
IMS Lecture Notes–Monograph Series
Optimality: The Third Erich L. Lehmann Symposium
Vol. 57 (2009) 18–30
c© Institute of Mathematical Statistics, 2009
DOI: 10.1214/09-LNMS5704

An Optimality Property of Bayes’ Test

Statistics

Raghu Raj Bahadur and Peter J. Bickel1,∗

University of Chicago and Imperial College, London

Dedicated to Erich Lehmann on his 90th Birthday

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 A Generalization of a Theorem of Bahadur . . . . . . . . . . . . . . . . . 19
3 General Assumptions and a Useful Lemma . . . . . . . . . . . . . . . . . 21
4 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Optimality of Minimax Tests . . . . . . . . . . . . . . . . . . . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Preface

This paper dates back to the late 60’s when I collaborated with Raj Bahadur, who
is unfortunately no longer with us. The reason it has not appeared until now is that
he felt it had to be accompanied by a number of multivariate examples. We both
went on to other things; the examples were not worked out although we both knew
of the existence of some of them. So why is this paper appearing here (with the
approval of Steve Stigler, an executor of the Bahadur estate)? First, in addition to
attesting to Erich’s continued vital presence, it gives me the opportunity of paying
a tribute to Bahadur, who was a friend of both of ours. Second, it is an interesting
reminder of how writing styles have changed on the whole I think for the better
– from rigorous abstract formulation and mathematically rigorous presentation to
more motivation and a lot of hand waving. Third, and most importantly, the result
is an example of what I think both Erich and I consider an important endeavor,
the reconciliation of the Bayesian and frequentist points of view (in context of now
rather unfamiliar asymptotics). In an important paper in the 5th Berkeley Sympo-
sium [4], Bahadur showed that the maximum likelihood ratio statistic possessed an
optimality property from the view of a large deviation based frequentist compari-
son of tests he introduced in 1960 [1]. Our paper shows that this property is shared
by Bayes test statistics for reasonable priors and conjectures that a corresponding
Bayesian optimality property holds for the maximum likelihood ratio statistic. If
true this can be viewed as the large deviation analogue of the well-known Bern-
stein von Mises’ theorem – see Lehmann and Casella [10] p. 489, which establishes
the equivalence at the n− 1

2 scale of Bayesian and maximum likelihood estimates.
Establishing this conjecture is left as a challenge to the reader.

1On leave from University of California, Berkeley (1965-66).
∗Prepared with partial support of N.S.F. Grant G.P. 2593.
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Given the historical interest I have not changed the text save for typos and only
brought references up to date.

1. Introduction

In [4] one of the authors established the optimality of the classical likelihood ratio
test statistic in terms of a method of stochastic comparison previously introduced
by him in [1, 2] and [3].

In the main theorem of this paper, Theorem 2 of Section 4, we show that this
property is shared by Bayes test statistics (averages of likelihood ratios with respect
to probability measures on the parameter space) under conditions which are slightly
different from, and in some respects weaker than those given in [4]. These assump-
tions are given and discussed in Section 3. Section 5 contains a theorem establishing
the asymptotic optimality of minimax tests under appropriate restrictions.

In Section 2 we give a strengthening Theorem 1 of [4], which established a lower
bound for the slope of any family of tests in terms of the Kullback-Leibler in-
formation numbers. The proof given here drops Assumption 1 of [4] and weakens
Assumption 2 considerably. This argument seems to give some insight into the
necessity of an assumption such as our modification of Assumption 2 of [4].

2. A Generalization of a Theorem of Bahadur

Even as in [4] we let X be an abstract space, A a field on X, Pθ, θ ∈ Θ, a set of
probability measures on (X, A), and Θ0 a given subset of Θ. For any θ, θ′ we define,

(2.1) K(θ, θ′) = −
∫

X

log
dPθ′

dPθ
(x)dPθ(x),

where dPθ′
dPθ

is the ratio of the Radon Nikodym derivatives of Pθ, Pθ′ with respect
to (say) Pθ + Pθ′ and 0/0 is by convention equal to 1. Also let,

(2.2) J(θ) = inf{K(θ, θ′) : θ′ ∈ Θ0}.

It is well known that (cf. [4]), 0 ≤ K(θ, θ′) ≤ ∞, and necessarily the same is true
of J(θ). Following [4], let Tn be any sequence of extended real valued measurable
functions of the infinite product space (X∞, A ∞) such that Tn is a function of the
first n co-ordinates only. Denote the cumulative distribution of Tn, when θ obtains,
by Fn(t, θ), i.e.,

(2.3) Fn(t, θ) = Pθ

[
Tn(s) < t

]
,

where Pθ now denotes the infinite product measure extension of Pθ to X∞. Finally,
let,

(2.4) Ln(s) = sup
{
1 − Fn

(
Tn(s), θ

)
: θ ∈ Θ0

}
.

We assume that Ln is measurable. This for instance holds if Fn(Tn, θ) is a separable
stochastic process in θ for θ ∈ Θ0.

We can now state and prove, in the above framework,
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Theorem 1. If ∫
X

[
log

(
dPθ

dPθ′

)]2

dPθ(x) < ∞,

for every θ ∈ Θ − Θ0, θ′ ∈ Θ0 such that K(θ, θ′) < ∞, then

(2.5) lim inf
n

1
n

log Ln(s) ≥ −J(θ)

with Pθ probability 1 for every θ ∈ Θ − Θ0.

Proof. Fix θ ∈ Θ − Θ0. Assume the theorem has been proved for Θ0 simple. Clearly
we can suppose J(θ) < ∞ and can find {θm} with K(θ, θm) < ∞ and K(θ, θm) →
J(θ). But then

(2.6)
1
n

log Ln(s) ≥ 1
n

log
(
1 − Fn(Tn(s), θm)

)
.

By our assumption of the theorem for Θ0 simple, we have

(2.7) lim inf
n

1
n

log
(
1 − Fn(Tn(s), θm

)
≥ −K(θ, θm)

with probability 1. Inequalities (2.6) and (2.7) then imply (2.5). If Θ0 = {θ0},

Pθ

[
lim inf

n

1
n

log Ln(s) ≥ −J(θ)
]

= 1

if and only if,

(2.8) Pθ

[
1 − Fn(Tn, θ0) < an exp −nK(θ, θ0) infinitely often

]
= 0

for every 0 ≤ a ≤ 1. Fix a. Let An = [1 − Fn(Tn, θ0) < an exp{−nK(θ, θ0)}]. Then,

(2.9) Pθ0(An) ≤ an exp{−nK(θ, θ0)}.

By the Neyman-Pearson lemma there exists cn, such that,

(2.10) Pθ0

{
n∑

j=1

log
dPθ

dPθ0

(xj) > ncn

}
≤ an exp{−nK(θ, θ0)}

and,

(2.11) Pθ0

{
n∑

i=1

log
dPθ

dPθ0

(xi) > ncn

}
≥ Pθ0(An).

We require,

Lemma 1. If (2.10) holds for all n, then there exists an ε > 0 such that
lim infn cn ≥ K(θ, θ0) + ε.

Proof. By a theorem of Chernoff [7],

(2.12)
1
n

log Pθ0

{
n∑

i=1

log
dPθ

dPθ0

(xi) > nz

}
→ inf

t
log H(t, z),
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for
z ≥

∫
X

log
dPθ

dPθ0

(x)dPθ0(x),

where

H(t, z) = e−tz

∫
X

(
dPθ

dPθ0

)t

(x)dPθ0(x).

By the theory of the Laplace transform, 0 ≤ H(t, z) ≤ ∞, H(t, z) is strictly convex
in t wherever it is finite and if inft H(t, z) < 1, the infimum is obtained for a unique
t(z) given by the solution of the equation

(2.13) z =

∫
log dPθ

dPθ0
(x)

[
dPθ

dPθ0
(x)

]t
dPθ0(x)∫ [

dPθ

dPθ0
(x)

]t
dPθ0(x)

.

It is easily seen that if z0 = K(θ, θ0), then t(z0) = 1, and,

(2.14) inf
t

log H(t, z0) = −K(θ, θ0).

From (2.10), (2.12) and (2.14) we can immediately conclude that lim infn cn ≥
K(θ, θ0). But, in fact, by the implicit function theorem as z → K(θ, θ0) we have
t(z) → 1, and log H(z, t(z)) → K(θ, θ0), by dominated convergence. Choose z1 >
z0 such that H(z1, t(z1) > a exp{ −K(θ, θ0)}. Then ε = z1 − z0 will do for the
lemma.

It now follows from the basic assumption of the theorem, by a result of Erdös,
Hsu and Robbins [9] that,

(2.15)
∑

n

Pθ0

[
n∑

i=1

log
dPθ

dPθ0

(xi) ≥ ncn

]
< ∞,

and this by (2.11) and the Borel Cantelli lemma suffices for (2.8) and the theorem
to hold.

Remarks. 1. Erdös has shown in [9] that our second moment assumption is nec-
essary as well as sufficient for (2.15) to hold. Although, of course, (2.15) is not
necessary for (2.8) the relative arbitrariness of the An apart from condition (2.9)
would suggest that the theorem may be false if some condition such as the one
imposed does not hold.

2. As in [4], if we define N(ε, s) = least positive m such that Ln ≥ ε for all
n ≥ m and ∞ otherwise, we have under the assumptions of our theorem 1,

(2.16) lim inf
ε→0

N(ε, s)
− log ε

≥ 1
J(θ)

a.s. Pθ.

3. General Assumptions and a Useful Lemma

Before giving further structural assumptions needed for Sections 4 and 5 we prove
a simple general lemma already implicit in [4] stating a useful sufficient condition
for a sequence {Tn} to be optimal. We say {Tn} is asymptotically optimal if,

(3.1) lim
n

1
n

log Ln(s) = −J(θ)



22 Bahadur and Bickel

with Pθ probability 1 for all θ ∈ Θ − Θ0. Then (3.1) implies, (cf. [4])

(3.2) lim
ε→0

N(ε, s)
− log ε

=
1

J(θ)
a.s. Pθ.

Lemma 2. If the conclusion of Theorem 1 holds and

(i) lim inf
n

Tn ≥ J(θ) a.s. Pθ,

(ii) lim sup
n

log
(
1 − Gn(t)

)
≤ −t,

where Gn(t) = inf{Fn(t, θ0) : θ0 ∈ Θ0} and θ ranges over Θ − Θ0, then {Tn} is
asymptotically optimal.

Proof. It clearly suffices to show that

(3.3) lim sup
n

1
n

log Ln(s) ≤ −J(θ)

with Pθ probability 1. But since Ln(s) = 1 − Gn(Tn) and 1 − Gn(t) is monotone
decreasing, (i) and (ii) obviously imply (3.3).

We begin by giving nine general assumptions which are sufficient to ensure the
validity of Theorem 2 of the main section.

Assumption 1. There exists a c finite measure μ on (X, A) which dominates the
family {Pθ }. We denote the density of Pθ with respect to μ by f(x, θ). Then,

dPθ(x)
dPθ′

=
f(x, θ)
f(x, θ′)

a.e. Pθ + Pθ′ .

Assumption 2. Θ is a metric space. The topological Borel field on Θ is denoted
by B. f(x, θ) is bimeasurable in (x, θ) on (X × Θ, A × B).

Assumption 3. We are given a probability measure ν on (Θ, B), Θ0 ∈ B, and
ν(Θ0) > 0. Moreover, if S(θ, d) is the open sphere of centre θ and radius d,
ν{S(θ, d) ∩ [Θ − Θ0]} > 0 for all θ ∈ Θ − Θ0 and d > 0.

Assumption 4. There exists a suitable metric compactification Θ̄0 of Θ0 (viz [4]).
That is, we first define Ŝ(θ, d) to be the sphere of radius d and centre θ in Θ̄0 and
then take,

(3.4) g0(x, θ, d) = sup
{
f(x, λ) : λ ∈ Ŝ(θ, d) ∩ Θ0

}
.

We assume g0 is measurable in x for d sufficiently small and define,

(3.5) g0(x, θ, 0) = lim
d→0

g0(x, θ, d).

The final assumption, (see [4]) is,

(3.6) Eθ

(
g(x, θ′, 0)
f(x, θ)

)
≤ 1,

where Eθ(h(x)) denotes
∫

X
h(x)dPθ(x) for any integrable function h.
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Assumption 5. Define for all θ′ ∈ Θ̄0, θ ∈ Θ − Θ0,

(3.7) K̄(θ, θ′) = −Eθ

(
log g0(x, θ′, 0)

f(x, θ)

)
.

(3.6) and Jensen’s inequality guarantee 0 ≤ K̄ ≤ ∞. Assume,

(3.8) J(θ) = inf{K(θ, θ′) : θ′ ⊂ Θ̄0}.

Assumption 6.

(3.9) Eθ

(
log

g0(x, θ′, d)
f(x, θ)

)
< ∞,

for all θ ∈ Θ − Θ0, θ′ ∈ Θ0. As in, [4] p. 22, this is equivalent to,

(3.10) lim
d→0

Eθ

(
log g0(x, θ′, d)

f(x, θ)

)
≤ −K(θ, θ′).

Assumption 7. Define,

(3.11) η(x, θ, d) = inf
{

log
f(x, λ)
f(x, θ)

: λ ∈ S(θ, d) ∩ [Θ − Θ0]
}

.

Assume that η is a measurable function of x for d sufficiently small and that,

(3.12) lim
d→0

Eθ

(
η(x, θ, d)

)
= 0

for all θ ∈ Θ − Θ0.

Assumption 8. Define, for θ′ ∈ Θ0,

γ(x, θ′, d) = log inf
{

f(x, λ)
f(x, θ′)

: λ ∈ S(θ′, d) ∩ Θ0

}
,(3.13)

ϕ(t, θ′, d) = Eθ′
(
exp{ −tγ(x, θ′, d)}

)
.(3.14)

For every 0 < ρ < 1, β > 0, there exists d(θ′, ρ, β) such that

inf
t

e−tβϕ
(
t, θ′, d(θ′, ρ, β)

)
≤ ρ

2
.

Assumption 9.

inf
{
ν
[
S

(
θ′, d(θ′, ρ, β)

)
∩ Θ0 : θ′ ∈ Θ0

]}
= m(ρ, β) > 0.

We shall now examine these assumptions in turn giving where necessary stronger,
but more easily checkable conditions, which we shall denote by primes. Thus, (say)
Assumption 4′ will imply Assumption 4 and the conclusion of Theorem 2 will con-
tinue to hold if 4 is replaced by 4′. The more important of these useful weakenings
of Theorem 2 will be isolated as a corollary.

Assumption 1 is self-explanatory and clearly cannot be weakened appreciably.
The requirement that Θ be a metric space can clearly be dropped and replaced

by the requirement that Θ be a topological space and B the topological Borel field.
However, the notational convenience involved in being able to define quantities in
terms of spheres of a given radius rather than neighbourhood bases seems well
worth the loss of generality. On the other hand, Assumption 2 is obviously satisfied
if we have the usual,
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Assumption 2′. Θ is a subset of k dimensioinal Euclidean space with the usual
metric topology. B is the Borel σ field and f(x, θ) is bimeasurable.

Weakenings of Assumption 3 do not fit readily into this program, but we mention
that we can drop the requirement that ν be a probability (finite) measure if the
following two conditions hold, as well as the second part of assumption 3:

(1) There exists N such that,
∫
Θ

∏N
i=1 f(xi, λ)ν(dλ) < ∞ a.s. Pθ and

(2)
∫
Θ0

∏N
i=1 f(xi, λ)ν(dλ) > 0,

∫
Θ−Θ0

∏N
i=1 f(xi, λ)ν(dλ) > 0 a.s. Pθ for all n ≥

N .

For details of the proof of (i) of Lemma 2 for T̄n under these assumptions we refer
to [6]. The basic idea of this generalization is to consider the process of observation
as really starting after N with prior distribution, the posterior distribution of θ
given x1, . . . , xN , which by (1) is a true probability distribution. In fact, we can in
general make dependent ν on the observations all along if we modify the second
part of Assumption 3 and Assumption 9 suitably. The generalization given above
is of interest in the case when reasonable tests arise from improper “priors”, e.g.
Lebesgue measure.

The most natural replacement of Assumption 4 is of course assuming that Θ0 is
already compact. In this case, we have, Assumption 4′. Θ0 is compact.

We can then drop 5, but must replace 6 by its equivalent form,

Assumption 6′. limd→0 Eθ log( g0(x,θ′,d)
ρ(x,θ) ) ≤ −K(θ, θ′) for all θ ∈ Θ − Θ0, θ′ ∈ Θ0.

Measurability of g0 must still of course be invoked. Assumption 6 may replace 6′

if f(x, θ) is continuous in θ for almost all x. A less stringent modification in some
senses which is most useful is combining 4, 5, and 6 with 2′ to give:

Assumption (4,5,6)′ ′. Assumption 2′ holds and
(a) limd→0 Eθ(log g0(x,θ′,d)

f(x,θ) ) ≤ −K(θ, θ′) for θ ∈ Θ − Θ0, θ
′ ∈ Θ0.

(b) limd→∞ Eθ(log sup{log f(xλ,λ)
f(x,θ) : λ ∈ Θ0‖λ‖ ≥ d}) ≤ −J(θ), for all θ ∈

Θ − Θ0, where ‖ · ‖ is the usual Euclidean norm.

This assumption is clearly equivalent to 5 and 6 if in 4 we take Θ̄0 to be the
closure of Θ0 in the one point compactification of R.

Assumption 7 is most readily replaced by,

Assumption 7′. f(x, θ) is continous in θ for almost all x(μ) and, Eθ(η(x, θ, d)) <
∞ for some d > 0 for each θ ∈ Θ − Θ0.

Assumption 7′ and the dominated convergence theorem readily imply 7. We need
not require measurability of g0 in this case in view of 4 or 2′ since Θ0 being a subset
of a separable metric space is separable. The same is true of η if 2’ holds or more
generally if Θ is a separable metric space.

A useful substitute for Assumption 8 is

Assumption 8′. There exists an M < ∞ such that for every 0 < T < ∞ we can
find a dx(θ, T ) with ϕ(T, θ′, dx) ≤ M . Assumption 8′ easily implies 8 since, then,

(3.15) inf
t

e−tβϕ(T, θ′, dx) ≤ e−TβM <
ρ

2
,

for T sufficiently large.
In many situations 8′ is most easily verified by showing that,

(3.16) ϕ(t, θ′, d) → 1,
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uniformly on compacts in t as d → 0. This in turn is implied by,

Assumption 8′ ′. f(x, θ) is continuous in θ for almost all x(μ) and for every 0 <
T < ∞, ϕ(T, θ′, d) < ∞ for d sufficiently small.

Assumption 8′ ′ implies (3.16) by way of the dominated convergence theorem if
we remark that ϕ(t, θ′, d) is monotone increasing in t for every fixed θ′, d.

Finally, we can replace Assumption 9 by,

Assumption 9′. d(θ, ρ, β) is independent of θ′, assumption 4’ holds, and ν[S(θ′,
d) ∩ Θ0] > 0 for all θ′ ∈ Θ0.

To show that 9′ implies 9 we need only prove that,

(3.17) inf
{
ν
[
S(θ′, d) ∩ Θ0

]
: θ′ ∈ Θ0}, f > 0.

Then, if θ′
n → θ′ and, S∗(θ, d) = S(θ, d) ∩ Θ0

ν
[
S∗(θ′, d)

]
− ν

[
S∗(θ′

n, d)
]

= ν
[
λ : δ(λ, θ′) < d, δ(λ, θ′

n) ≥ d, λ ∈ Θ0

]
(3.18)

− ν
[
λ : δ(λ, θ′) ≥ d, δ(λ, θ′

n) < d, λ ∈ Θ0

]
.

Clearly, if n → ∞, the first term of the above difference tends to 0 since the
set whose measure is computed tends to the empty set. Therefore, for fixed d,
ν[S∗(θ′, d)] is a lower semi-continuous function of θ′ on Θ0 and 2′, and the third
part of 9′, imply (3.17).

This completes our roster of simplifying assumptions. Clearly if further restric-
tions are put on f(x, θ) the verification of most can be very easy. A strong form of
Lemma 3, τn → J(θ), is given under very weak assumptions in [5] if f(x, θ) is of
exponential type, (Theorem 4.1). If the conditions 1-7 of this paper are made two
sided (viz. [5] Theorem 4.2) one can obtain this strengthening of Lemma 3 in gen-
eral. In fact, the conditions detailed in theorem 4.2 of [5] are somewhat restrictive
versions of our conditions 2′–7′.

The assumptions required by this paper but not by [4] are 7, 8, and 9. On
the other hand, Assumption 6 of that paper and the fact that Θ can be suitably
compactified (rather than just Θ0) is not required by us. Since simple hypotheses
tend to be somewhat more common than simple alternatives this seems a gain.
Otherwise the non structural assumptions of this paper and [4] coincide.

4. The Main Theorem

Given ν in Assumption 3 we now define,

(4.1) T̄n =
1
n

log

∫
Θ−Θ0

∏n
i=1 f(xi, λ) ν(dλ)∫

Θ0

∏n
i=1 f(xi, λ) ν(dλ)

.

By Assumption 2, T̄n is well defined ( ∞
∞ = 1, 0

0 = 1). In fact, T̄n is a version of the
test statistic a Bayesian with prior ν would use to test H : θ ∈ Θ0, rejecting for
large values of T̄n. We can now state the principal theorem of the paper.

Theorem 2. If Assumptions 1–9 and the conclusion of Theorem 1 holds, then {T̄n}
is asymptotically optimal.

Proof. The proof preceeds by way of some lemmas. We have first,
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Lemma 3. Under assumptions 1–7, {T̄n} satisfies condition (i) of Lemma 2.

Proof. Suppose that θ ∈ Θ − Θ0 holds. Define,

Un(s, θ) =
∫

Θ−Θ0

n∏
i=1

f(xi, λ)
f(xi, θ)

ν(dλ),(4.2)

Vn(s, θ) =
∫

Θ0

n∏
i=1

f(xi, λ)
f(xi, θ)

ν(dλ).(4.3)

Then,

(4.4) T̄n =
1
n

log
Un(s, θ)
Vn(s, θ)

.

We show first,

(4.5) lim sup
n

1
n

log Vn(s, θ) ≤ −J(θ)

a.s. Pθ. Note that,

(4.6)
1
n

log Vn(s, θ) ≤ 1
n

log

(
sup

{
1
n

n∑
i=1

log
f(xi, λ)
f(xi, θ)

: λ ∈ Θ0

})
.

And the right hand side equals R0(Θ0, θ) in the notation of [4] which converges
to −J(θ) a.s. Pθ by Lemma 4 of that paper. An examination of the proof of this
lemma will show that only our Assumptions 1–6 are used.

To establish the lemma we need now only show,

(4.7) lim inf
n

1
n

log Un(s, θ) ≥ 1 a.s. Pθ.

By Assumption 7 we can find d1(θ, ε) such that,

(4.8) Eθ

(
η(Xi, θ, d1)

)
≥ −ε.

But,

1
n

log Un ≥ log ν
[
S(θ, d1) ∩ [Θ − Θ0]

]
+ inf

{
1
n

n∑
i=1

f(Xi, λ)
f(Xi, θ)

: λ ∈ S(θ, d1) ∩ [Θ − Θ0]

}
(4.9)

≥ 1
n

n∑
i=1

η(x1, θ, d1) + log ν
[
S(θ, d1) ∩ [Θ − Θ0]

]
.

Letting n → ∞ and then ε → 0, (4.9), Assumption 3, and the strong law of large
numbers imply (4.7). The lemma follows.

We complete the proof of the theorem by way of two further lemmas.

Lemma 4. Under the first part of Assumption 3, for all n, t, θ′ ∈ Θ0,

(4.10) Pθ′

[
1
n

log Un(s, θ′) ≥ t

]
≤ e−nt.
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Proof.

Pθ′

[
1
n

log Un(s, θ′) ≥ t

]
=

∫
W

n∏
i=1

f(xi, θ
′) μ(dx1) · · · μ(dxn),

where W =

[
s :

n∏
i=1

f(xi, θ
′) ≤ e−nt

∫
Θ−Θ0

n∏
i=1

f(xi, λ)ν(dλ)

]
.

Thus our probability is bounded above by

(4.11) e−nt

∫
Xn

∫
Θ−Θ0

n∏
i=1

f(xi, λ)ν(dλ) μ(dx1) · · · μ(dxn).

But the right hand side of (4.11), by Fubini’s theorem, is

e−nt

∫
Θ−Θ0

∫
Xn

n∏
i=1

f(xi, λ) μ(dx1) · · · μ(dxn)ν(dλ) ≤ e−nt.

Lemma 5. Under Assumptions 8 and 9 if θ′ ∈ Θ0, for every 0 < ρ < 1, β > 0,
there exist N(ρ, β) such that for n ≥ N(ρ, β)

(4.12) Pθ′

[
1
n

log Vn(s, θ′) ≥ −β

]
≤ ρn.

Proof. Choose d(θ′, ρ, β) as in Assumptions 8 and 9. Then since

1
n

log Vn(S, θ′) ≥ log ν
[
S(θ′, d(θ′, ρ, β) ∩ Θ0

]
+ inf

{
1
n

n∑
i=1

log
f(xi, λ)
f(xi, θ′)

: λ ∈ S
(
θ′, d(θ′, ρ, β)

)
∩ Θ0

}
(4.13)

≥ log ν

[
S

(
θ′, d(θ′, ρ, β)

)
∩ Θ0

]
+

1
n

n∑
i=1

γ
(
xi, θ

′, d(θ′, ρ, β)
)
,

we have,
(4.14)

Pθ′

[
1
n

log Vn(s, θ′) ≤ −β

]
≤ Pθ′

[
n∑

i=1

γ
(
xi, θ

′, d(θ′, ρ, β)
)

≤ −nβ − log m(ρ, β)

]
.

By Lemma 1 of [4]

Pθ′

[
1
n

n∑
i=1

γ
(
xi, θ

′, d(θ′, ρ, β)
)

≤ −nβ − log m(ρ, β)

]
(4.15)

≤ inf
t

{
exp

[
−βt − log m(ρ, β)

t

n

]
ϕ
(
t, θ′, d(θ′, ρ, β)

)}n

for n ≥ − log m(ρ,β)
β which is finite by Assumption 9. If inft e−βtϕ(t, θ′, d(θ′, ρ, β)) is

attained for t = t0 which is strictly positive by Lemma 1 of [4], we can choose,

N(ρ, β) ≤ max
(

− log m(ρ, β)
β

, − t0 log m(ρ, β)
log 2

)
< ∞.
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Now,

Pθ′

[
1
n

log T̄n ≥ t

]
≤ Pθ′

[
1
n

log Un(s, θ′) ≥ −β,
1
n

log Vn(s, θ′) ≥ −β

]
(4.16)

+ Pθ′

[
1
n

log Vn(s, θ′) ≤ −β

]
.

By Lemmas 4 and 5 the right hand side of (4.16) is bounded above by e−n(t−β)+ρn

for n ≥ N(ρ, β). Hence,

lim sup
n

1
n

log sup
{
Pθ′ [T̄n ≥ t] : θ ∈ Θ0

}
≤ lim sup

n

1
n

log
(
e−n(t−β) + ρn

)
(4.17)

= max[−(t − β), log ρ].

Letting ρ → 0 first and then β → 0, we find that ii) of Lemma 2 is satisfied by T̄n

and the theorem is proved. Gathering the most useful of the “prime” assumptions
together we state,

Corollary 1. If Assumptions 1, 2 ′, 3, (456)′ ′, 7 ′, 8 ′ ′, and 9 hold, then the con-
clusion of Theorem 2 is valid.

The most immediate field of application of Corollary 1 is when f(x, θ) is the
density of a Koopman-Darmois (exponential) family.

(4.18) f(x, θ) = eθ.t(x),

where θ = (θ1, . . . , θk), t(x) = (t1(x), . . . , tk(x)) and the θj , tj are real. Assumptions
1, 2′, (456)′ ′, 7′ and 8′ ′ are then automatically satisfied and we need only impose
conditions 3, and 9 on ν. If Θ0 is compact, 9′ is automatic and 3 is all that is
needed.

5. Optimality of Minimax Tests

The main result of this section is an immediate consequence of the following lemma.
We retain the notation of the previous section, defining only

F̄n(t, θ) = Pθ[T̄n < t],(5.1)
Ḡn(t) = inf

{
F̄n(t, θ′) : θ′ ∈ Θ0

}
.(5.2)

Lemma 6. Suppose that there exists a measurable subset S of Θ0 such that,

(iii) 1 − F̄n(t, θ′) is a constant on S (for fixed n, t) as a function of θ′ .
(iv) sup{1 − F̄n(t, θ′) : θ′ ∈ S} = 1 − Ḡn(t).
(v) ν[Θ0 − S] = 0.

Then,

(5.3) lim sup
n

1
n

log
(
1 − Ḡn(t)

)
≤ −t.

Proof.

(5.4)
(
1 − Ḡn(t)

)
= sup

{
1 − F̄n(t, θ′) : θ′ ∈ S

}
=

∫
Θ0

Pθ′ [T̄n ≥ t]ν(dθ′)
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by (iii), (iv), (v). Now, let

Cn =

[ ∫
Θ0

n∏
i=1

f(xi, λ)ν(dλ) ≤ e−nt

∫
Θ−Θ0

n∏
i=1

f(xi, λ)ν(dλ)

]
.

Then,

∫
Θ0

Pθ′ [T̄n < t]ν(dθ′) =
∫

Θ0

∫
Cn

n∏
i=1

f(xi, λ)μ(dx1) · · · μ(dxn)ν(dλ)

=
∫

Cn

∫
Θ0

n∏
i=1

f(xi, λ)μ(dx1) · · · μ(dxn)ν(dλ)

(5.5)
≤ e−nt

∫
Cn

∫
Θ−Θ0

n∏
i=1

f(xi, λ)ν(dλ)μ(dx1) · · · μ(dxn)

≤ e−nt.

We formulate,

Assumption 10. For every n, t

(a) ν[θ ∈ Θ − Θ0 : sup{F̄n(t, λ) : λ ∈ Θ − Θ0} > F̄n(t, θ)] = 0.
(b) ν[θ′ : Ḡn(t) < Fn(t, θ′) : θ′ ∈ Θ0] = 0.

We can now state,

Theorem 3. If Assumption 10 holds the test which rejects if T̄n ≥ t is minimax
for H : θ ∈ Θ0 vs K : θ ∈ Θ − Θ0 at level 1 − Ḡn(t). If assumptions 1–7 and
Assumption (10b) hold, then the sequence of test statistics {T̄n} is asymptotically
optimal.

Proof. The first part of the theorem is classical (c.f. Lehmann [8] p. 327). The second
part is an immediate consequence of Theorem 2 and Lemma 5 since Assumption
(10b) is equivalent to (iii), (iv), (v).

This theorem is of interest in connecting the classical finite sample optimality
results with stochastic comparison. The most immediate application of this result
is in the one-parameter exponential family where minimax tests of (say) H : θ ≤ θ0

vs K : θ = θ1 > θ are. Bayes tests with respect to two point distributions satisfy
assumption 10 (cf. [8]). Unfortunately proving optimality directly is trivial in this
case. More interesting candidates are in the normal situation the t-statistic and
the S2 statistic used in testing H : μ < μ0 and H : σ ≤ σ0 when μ, and σ are
respectively unknown. Although we are here presented with a situation which does
not quite fall under Theorem 3, (ν satisfying 10a,b depends on n, (cf. [8], p. 94),
one can easily check the conclusion of Lemma 2 directly and then apply Lemma 5
to obtain optimality.

Finally, it may be interesting to see that from a quasi Bayesian point of view,
if stochastic comparison is defined in terms of the observed expected level of sig-
nificance, (where the expectation is taken under the prior) then Lemma 5 and
Assumptions 1–7 and an analogue of Theorem 1 guarantee the optimality of T̄n in
this sense. Formally for any sequence {Tn} we would then consider not Ln but,

L∗
n(s) =

(
1 − G∗

n(Tn)
)
,

where G∗
n(t) =

∫
Θ0

Fn(t, θ′)ν(dθ′).
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The analogue of the conclusion of Theorem 1 needed would be that a.s. Pθ,

lim inf
n

1
n

log L∗
n ≥ −J(θ).
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