2.6) and (2.8) as the PEHR and
SINAMI models, respectively.

Remark 2.1. In regression experiments, the traditional frailty models are also
constructed by introducing a random element in the PH model. However, these
models are different from the PEHR and SINAMI models. To see this recall that
in the frailty model the conditional hazard rate given the covariate vector x (see
Oakes [31] for the history and interpretation of frailty models) is of the form

λW (t|x) = λ0(t)W exp[βT x],(2.11)
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where W is a random effect that incorporates potential unobservable covariates
that represent frailties. Semiparametric optimality theory for model (2.11) has been
developed by Kosorok, Lee, and Fine [25].

Consider model (2.5) with Δ = N and N a zero truncated Poisson(θ) random
variable with θ = g(βT x), i.e., the conditional hazard rate given x is

(2.12) λ(N)(t|x) = Nλ0(t).

Here N plays the role of W exp[βT x] in (2.11). However, (2.11) and (2.12) are
different because N is an integer and W exp[βT x] is not when β �= 0. In model
(2.12), N represents the effect of both observed covariates and frailties. In deriving
the distribution function (2.6), the unobservable covariates are averaged out, that
is, we compute P (T ≤ t) = E[P (T ≤ t|N)].

Remark 2.2. Model (2.8) was considered by Bell and Doksum [3], Example 5.2
and Table 8.1) and Ferguson ([17], p. 257, Problem 5.7.7) without any of the above
interpretations. Nabeya and Miura [30] did not use any proportional hazard or
frailty interpretation. These concepts had not been invented yet.

Figure 1 gives a plot of the relative hazard rate λ(t|x = 1)/λ(t|x = 0) with
θ = −3, −1.5, 1.5, 3 for model (2.8) with θ = βx, F0(t) = 1 − exp(−t), t > 0, and

λ(t|x) =
θf0(t)

1 − e−θ(1−F0(t))
.(2.13)

In the PEHR and SINAMI models, the hazard ratio between two covariate values
converge to unity as time increases. This explains why the likelihoods for these mod-
els give less weight to long survival times than the likelihood for the Cox model (see

Fig 1. SINAMI and PEHR hazard ratios for θ = −3, −1.5, 1.5, 3.
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Section 3). The hazard rate is decreasing for the PEHR model for any continuous
F0.

3. Rank, Partial and Marginal Likelihood

In regression experiments, we observe (Ti, xi), i = 1, . . . , n, where T1, . . . , Tn are
independent responses and xi is a nonrandom covariate vector. In the proportional
hazard model, it is customary to use model (2.5) for Ti with �i = exp(βT xi)
because �i needs to be positive. In the PEHR model, θi = βT xi is a possible
parametrization, but θi = exp(βT xi) could also be used. Let R = (R1, . . . , Rn)
where Ri = Rank(Ti), then lr(β) = P (R = r) is the rank likelihood (Hoeffding
[20]).

We first consider the one covariate case. Using the rank likelihood, the locally
most powerful (LMP) rank test statistic for H0 : β = 0 versus H1 : β > 0 is
(approximately) for the Cox model (Savage [37, 38], Cox [10]), Oakes and Jeong
[32]):

n∑
i=1

[
− log

(
1 − Ri

n + 1

)]
(xi − x̄) (Savage or log rank),(3.1)

and for the PEHR and SINAMI models, the LMP rank test statistics is (Bell and
Doksum [3], Ferguson [17], Nabeya and Miura [30]):

n∑
i=1

Ri

n + 1
(xi − x̄) (Wilcoxon type),(3.2)

where Ri =Rank(Ti). The log rank statistic gives more weights to large observa-
tions, that is, in survival analysis, to those that live longer, while the Wilcoxon
statistics is even handed.

In order to compare how much relative weight is given to the small, in be-
tween, and large observed survival times for the PH and PEHR models, we next
consider the rank likelihood for d covariates. Note that if h(·) is decreasing, then
Rank(h(Ti)) = n + 1 − Ri. For the proportional hazard model, transform Ti by
Ui = 1 − F0(Ti), then by (2.3) we have fUi(u) = �iu

�i −1, 0 < u < 1. Hoeffding
[20] formula shows,

Rank lkhd =
n∏

i=1

�i

∫
· · · · · · · · ·

∫
0<u1<u2<···<un<1

n∏
i=1

uδi −1
i du1 · · · dun,(3.3)

where δi = �bi and bi= index on the T with rank n + 1 − i= reverse anti-rank. It
follows that

Rank lkhd ∝
n∏

i=1

�i∑
k:Tk ≥T(i)

�k
,(3.4)

that is, the familiar Cox [11, 12] partial likelihood formula. Here {k : Tk ≥ T(i)}=
patients at risk at time T(i) where T(i) is the ith ordered survival time. Kalbfleich
and Prentice [22, 23] called the rank likelihood the marginal likelihood and extended
it to censored data.

For the PEHR model, transform Ti by the decreasing function Ui =
a−1{exp{−F0(Ti)} − b}, then, we have fi(u) = aτi(au + b)θi −1, 0 < u < 1, where
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b = e−1, a = 1 − b, and τi ≡ τ(θi). Let γi = θbi , bi=index on the T with rank
n + 1 − i. Then,

Rank lkhd ∝
(

n∏
i=1

τi

) ∫
· · · · · · · · ·

∫
0<u1<u2<···<un<1

n∏
i=1

(aui + b)γi −1du1 · · · dun.(3.5)

If we perform the integration, we find that the likelihood for the PEHR model is
similar to the likelihood for the Cox model except that in addition to terms involving
{k : Tk ≥ T(i)}, i = 1, . . . , n, it includes terms involving {k : T(i) ≤ Tk ≤ T(j)},
i = 1, . . . , n, j = 1, . . . , n, (i) ≤ (j). That is, the PEHR likelihood gives more weight
to the intermediate survival times than the Cox likelihood.

Computationally, the Cox rank likelihood is easier than the PEHR rank likeli-
hood. However, we can handle the PEHR rank likelihood with available algorithms
and software (e.g. MATLAB.) More generally, F (x) = Cθ(F0(x)) type models, orig-
inally considered by Lehmann [28], can be handled effectively by considering the
profile NP likelihood of the next section (e.g. Tsodikov and Gabribotti [42], Zeng
and Lin [44]).

4. Profile NP Likelihood

Andersen, Borgan, Gill, and Keiding [1], Bickel, Klaassen, Ritov, and Wellner [8],
van der Vaart [43], Murphy and van der Vaart [29], Tsodikov and Garibotti [42],
Zeng and Lin [44] and many others considered the problem of finding the MLE of
all the parameters in a semiparametric model. It is useful to divide the procedure
into two steps by grouping parameters into two groups. Suppose the distribution
function of T is of the form P (T ≤ t) = F (θ, η(t)), where θ ∈ Rd and η(·) is a
nondecreasing function. If we assume temporarily that η(·) has a positive derivative
η′(t) for t ∈ {t1, . . . , tn}, then the likelihood is

n∏
i=1

η′(ti)f(θ, η(ti)),

where f(θ, η) = ∂F (θ, η)/∂η. The NP likelihood we consider is of the form

LNP (θ, η) =
n∏

i=1

η{ti}f(θ, η[ti]),

where η[ti] =
∑

j≤i η{tj } is a step function with positive jumps η{ti} at the data
points ti, i = 1, . . . , n.

We assume that for some K > 0

af(θ, a) ≤ K for all a and θ, af(θ, a) → 0 as a → ∞

Next we fix θ, and define η̂θ {ti} as

η̂θ {.} = ARG MAXη{.}LNP (θ, η).(4.1)

Set

PROF NPLIK = l(θ) = MAXη{.}LNP (θ, η),(4.2)
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and solve

θ̂ = ARG MAX l(θ).(4.3)

Next estimate η{ · } as η̂θ̂ { · }. In the Lehmann model (1.1), the NP likelihood is

n∏
i=1

F0{xi}C ′
θ

(∑
j≤i

F0{xj }
)

,

The method is similar to finding the empirical MLE, Owen [33, 34], and profile
(partial) MLE’s as in Andersen, et al. [1], and Murphy and van der Vaart [29].

Remark 4.1. Note that when P (T ≤ t) = F (θ, η(t)), (4.1), (4.2), and (4.3) do
not depend on the values of t1, . . . , tn. In regression experiments, they will depend
on the ranks of t1, . . . , tn. For example, see (4.4) and (5.1). This is in contrast
to the Hodges and Lehmann [19] approach that uses estimating equations based
on rank test statistics to obtain estimates of parameters. In this Hodges-Lehmann
“rank inversion” approach, estimates are functions of the “raw” data rather than
the ranks.

As an example that will guide the algorithm for the PEHR model, consider the
Cox model. Set Λ(t) = − log(1 − F0(t)), then,

LNP (β, Λ) =
n∏

i=1

eβT xiΛ{ti}e−(eβT xi )Λ[ti],

where

Λ[ti] =
∑

j:tj ≤ti

Λ{tj }.

Using calculus, we find

Λ̂β {ti} = ARG MAXΛ{ti } LNP (β, Λ) =
( ∑

j:tj ≥ti

eβT xj

)−1

,

and

l(β) = PROF NPLIK =
n∏

i=1

eβT xi∑
j:tj ≥ti

eβT xj
.(4.4)

This is exactly the same as the rank, the partial, and the marginal likelihood.

5. Profile NP Likelihood for the PEHR Model

Consider model (2.6) with θ > 0. Set τ(θ) = θ[1 − e−θ]−1, then

LNP (θ, F0) =

[
n∏

i=1

τ(θi)

]
n∏

i=1

F0{ti}e−θiF0[ti],(5.1)

where F0[ti] =
∑

j:tj ≤ti
F0{tj }. Now set pi ≡ F0{ti} and maximize with respect

to p1, . . . , pn with θ fixed. The maximization problem looks very similar to Cox
model maximization except for the constraint

∑
pi = 1. We handle this constraint

by writing F0(t) = 1 − exp[−Λ(t)] with Λ(t) unconstrained except for Λ(t) ≥ 0 and
by using a new approach based on the MM algorithm.
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5.1. The MM Algorithm

Lang, Hunter and Yang [27] introduced a concept called the MM algorithm. Its
idea is that instead of maximizing a complicated original objective function, use a
simpler surrogate function so that each iteration is faster and guarantees that the
original objective function increases. Given the original objective function l(h) for a
maximization problem, a surrogate function g(h|hold) must satisfy two properties:

l(hold) = g(hold|hold),(5.2)

l(h) ≥ g(h|hold).(5.3)

The EM algorithm is a special case of the MM algorithm. A practical implemen-
tation issue of the MM algorithm is that we have to find a nice surrogate function
case by case.

Now we construct a surrogate function based on Tsodikov [41]. Suppose we can
write l(·) in the form l(h) = B(h) − A(h) for some parameter vector h > 0, where
A and B are differentiable concave functions. Then by the concavity property,

g(h|hold) = B(h) − A(hold) − ∇T A(hold)(h − hold),(5.4)

where ∇T A(h) = ∂A/∂h is the gradient of A, satisfies (5.2) and (5.3), and g(h|hold)
is a surrogate function for l(h). Differentiating (5.4) gives

∇T B(hnew) = ∇T A(hold).(5.5)

Solve (5.5) for hnew. Iterate the procedure until there is a minimal change in h.

5.2. The MM Algorithm for the PEHR Model with θ ≥ 0 (SINAMI
with θ ≥ 0)

Let θi = g(βT xi), for some known function g(·) ≥ 0. When θi = 0, the distribution
function of Ti is F0(t). Let F0(t) = 1−exp[−Λ(t)], hk = Λ{tk }, and Λ[ti] =

∑i
k=1 hk

with Λ(t) ≥ 0 and hk ≥ 0. Then for a temporarily fixed numerical vector β,

l(h) = log[LNP (β, h)] =
n∑

i=1

log τ(θi) +
n∑

i=1

log hi

(5.6)

−
n∑

i=1

[
i∑

k=1

hk + θi

(
1 − exp

(
−

i∑
k=1

hk

))]
.

Now we can write l(h) = B(h) − A(h) with

B(h) =
n∑

i=1

log hi,(5.7)

A(h) =
n∑

i=1

[
i∑

k=1

hk + θi

(
1 − exp

(
−

i∑
k=1

hk

))]
.(5.8)

Here we may ignore Σ log τ(θi) because we maximize (5.6) w.r.t. h.
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B(h) and A(h) are concave, because for 0 ≤ t ≤ 1, B(tha + (1 − t)hb) ≥
tB(ha)+(1−t)B(hb) and by mathematical induction, A(tha+(1−t)hb) ≥ tA(ha)+
(1 − t)A(hb) hold. Note that

∂B/∂hj = 1/hj , j = 1, . . . , n,(5.9)

∂A/∂hj =
n∑

i=1

(
1 + θi

(
1 − exp

(
−

i∑
k=1

hk

)))
1(j ≤ i).(5.10)

Using (5.5), (5.9), and (5.10), update hj , j = 1, . . . , n, at the same time,

hj,new =

[
n∑

i=1

(
1 + θi

(
1 − exp

(
−

i∑
k=1

hk,old

)))
1(j ≤ i)

]−1

.(5.11)

Iterate (5.11) until there is a minimal change in l(ĥnew); call the result ĥA

(Approximated profile NPMLE). Note that we call ĥA approximated profile
NPMLE because ĥA is obtained by fixing β. This approximation is necessary be-
cause there is no closed form ĥ w.r.t. β. Next set l(β) = log[LNP (β, ĥA)] and
maximize w.r.t. β.

5.3. The MM Algorithm for the SINAMI Model with θ ≤ 0

Consider model (2.7) with θi = g(βT xi), for some known function g(·) ≤ 0. In this
case we can use the algorithm of Section 5.2. To see this, suppose T satisfies model
(2.7) with parameter θ2 < 0. Set V = 1 − F0(T ), then V satisfies model (2.6) with
parameter θ1 = −θ2. Moreover, the rank of 1 − F0(Ti) is n + 1 − Ri.

5.4. The MM Algorithm for the SINAMI Model with θ ∈ R

Consider model (2.7) with θi = g(βT xi), for some known function g(·) ∈ R.
In this case we can not use the transformation in Section 5.3 because it changes
the likelihood and the monotonicity of the likelihood as a function of θ does not
necessarily hold. Instead, we modify the algorithm as follows: If the value θ̂j in the
jth iteration is positive, use the MM algorithm in Section 5.2. to find ĥj . If θ̂j < 0,
then (5.6) implies that finding the maximizer h is a concave optimization problem
which produces ĥj .

5.5. Profile NPMLE Implementation

Successful convergence of the MM algorithm depends on a good starting point
(θ̂, ĥ). We consider the two sample problem:

T0,i ∼ F0(t), i = 1, . . . , n0,(5.12)

T1,i ∼ F (t) =

{
1−e−θF0(t)

1−e−θ , (θ > 0), i = 1, . . . , n1,

F0(t), (θ = 0), i = 1, . . . , n1,
(5.13)
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where F0(·) is an unknown distribution with density f0. Note that the density of
F (t) is

f(t; θ) =
{

τ(θ)f0(t)e−θF0(t), (θ > 0),
f0(t), (θ = 0).

(5.14)

We use an algorithm to find (θ̂, ĥ) where θ = β in this case. For fixed F0, (5.14)
gives an MOM estimating equation for θ. We plug in an estimate F̂0 for F0, and
use the following algorithm:

step (1) : F̂0 → step (2) : θ̂ → step (3) : (θ̂A ↔ ĥA)until θ̂A converges.

Here θ̂A and ĥA are approximated profile NPMLE’s from Section 5.2. The details
are as follows:
Step (1): Compute the empirical distribution F̂0(t) based on T0,i only:

F̂0,[0](t) ≡ F̂0(t) =
1

1 + n0

n0∑
i=1

1(T0,i ≤ t).(5.15)

Here F̂0(t) →a.s. F0(t) uniformly in t as n0 → ∞. The subscript [0] indicate
iteration zero (starting point) for step (3). Note that the one-to-one relation between
F̂0 and Λ̂0 is used to obtain ĥ by solving for h in the equations:

F̂0(ti) ≡ F̂0,i = exp(−Λ̂i), where
(5.16)

Λ̂[ti] ≡ Λ̂i =
i∑

k=1

ĥk, i = 1, . . . , n0.

Step (2): Solve for θ̂ based on F̂0,[0](t):

T̄1 = τ(θ)
∫

ye−θF̂0,[0](y)dF̂0,[0](y)
(5.17)

= τ(θ)
n0∑
i=1

T0,(i) exp
(

−θ
i

n0

)
1
n0

,

where T0,(i) is an order statistics of T0,1, . . . , T0,n0 and T̄1 =
∑n1

i=1 T1,i/n1. The
solution is uniquely determined because the distribution function (5.13) is monotone
increasing in θ and hence its mean is monotone decreasing in θ. If a model is θ ≥ 0
and θ̂ < 0, set θ̂ = 0. If a model is θ < 0 and θ̂ > 0, set θ̂ = 0.
Step (3): Compute θ̂A and ĥA as follows:

(θ̂A ↔ ĥA)until θ̂A converges.(5.18)

The first iteration θ̂A,[1], is obtained by maximizing (5.6) with θ̂ as a starting point,
i.e., θ̂A,[0] = θ̂ and with fixed ĥ[0] obtained from (5.16) and F̂0,[0], i.e.,

θ̂A,[1] = arg max
θ

{l(θ, ĥ[0]) : θ ≥ 0}.(5.19)

Then by the MM algorithm in Section 5.2 with β0 = θ0 = θ̂A,[1] (see (5.11)), obtain
ĥ[1] using the starting point ĥ[0]. Next obtain

θ̂A,[2] = arg max
θ

{l(θ, ĥA,[1]) : θ ≥ 0},(5.20)
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with starting point θ̂A,[1]. Then by the MM algorithm in Section 5.2 with β0 =
θ0 = θ̂A,[2], obtain ĥA,[2] with starting point ĥA,[1]. Repeat the procedure to get
θ̂A,[j] and ĥA,[j] until convergence, i.e., |θ̂A,[j] − θ̂A,[j−1]| < ε for some small ε.

Numerical optimizations for θ̂ and θ̂A are carried out by the MATLAB fmincon()
function.

Remark 5.1. For fixed ĥ, l(θ, ĥ) is strictly concave and have a unique maximum.

Remark 5.2. The estimate of β in the Cox model that we have discussed is as-
ymptotically optimal in the semiparametric sense (Begun, Hall, Huang, and Wellner
[2], Bickel et al. [8], van der Vaart [43]), Murphy and van der Vaart [29]). These
references and others give results that can be used to check the semiparametric
asymptotic optimality of the profile NPMLE in the PEHR model.

Remark 5.3. Transformation models. We can show that the PEHR is a special
case of transformation models as follows: Let Fλ be the exponential (λ) distribution
function and define

G0(y|x) =
1 − e−θFλ(y)

1 − e−θ
, y > 0,(5.21)

where θ = g(x, β). Let ψ be an increasing function from [0, ∞) to [0, ∞) and define
the transformation model

G(y|x) = G0(ψ(y)|x).(5.22)

This model is of the form (2.6) with F0 = Fλψ(t). Klaassen [24] gives results for
general transformation models that can be used to check semiparametric asymptotic
efficiency of estimates of β in the model (2.6).

5.6. Estimation of the Variance of the Profile NPMLE

Hypothesis tests and confidence intervals require standard errors (estimates of the
standard deviation) of θ̂A. An algorithm developed by Tsodikov and Garibotti [42]
combined with the preceding algorithm allows us to compute the profile information
matrix which is the observed information matrix derived from the profile likelihood.
This provides standard errors SE(θ̂A) of θ̂A.

6. Simulation Results

6.1. PEHR Model Estimates

Monte Carlo (MC) simulation for model (5.13) with F0 equal to the exponential
distribution EXP(1) is based on 1000 Monte Carlo samples with n = 100, 200, and
300. T0,i ∼ EXP (1), i = 1, . . . , n0, T1,i ∼ PEHR(θ = 2, or 3), i = 1, . . . , n1,
n0 = n1 = n/2, iid. We compute Monte Carlo estimates of the expected values,
standard deviations (SD’s), and MSE’s of θ̂MOM , θ̂A, and θ̂PAR where θ̂PAR is the
parametric model MLE, obtained by assuming that F0 is known and equal to the
EXP(1) distribution.

We also compute the Monte Carlo estimates of the expected values E[SE (θ̂A)]
of the standard errors computed as described in Section 5.5. Table 1 summarizes
the result.
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Table 1

PEHR model simulation estimates (MC=1000, θ = 2, 3)

θ 2 3

n 100 200 300 100 200 300

E[θ̂MOM ] 1.97 2.00 2.02 3.05 3.00 3.01

E[θ̂A] 1.99 2.00 2.01 3.07 3.00 3.01

E[θ̂PAR] 2.02 2.00 2.01 3.03 3.01 3.00

SD(θ̂MOM ) 0.819 0.551 0.479 0.972 0.635 0.506

SD(θ̂A) 0.788 0.541 0.466 0.960 0.618 0.497

SD(θ̂PAR) 0.541 0.387 0.317 0.605 0.431 0.335

E[SE(θ̂A)] 0.752 0.527 0.430 0.837 0.578 0.471

MSE[θ̂MOM ] 0.671 0.303 0.230 0.949 0.403 0.256

MSE[θ̂A] 0.621 0.292 0.217 0.926 0.383 0.248

MSE[θ̂PAR] 0.289 0.150 0.101 0.367 0.186 0.112

Overall θ̂MOM , θ̂A, and θ̂PAR have almost no bias in the estimation of θ =2 or
3. As expected, the parametric model estimate θ̂PAR has the smallest MSE. The
approximated profile NPMLE θ̂A has a smaller MSE than θ̂MOM , but the difference
is small. The approximation to SD(θ̂A) is very good and improves as the sample
size increases.

6.2. Model Fit for Misspecified Model

Next consider a model that is neither a Cox PH model nor a PEHR model: i.e.,
T0,i ∼ EXP (1) and the true model for T1,i is: Case 1, Gamma(shape=0.5,
scale=0.5), and the: Case 2, Weibull(shape=0.5, scale=0.2). Here the target values
θ and h are those that minimize the Kullback-Leibler divergence between the true
distribution and the model class of distributions (Doksum, Ozeki, Kim and Neto
[15]).

Figure 2 shows that PEHR gives better fit than the Cox model.

Fig 2. Cox and PEHR estimated hazard ratio when F0 ∼ EXP (1) and F ∼ Gamma or Weibull.
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7. Estimation in the Normal Copula Model

7.1. The One Covariate Case

Assume that the pair (X,Y) has a joint density f(x,y) with respect to Lebesgue
measure on R2 and a joint distribution function F(x,y). Let F1 and F2 be the
marginal distribution functions of X and Y, respectively, and let Φ denote the
standard normal distribution function. Consider the transformations X → Z =
Φ−1(F1(X)), Y → W = Φ−1(F2(Y )). Then the marginal distributions of Z and
W are standard normal. The bivariate normal copula model F is defined by the
assumption that the joint distribution of (Z,W) is bivariate normal with zero mean,
unit variance, and correlation coefficient ρ. That is,

F = {F : (Φ−1(F1(X)), Φ−1(F2(Y ))) ∼ N(0, 0, 1, 1, ρ)},

where F1 and F2 are the marginals of F. Let {(Xi, Yi), i = 1, 2, . . . , n} be inde-
pendent and identically distributed with distribution function F ∈ F , and set
Zi = Φ−1(F1(Xi)), Wi = Φ−1 (F2(Yi)), i = 1, 2, . . . , n. If we (temporarily) as-
sume that F1 and F2 are known, then because E(ZW) = ρ, a method of mo-
ments ”estimate” of ρ, is rMOM = n−1

∑n
i=1 ZiWi. The asymptotic distribution

of
√

n(rMOM − ρ) is N(0, 1 + ρ2) when F ∈ F . Assuming F1 and F2 known, the
asymptotic distribution of

√
n(rMLE − ρ), where rMLE is the maximum likelihood

”estimate” of ρ is N(0, (1−ρ2)2/(1+ρ2)). The asymptotic variance (1−ρ2)2/(1+ρ2)
of rMLE is smaller than the asymptotic variance (1 − ρ2)2 of the usual Pearson cor-
relation coefficient rP and much smaller than the asymptotic variance 1 + ρ2 of
rMOM .

Note that F is invariant under coordinate-wise increasing transformations. That
is, if (X, Y ) ∼ F ∈ F and U = h1(X), V = h2(Y ) with h1 and h2 increasing,
then the distribution G of (U,V) is in F . If we want methods that are invariant
under such transformations, we must use statistics based on the ranks defined in
Section 1.

Suppose next that F1 and F2 are unknown. It may then make sense to replace
the ordered Z’s and W’s by their expected values. This leads to the Fisher and
Yates [16] or normal scores E(Z(i)), i = 1, . . . , n where Z(1), . . . , Z(n) are N(0,1)
order statistics. We write a(i) = E(Z(i)). An accurate approximation to E(Z(i)) is
Φ−1[(i − 3/8)/(n + 1/4)], e.g. Cox [13].

Let Z
′

i = a(Ri), W
′

i = a(Si) where Ri and Si are the ranks of Xi and Yi when
the X’s and Y’s are ranked separately. Then we obtain estimates ρ̂MOM , ρ̂MLE ,
and ρ̂P of ρ when F1 and F2 are unknown by replacing Zi and Wi by Z

′

i and W
′

i in
rMOM , rMLE and rP . In this case ρ̂MOM , ρ̂P are nearly identical and asymptotically
equivalent, but they are different from ρ̂MLE . We will use ρ̂P because it is slightly
less biased, and denote it by ρ̂NS where NS signifies normal scores. Thus

ρ̂NS =
∑

Z ′
iW

′
i/

∑
a2(i).(7.1)

It follows from Bhuchongkul [4] that based on the rank likelihood, ρ̂NS is, uniformly
in F1 and F2, a locally most powerful test statistics in the bivariate normal copula
model. Zou and Hall [45] gave an asymptotic extension of this result. They also
computed the rank likelihood estimate of ρ in the bivariate normal copula model
using an improved version of the likelihood sampler in Doksum [14].

Klaassen and Wellner [26] found
√

n(ρ̂NS − ρ) →d N(0, (1 − ρ2)2) in the copula
model F with F1 and F2 unknown; the same as for the Pearson correlation in the
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bivariate normal model. In fact, in a bivariate normal(μ1, μ2, σ
2
1 , σ2

2 , ρ) model, rP

is the MLE, and rP and ρ̂NS are asymptotically optimal in the parametric sense.
A fourth possible estimate is the profile NP estimate obtained by fixing ρ and

replacing F1 and F2 by step functions with jumps {pi} and {qi} at (Xi, Yi) in the
log likelihood for the normal copula model. That is, ignoring constants (ρ is fixed),
we maximize

l(p, q) =
∑

i

{
log pi + log qi

+
1
2

(
Φ−1

( ∑
k:Xk ≤Xi

pk

))2

+
1
2

(
Φ−1

( ∑
k:Yk ≤Yi

qk

))2

+
1
2
(1 − ρ2)−1

[(
Φ−1

( ∑
k:Xk ≤Xi

pk

))2

− 2ρΦ−1

( ∑
k:Xk ≤Xi

pk

)
Φ−1

( ∑
k:Yk ≤Yi

qk

)
+

(
Φ−1

( ∑
k:Yk ≤Yi

qk

))2]}
,

(7.2)

w.r.t. (p, q) where
∑

pi = 1 and
∑

qi = 1. Then given (p̂, q̂), maximize the log
likelihood w.r.t. ρ, which gives ρ̂PROF , a profile NPMLE.

Remark 7.1. An estimate θ̂ of a parameter θ ∈ R in a semiparametric model
is regular if

√
n(θ̂ − θ) →d N(0, Vθ̂(θ, η)) for some asymptotic variance Vθ̂(θ, η)

and if θ̂ satisfies additional regularity conditions given in Bickel et al. [8]. For
F ∈ F , VrP

(ρ, F ) depends on F (e.g. Bickel and Doksum [6], Example 5.3.6), while
Vρ̂NS

(ρ, F ) does not, as shown by Klaassen and Wellner [26]. Klaassen and Wellner
[26] go on to argue that (1 − ρ2)2 is a semiparametric asymptotic variance lower
bound for the class S of all regular estimates of ρ. Thus ρ̂NS is semiparametrically
optimal in the minimax sense:

sup{Vρ̂NS
(ρ, F ) : F ∈ F } = inf

ρ̂∈S
sup{Vρ̂(ρ, F ) : F ∈ F }.(7.3)

Remark 7.2. Recall that ρ̂NS was obtained by inserting normal scores Z ′
i and

W ′
i in the MOM estimate for the model with F1 and F2 known, and that the MLE

rMLE for this model has variance (1 − ρ2)2/(1+ρ2). Klaassen and Wellner [26] have
shown that the approximate MLE ρ̂MLE obtained from rMLE by replacing (Zi, Wi)
with (Z ′

i, W
′
i ) is semiparametrically optimal in the same sense as ρ̂NS . Because the

distribution of the ranks do not depend on F1 and F2, this implies that ρ̂NS and
ρ̂MLE are asymptotically equivalent for every F ∈ F . We conjecture that ρ̂PROF

is also asymptotically optimal and equivalent to ρ̂NS .

Remark 7.3. The asymptotic distribution of ρ̂NS when the distribution of (X,Y)
is not in F can be obtained from Ruymgaart, Shorack, and Van Zwet [36] and
Ruymgaart [35].

7.2. The Multivariate Covariate Case

The normal copula model in the multivariate case is defined as follows: Let Y ∼ G,
Xj ∼ Fj , h(X) = (h1(X1), . . . , hd(Xd)), where hj , j = 0, . . . , d are increasing
functions defined by

h0(Y ) = Φ−1(G(Y )),(7.4)
hj(Xj) = Φ−1(Fj(Xj)).(7.5)
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The distribution of the untransformed variables (X, Y ) is a copula model if we
assume that (h(X), h0(Y )) is multivariate normal with 0 means and unit variances.

8. Transformation and NP Models

Consider a regression experiment with response Y and a random covariate vector
X = (X1, . . . , Xd)T . We will extend the normal scores estimate ρ̂NS of Section 7 to
the d dimensioned case and compare it with estimates appropriate for parametric
and nonparametric models. In the copula regression model of Section 7.2, we can
write

h0(Y ) = βT h(X) + ε, ε ∼ N(0, σ2),(8.1)

where β is the set of regression coefficients when regressing h0(Y ) on h(X). The
transform both sides Box-Cox model is based on (8.1) with h0(Y ) = Y (λd+1),
hj(Xj) = X

(λj)
j , j = 1, . . . , d, where t(λ) = (tλ − 1)/λ. Thus for this case, we

can write

Y (λd+1) = α + βT X(λ) + ε, ε ∼ N(0, σ2).(8.2)

We first consider a procedure for estimating the parameters in model (8.2):

I Profile Likelihood for a multivariate model.
Hernandez and Johnson [21] considered the one sample multivariate Box-Cox

transformation model. This was adopted to regression by Doksum, Ozeki, Kim and
Neto [15]. We regard (Y (λd+1), X(λ)) as a d+1 multivariate normal (μ, Σ) vector.
Regressing Y (λd+1) on X(λ) leads to (8.2). We fix ξ ≡ (λ, λd+1) and estimate the
parameters in the normal model by maximizing the likelihood thereby obtaining
the familiar normal theory estimates (μ̂(ξ), Σ̂(ξ)). We plug these into the likelihood
and obtain the profile likelihood l(ξ), which we maximize to get ξ̂ and the final
estimates (μ̂(ξ̂), Σ̂ ˆ(ξ)). These are the usual linear model estimates with Yi, Xij

replaced by Y
(λ̂d+1)
i , X

(λ̂j)
ij . Similarly, the estimate of β in (8.2) is the usual linear

model estimate with Yi, Xij replaced by Y
(λ̂d+1)
i , X

(λ̂j)
ij .

Remark 8.1. We also considered the maximum likelihood estimates of the para-
meters β, σ2, and (λ, λd+1) in model (8.2). This approach has the problem that if
we want to test H0 : βj = 0, then λj is not identifiable under H0. Approach I does
not have this problem. This is one case where likelihood and profile likelihood are
very different. The algorithm for this MLE often failed to converge. When it did
converge, it produced results close to those of method I. We omit the details.

Remark 8.2. As pointed out by Zou and Hall [45], when d=1, the MLE of ρ in
the Box-Cox transformation model with unknown transformation parameters and
standardized transformations have the same efficiency as the MLE for the model
with known transformation parameters because this Box-Cox model is between the
bivariate normal model and the bivariate normal copula model and the MLE’s in
these models have the same asymptotic variance (1 − ρ2)2. The result that the
efficiency is the same whether or not the λ’s are known in this Box-Cox model was
also obtained by Wong [46]. This result is very different from the results of Bickel
and Doksum [5] regarding the estimation of regression coefficients.
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Remark 8.3. Consider the transformation model

h0(Y ) = βT X + ε, ε ∼ N(0, σ),(8.3)

where X is a vector of random covariates and h(·) is increasing. In this case we
can consider the rank estimate β̂R obtained by maximizing the rank likelihood
lr(β) = P (R = r) defined in Section 3. The results of Bickel and Ritov (1997) imply
that in a certain sense β̂R is semiparametrically optimal for model (8.3). However
the normal scores estimate of β̂ = (xT x)−1xT a, where a = (a(S1), . . . , a(Sn))T

and x is a vector of nonrandom covariates, is not asymptotically optimal unless
|β|/σ tends to zero at a certain rate as n → ∞ (Doksum [14]). MC methods for β̂R

is introduced in Bickel and Doksum [7], Section 10.5.

We next introduce a semiparametric approach for the copula regression model
and a nonparametric regression approach.

II Normal score substitution.
The model (8.1) with hj , j = 0, . . . , d, satisfying (7.4) and (7.5) is invariant

under increasing transformations. As in the d=1 case, this leads to using the ranks
{Si} of the Y’s and the ranks {Rij : i = 1, . . . , n} of Xij among {Xij : i =
1, . . . , n, j = 1, . . . , d}. Because the distribution of the ranks is invariant under
increasing transformations, for rank methods, model (8.1) is equivalent to

(8.4) Y ′ = αT X ′ + ε′,

where X ′
j ∼ N(0, 1) and ε′ are independent, Y ′ ∼ N(0, 1) and αT = Σ−1ρ with

ρ = (Corr(X ′
1, Y

′), . . . , Corr(X ′
d, Y

′))T and Σ the correlation matrix of X ′ =
(X ′

j)d×1. Here Σ is assumed to be nonsingular. Based on the distribution of the
ranks, α1, . . . , αd are identifiable parameters in model (8.4). These parameters rep-
resent the relative importance of the Xj ’s.

The normal scores Z ′
ij = a(Rij) and W ′

i = a(Si) have approximately the same
distribution as the unobservable X ′

ij and Y ′
i in model (8.4). Because E(Y ′ |x′) =

αT x′, if we replace X ′
ij and Y ′

i with Z ′
ij and W ′

i , we find that an approximate
method of moments estimate of α is

(8.5) α̂ = (ZT
DZD)−1ZT

DW ′,

where ZD is the no intercept design matrix (Z ′
ij)n×d′ , d′ is the rank of the matrix

(Z ′
ij), and W ′ = (W ′

1, . . . , W ′
n)T . Any subset of variables Xj : j ∈ J with the same

ranks, say R1J , . . . , RnJ , is collapsed into one variable denoted as XJ with ranks
R1J , . . . , RnJ to avoid singularity. Based on Klaassen and Wellner [26], we conjec-
ture that α̂ is semiparametrically efficient for the multivariate normal copula model.

III Nonparametric estimation.
We next introduce a nonparametric approach. We consider the model

(8.6) Y = m(X) + ε,

where m() is unknown and ε has median zero. To estimate m(), we use a cubic B-
spline and the R function smooth.spline(). The number of knots are automatically
selected (less than the number of observations n). The smoothing parameter is
chosen by generalized cross validation (GCV).
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8.1. Simulation Results

We consider the d=1 case and consider the properties of estimates of ρ =
Corr(h1(X), h0(Y )). In this case, the method II estimate is ρ̂NS .

8.1.1. Correctly Specified Model

The true model satisfies

(8.7) Y (λ2) = α0 + α1X
(λ1) + ε,

where ε ∼ N(0, σ2) and X(λ1) ∼ N(μ1, σ
2
0) are independent. This model is a subset

of the normal copula model F with

(8.8) F1(x) = Φ
(

x(λ1) − μ1

σ0

)
, F2(y) = Φ

(
y(λ2) − μ2

σ2

)
,

where μ2 = EY (λ2), and σ2
2 = V arY (λ2). We use 1000 MC trials and take σ2 = 1,

σ2
0 = 1, (λ1, λ2) ∈ {(0.5, 0.5), (1, 1)}, α0 = 6, α1 =∈ {0, 0.1, 0.5, 1, 2}, and μ1 = 5.
Figure 3 shows that methods I and II have similar properties for α1 ≤ 0.5. For

larger α1, the normal scores estimate has a downward bias which is negligible for
n ≥ 500 (not shown here.) Method I converges all the time with the constraint
−4 ≤ λ ≤ 4. Method II does not involve any optimization and hence converges all
the time.

Fig 3. ρ̂ boxplots for correctly specified model (8.7) with n=128. Top 5: λ1 = λ2 = 0.5. Bottom
5: λ1 = λ2 = 1. The horizontal line gives the true value of ρ.
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8.1.2. Misspecified Model

We simulate the data from

(8.9) Y (λ2) = (1 − γ)(α0 + α1X
(λ1)) + γ[L(X)] + ε,

where L() is a nonlinear function. Thus the model is a Box-Cox model when γ = 0,
but when γ > 0, we are checking the performance of the methods when the model
generating the methods are misspecified.

For comparisons of methods we need a parameter that makes sense for all three
methods. One such parameter is

(8.10) m(x) = Median(Y |X = x).

We consider the 25th, 50th, and 75th population quantiles of X, i.e., our parameters
of interest are m(x0.25), m(x0.50), and m(x0.75).

Methods I and II are based on models of the form

(8.11) h0(Y ) = g(X, β) + ε,

where h0(·) is an increasing function. If X and ε are independent and median(ε) = 0,
then

(8.12) m(x) = h−1
0 (g(X, β)).

For method I, the MLE of m(x) in model (8.7) is,

(8.13) m̂(x) =
(

λ̂2

[
β̂0 + β̂1

xλ̂1 − 1

λ̂1

]
+ 1

)1/λ̂2

.

For method II, write model (8.1) as

(8.14) h0(Y ) = ρh1(X) + ε, ε ∼ N(0, σ2),

where ρ ≡ ρ(h1(X), h0(Y )) is the correlation coefficient. Then by (8.12),

(8.15) m(x) = h−1
0 (ρh1(x)),

where

(8.16) h−1
0 (t) = F −1

2 (Φ(t)).

It follows that

(8.17) m(x) = F2
−1(Φ(ρΦ−1(F1(x))),

and by replacing F1 and F2 by their empiricals, a natural estimate of m(x) is

(8.18) m̂(x) = y([nΦ(ĝ(x))]),

where ĝ(x) = ρ̂NSΦ−1(F̂1(x)) and [ ] is the greatest integer function.
For method III, we use the smoothing spline estimate of E(Y |X = x) described

earlier. In our models with normal errors, E(Y |X = x) coincide with the conditional
median m(x).



86 Doksum and Ozeki

Fig 4. Boxplots of the three estimates of median regression m(x) for model (8.9) with
(λ1, λ2, α1, σ2)=(1, 1, 0.5, 0.5). I: profile MLE, II: normal scores, and III: NP, spline. The
true value of m(x) is the solid line.

In the simulation we use model (8.9) with ε ∼ N(0, σ2) and X(λ1) ∼ N(μ1, σ
2
0)

independent,

(8.19) L(t) = α0 + α1μ1 − 1.25 + 2.5[1 + exp(−10(t − μ1))]−1,

σ2 ∈ {0.01, 0.1, 0.5, 1}, σ2
0 = 1, (λ1, λ2) ∈ {(0.5, 0.5), (1, 1)}, α0 = 6.25, α1 ∈

{0, 0.5, 1, 2}, μ1 = 5, and γ ∈ {0, 0.25, 0.5, 0.75, 1}. The sample size is n=512. There
are 1000 MC trials.

Figures 4, 5, 6, and 7 are boxplots of m̂(x0.25), m̂(x0.50), and m̂(x0.75) with
the setting (λ1, λ2, α1, σ

2) = (1, 1, 0.5, 0.5), (λ1, λ2, α1, σ
2) = (1, 1, 0.5, 1), (λ1, λ2,

α1, σ
2) = (0.5, 0.5, 0.5, 0.5), and (λ1, λ2, α1, σ

2) = (0.5, 0.5, 0.5, 1) respectively. Fig-
ures 8-11 give MSE’s for the estimates m̂(x0.25), m̂(x0.50), and m̂(x0.75).

We see that method I is the best when model (8.2) is correct, that is, γ = 0.
However when the model is increasingly misspecified, i.e., as γ increases, its absolute
bias increases which leads to low MSE performance.

Method II is overall best in terms of MSE when λ1 = λ2 = 0.5 (Figures 6 and
7). When γ = 0, it is unbiased and its variance is between Method I and Method
III (Figures 4, 5, 6, and 7).

Method III is overall best in terms of MSE when λ1 = λ2 = 1 and the model
is badly misspecified. It’s smaller bias makes up for its large variance in this case.
But its MSE suffers at and near model (8.2) (Figures 6, 7, γ = 0).

In summary, the normal score procedure performs very well at and close to a
copula model. For n large, this is to be expected from the results of Klaassen and
Wellner [26]. The normal scores estimate is competitive with the Box-Cox estimate
in the transform both sides Box-Cox model.
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Fig 5. Boxplots of the three estimates of median regression m(x) for model (8.9) with
(λ1, λ2, α1, σ2)=(1, 1, 0.5, 1). I: profile MLE, II: normal scores, and III: NP, spline. The true
value of m(x) is the solid line.

Fig 6. Boxplots of the three estimates of median regression m(x) for model (8.9) with
(λ1, λ2, α1, σ2)=(0.5, 0.5, 0.5, 0.5). I: profile MLE, II: normal scores, and III: NP, spline. The
true value of m(x) is the solid line.
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Fig 7. Boxplots of the three estimates of median regression m(x) for model (8.9) with
(λ1, λ2, α1, σ2)=(0.5, 0.5, 0.5, 1). I: profile MLE, II: normal scores, and III: NP, spline. The
true value of m(x) is the solid line.

Fig 8. MSE of the three estimates of m(x) as a function of the misspecification parameter γ for
(λ1, λ2, α1, σ2)=(1, 1, 0.5, 0.5). © = I, � = II, + = III.
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Fig 9. MSE of the three estimates of m(x) as a function of the misspecification parameter γ for
(λ1, λ2, α1, σ2)=(1, 1, 0.5, 1). © = I, � = II, + = III.

Fig 10. MSE of the three estimates of m(x) as a function of the misspecification parameter γ for
(λ1, λ2, α1, σ2)=(0.5, 0.5, 0.5, 0.5). © = I, � = II, + = III.

Fig 11. MSE of the three estimates of m(x) as a function of the misspecification parameter γ for
(λ1, λ2, α1, σ2)=(0.5, 0.5, 0.5, 1). © = I, � = II, + = III.
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