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Abstract: In network data analysis, multivariate spatial autoregression
(MSAR) models may be used to analyze the autocorrelation among multi-
ple responses. With large-scale networks, the estimation for MSAR on the
entire network is computationally expensive. In this case, the subsampling
method could be adopted. This approach selects a sample of nodes and
then uses the estimate based on the sample to approximate the estimate
on the full data. However, traditional sampling methods cannot obtain un-
biased parameter estimates. Considering the second-order friend informa-
tion of sampled nodes, we propose the crawling subsampling (CS) method
for a general framework. Thereafter, based on the sampled data only, we
construct the least-squares objective function. Under certain conditions,
the computational complexity of optimizing the objective function is linear
with the sample size ns. The identification condition for the parameters
on the sampled network is theoretically provided. The sample size order
requirement is provided, and the asymptotic properties of the least-squares
estimators are investigated. The numerical results for the simulated and
real data are presented to demonstrate the performance of the proposed
CS method and least-squares estimator for the MSAR model.
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1. Introduction

In recent years, there has been a surge of interest in network data analysis
[42, 22, 23, 5]. In network data, the behaviors of individuals are influenced
by those with whom they have relationships [7]. Thus, the responses of differ-
ent individuals are dependent on the network structure [33]. The spatial au-
toregression (SAR) model has become popular in network analysis to gauge
the influence of the network structure on individual responses [1]. To ana-
lyze the autocorrelation among multiple responses, the SAR model has re-
cently been extended to multivariate cases [43, 11], resulting in the multivariate
spatial autoregression (MSAR) model. We take Twitter as an example. The
tweets on different topics (for example, investment and savings) naturally con-
stitute multivariate responses for each user. Consider the entire network with
N nodes. The quasi-maximum likelihood estimation has been proposed to es-
timate the MSAR model. However, its computational complexity is O(N3)
[3, 2]. Thus, Zhu et al. [46] proposed a novel least-squares estimation (LSE)
for MSAR, by means of which the computational complexity could be sharply
reduced.
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However, in large-scale networks, estimation on the entire network data may
be infeasible. As a result, the estimation of network models is typically con-
ducted based on samples [30]. We consider the samples collected from the entire
network by some well-designed sampling schemes. Obtaining a relatively accu-
rate estimate based on a subsample then becomes an important issue [6].

Subsampling is a classical method proposed by [28]. This approach selects
the sample nodes and related information, and subsequently uses the esti-
mate based on the sampled data. This method has been re-popularized in
large-scale data analysis [24, 12, 44] for approximating the estimate on the
full data. When dealing with independent data, numerous efficient subsam-
pling methods are available for linear regression [25, 39] and logistic regression
[40, 37]. For dependent data, such as time-series or network data, the subsam-
pling method is popular but challenging [17, 4, 9]. This is because the sampled
network inevitably loses the connections between certain individuals [30]. As
a result, the consistency of the estimator on the sampled data hardly holds
[30]. Moreover, sampling methods are typically designed for a particular model
[34, 18, 30, 4].

In particular, for SAR-related models, the estimated autocorrelation parame-
ter tends to be negatively biased on the sampled data [7]. As a result, appropriate
network sampling schemes and estimation methods should be discussed. Zhou et
al. [45] proposed the paired maximum likelihood estimator method for sampled
data to obtain a consistent estimation for the SAR model. However, as Taylor
expansion is conducted, this method requires the autocorrelation coefficient to
approach zero, which can hardly be satisfied in all cases. Furthermore, Huang
et al. [20] proposed the LSE estimator for the classical univariate SAR model
with no covariates and discussed a simple sampled case. However, the required
sample size and corresponding proof were not discussed in [20]. This served as
the inspiration for the current work. It is worth noting that the MSAR model
is an extension of the classical SAR model [46]. The manner in which to con-
duct consistent estimation for MSAR models based on sampled data becomes a
problem of interest.

In this study, focusing on the MSAR model in large-scale networks, we pro-
pose the crawling subsampling (CS) method for a general framework. The pro-
posed approach is an extension of the sampling method in [20]. First, we design
a general three-step CS scheme. The sample collected can retain the necessary
network structure information for estimation. Based on the selected sample, we
discuss the parameter identification issue, and use LSE to obtain the estimate
for the parameters. The computational complexity of optimizing the objective
function is discussed. Thereafter, we provide the sample size order requirement.
Finally, we establish the asymptotic properties of the estimator under certain
technical conditions. The performance of the proposed method is demonstrated
by various simulation examples and data analysis of a third-party restaurant
review website.

The remainder of this paper is organized as follows. Section 2 introduces the
CS method and investigates the theoretical properties of the LSE based on the
subsample. The simulation and real dataset studies are presented in Section 3.
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The paper is concluded in Section 4. All the technical details are presented in
Appendix A and Appendix B.

2. Subsampling for MSAR

2.1. Model and notations

For a large-scale network with N nodes, ai1i2 = 1 is defined if there exists
a relationship from node i1 to i2 (i1 �= i2), and ai1i2 = 0 otherwise, where
1 ≤ i1, i2 ≤ N . Thus, the adjacency matrix is recorded as A = (ai1i2) ∈ R

N×N

and ai1i1 = 0 is assumed.
Furthermore, the row-normalized adjacency matrix is defined asW = (wi1i2) ∈

R
N×N , where wi1i2 = d−1

i1
ai1i2 and di1 =

∑N
i2=1 ai1i2 is the nodal out-degree

of node i1. For the nodal features, assume that each node i has p-dimensional
continuous responses (Y�

i ∈ Rp) and q-dimensional exogenous covariates (X�
i ∈

R
q), where 1 ≤ i ≤ N . Herein, we define ns to be a small sample size, and nx

is defined as the number of unsampled nodes followed by the sampled nodes.
Next, we define Yg = (Yij) ∈ R

ns×p as the response matrix of the sampled
nodes and Yg0 ∈ R

(ns+nx)×p as the response matrix of the sampled nodes and
their following nodes (i.e., followees). We define Xg = (Xik) ∈ R

ns×q as the
exogenous covariate matrix of the sampled nodes and Eg = (εij) ∈ Rns×p as
the noise matrix of the sampled nodes, wherein we assume that εi is identically
and independently distributed with mean 0p ∈ R

p and cov(εi) = Σe ∈ R
p×p.

Then, we define the MSAR model on a sampled network. We denote the
parameters α = (αj′j) ∈ R

p×p and B = (bkj) ∈ R
q×p. Thus, the MSAR model

on the sampled network can be expressed as

Yg = Wg0Yg0α+ XgB + Eg, (2.1)

where Wg0 ∈ R
ns×(ns+nx) in (2.1) only retains the rows of the sampled nodes in

W ; i.e., Wg0 records the edges between the sampled nodes and their followees.
Following [11] and [46], αjj is referred to as the intra-activity effect or endoge-
nous effect, which measures the impact from the same type of response variable
of the connected neighbors; αj′j(j

′ �= j) is known as the extra-activity effect or
cross-activity peer effect, which measures the impact from the other response
types; bkj(1 ≤ k ≤ q) is referred to as the own effect, which reflects the impact
from the exogenous covariates. The detailed presentation of the MSAR model
and related notations could also be found in [46]. The impact relationship among
the responses and exogenous covariates in (2.1) can be interpreted as illustrated
in Figure 1.

Subsequently, we discuss the parameter space. Let |λmax(α)| be the maximum
absolute eigenvalue of the matrix α. Assuming that |λmax(α)| < 1, the matrix
(INp −α� ⊗W ) is invertible (as proven by Lemma 1 of [46]), where INp is the
(Np×Np)-dimensional identity matrix and ⊗ is the Kronecker product. In this
study, based on the sample data, we focus on the estimation of α ∈ Rp×p and
β = vec(B) ∈ R

pq on this parameter space {|λmax(α)| < 1}.
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Fig 1. Illustration of MSAR model. Assume that node i (Alice) has two different connected
nodes (Bob and Carl), and there are two responses (tweets on investment and tweets on
saving). The influential variables of Alice’s tweets on investment can be divided into four
parts, corresponding to the four terms on the right side of (2.1). The first part consists of the
tweets on investment of Alice’s friends (Bob and Carl), which corresponds to the intra-activity
effect; the second part consists of the tweets on saving of Alice’s friends, which corresponds to
the extra-activity effect; the third part consists of Alice’s educational background and location,
which corresponds to the own effect; and the fourth part is the noise term.

2.2. Crawling subsampling scheme

In this section, we discuss the detailed procedures of the CS scheme. In the
model of (2.1), only the nodes followed by the sampled nodes are considered (i.e.,
only part of the first-order friends). However, to calculate the least-squares-type
objective function, which is defined as follows (refer to (2.2)-(2.4) for further
details), the estimation method involves the first- and second-order friends of
the sampled nodes. Thus, the proposed CS scheme aims to retain the network
structure and the corresponding nodal features necessary for estimation.

Next, we focus on the sampling scheme. When using CS, the sampled data
contain nodal features and double-layer supplementary information of the sam-
pled nodes. We define gi as a sampling indicator, with gi = 1 if node i is sampled
and gi = 0 otherwise. We define Gy = {i : gi = 1, 1 ≤ i ≤ N} as the collection
of sampled nodes. The sampling scheme can be implemented in the following
three steps. These steps are illustrated in Figure 2, and the related notations
are presented in the following part.

STEP1: Obtain the original node set Gy via a convenient sampling method,
such as simple random sampling. Denote the nodes in Gy as sampled nodes.

STEP2: Collect the followers and followees of sampled nodes, which are
defined as Gx1 and Gx2 , respectively. In other words, collect all nodes j that
are outside Gy but are directly connected to some nodes in Gy. Furthermore,
collect the corresponding nodal features. The two node sets are expressed as
Gx1 = {j : aji = 1, j �∈ Gy and i ∈ Gy} and Gx2 = {j : aij = 1, j �∈ Gy
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Fig 2. Example of three steps of collecting nodes. The black nodes {11,18} are collected by
STEP1; the dark gray nodes {8,12,14,16,19,27} are collected by STEP2; and the light gray
nodes {4,5,10,28} are collected by STEP3.

and i ∈ Gy}, respectively. Consider the information concerning the nodes in
Gx1

⋃
Gx2 as the first layer of supplementary information.

STEP3: Collect the indirectly connected nodes of sampled nodes, defined as
Gx3 . In other words, collect all the nodes that are outside Gy

⋃
Gx1

⋃
Gx2 but

are indirectly connected to some nodes in Gy. Further, collect the corresponding
nodal features. By searching for all the nodes followed by nodes j ∈ Gx1 , we
obtain the indirectly connected node set, expressed as Gx3 = {k : ajk = 1, j ∈
Gx1 , and k �∈ Gy

⋃
Gx1

⋃
Gx2}. Consider the information concerning the nodes

in Gx3 as the second layer of supplementary information.
Denote Gx = Gx1

⋃
Gx2

⋃
Gx3 as the supplementary node set, which records

the supplementary nodes outside the sampled nodes. Finally, based on the sam-
pled data, we can construct the least-squares objective function in the next
section.

2.3. LSE based on subsample

In this section, based on the sampled data, we construct the least-squares ob-
jective function. Moreover, the computational complexity for optimizing the
objective function and the identification issue for the parameters are discussed.

First, we define the best linear predictor (BLP) of the response Yi1j1 only on
the sampled data collected above. For any sampled node i1 ∈ Gy and 1 ≤ j1 ≤ p,
we define Y−(i1,j1) = {Yij : (i, j) �= (i1, j1), i ∈ Gy

⋃
Gx, 1 ≤ j ≤ p}. Based on

the sampled data, which consist of the nodes in Gy

⋃
Gx, necessary connections,

and corresponding nodal features, we construct the BLP of Yi1j1 , given Y−(i1,j1)
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[31]. The BLP, defined as F
{
Yi1j1 |Y−(i1,j1)

}
, can be obtained as follows:

F
{
Yi1j1 |Y−(i1,j1)

}
= μi1j1 +

∑
(i2,j2)∈Sxyp\(ii,j1)

ri1j1i2j2 (Yi2j2 − μi2j2) , (2.2)

where

ri1j1i2j2 =
αj1·Ωe,·j2wi2i1 +Ωe,j2·α·j1wi1i2 −

(
αj1·Ωeα

�
j2·

) (∑
i∈Gy

⋃
Gx

wii1wii2

)
ωe,j1j1 +

(
αj1·Ωeα�

j1·
) (∑

i∈Gy
⋃

Gx
w2

ii1

) ,

(2.3)
in which Sxyp = ((Gx ∪ Gy)× {1, . . . , p}), μi1j1 = E(Yi1j1) and Ωe = Σ−1

e .
Moreover, Ωe,·j2 ,Ωe,j2· represent the j2th column and j2th row of the matrix
Ωe, respectively. Similarly, αj1· and α·j2 represent the j1th row and j2th column
of the matrix α, respectively. The verification of (2.2) is presented in Appendix
A.1. Three types of unsampled nodes are used for ri1j1i2j2 �= 0 in (2.3), as
illustrated in Figure 3. It should be noted that the calculation of any μi1j1 in
(2.2) still involves the nodal exogenous variables of the entire network. However,
in the proposed calculation of the objective function (2.4), the mean term μi1j1

will be eliminated. We can calculate and optimize the objective function based
only on the sampled data.

Fig 3. Three types of unsampled nodes i2 involved in (2.3). In this case, i1 represents the
sampled nodes (Gy) and i2 represents the supplementary nodes (Gx). The three types are (1)
nodes i1 followed by i2 (wi2i1 �= 0), representing i2 ∈ Gx1 in the left panel; (2) nodes i2
followed by i1 (wi1i2 �= 0), representing i2 ∈ Gx2 in the middle panel; and (3) i1 and i2
indirectly followed by a third node i (

∑
i∈Gy

⋃
Gx

wii1wii2 �= 0), representing i2 ∈ Gx3 in the

right panel. As a result, the three types of unsampled nodes involved in (2.3) correspond exactly
to the supplementary nodes Gx1 ,Gx2 ,Gx3 collected by STEP 2 and STEP 3 in Figure 2.

Next, we discuss the objective function based only on the sampled data. For
1 ≤ i ≤ N and 1 ≤ j ≤ p, we define μc = vec{F (Yij |Y−(i,j))} ∈ R

Np, θ =(
vec(α)�,β�)� ∈ Rp2+pq, the sampling matrix g = diag(g1, · · · , gN ) ∈ RN×N ,
and G = Ip⊗g. Then, for the sampled nodes, the least-squares objective function
can be written as

L(θ) =
∑

i∈Gy,1≤j≤p

{Yij − F
(
Yij |Y−(i,j)

)
}2 = ||G(Y − μc)||2. (2.4)
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The verification of (2.4) is provided in Appendix A.1. It should be emphasized
that the G matrix in (2.4) is simply presented for convenience of the proof.

We denote H = G(Y − μc) = mGS�(Ωe ⊗ IN )(SY − X̃β) ∈ R
Np, where

S = INp − α� ⊗W and X̃ = Ip ⊗ X. Subsequently, we have L = H�H. Only
the sampled data are involved in the actual calculation of H. Furthermore, the
values of the unsampled nodes in H are all equal to 0. We focus on the objective
function L(θ) in the following parts.

Theorem 1. We assume that (2.4) can be optimized by the Newton–Raphson
algorithm. Further, we assume that the nodal in-degree

∑
j aji is bounded by a

finite constant dmax (i.e., maxi
∑

j aji ≤ dmax). Thus, the computational com-
plexity of optimizing (i.e., minimizing) the objective function (2.4) is O(ns).
Moreover, if the maximum value of the nodal in-degree is O(log ns) [36], the
computational complexity is O(ns log ns).

The proof of Theorem 1 is presented in Appendix B.1. According to Theorem
1, in the ideal case, the computational complexity of optimizing the objective
function is linear in the sample size ns. Even if the condition is not satisfied,
the computational complexity is relatively low because the number of nodes
involved is significantly smaller than that of the entire network. It is remarkable
that the convergence of Newton–Raphson algorithm is guaranteed by [14] and
[29], which requires the objective function to be twice differentiable and the
second order derivative to be nonsingular. As a result, under Condition (C1)
and the assumption in Theorem 2, which we will introduce later, the algorithm
converges.

Subsequently, based on the sampled data, we investigate the identification of
the parameters. The true parameters of α,β only in this identification part are
defined as α0,β0, respectively. We define Sg = Insp − α� ⊗ Wg ∈ R

nsp×nsp,
Sg0 = Insp − α�

0 ⊗ Wg. Furthermore, we define Vi(i = 1, · · · , p) to be a
1 × p row vector, in which the ith entry is 1 and the others are 0. We de-
fine Mp = (Vp ⊗ Ins)S

−1
g0 {Ip ⊗ (WgXg)}β0, Mg = (M1, · · · ,Mp) ∈ R

ns×p, and

X
∗
g = (Mg,Xg) ∈ R

ns×(p+q). Thereafter, we make the following assumption.

(C1) (Identification condition): Assume that the limit limns→∞ n−1
s (X∗�

g X
∗
g)

exists and is nonsingular.

Note that condition (C1) corroborates with the identification condition in the
existing literature [43, 11]. The identification on the sampled data can be proven
under condition (C1).

Theorem 2. Assume that there exists δ > 0 such that

min
{|λmax(α)|≤1−δ}

{λmin(SgS
�
g )} ≥ cs, (2.5)

where cs is a positive constant. Then, under condition (C1), in the parameter
space {|λmax(α)| ≤ 1 − δ}, the parameters α0 and β0 can be identified in the
sampled network.
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The proof of Theorem 2 is presented in Appendix B.2. According to Theorem
2, α0 and β0 can be identified in the sampled network.

2.4. Asymptotic property of LSE based on CS

In this section, for the least-squares estimators on the sampled data, we dis-
cuss the required sample size. Then, we investigate the asymptotic distribution
under the identifiability assumption. First, recall that L is the least-squares
objective function, and the sample size is ns. To give the form of the asymp-

totic distribution, we define E = vec (E) ∈ R
Np, Ẽ = (Σ

−1/2
e ⊗ IN )E and

S̃ = (Σ−1
e ⊗ IN )S; we have the objective function L = H�H. Moreover, we

define H = H∗Ẽ , where H∗ = mGS̃�
(
Σ

1/2
e ⊗ IN

)
. We denote αj1j2 as the

j1th row, j2th column element of the matrix α. With respect to αj1j2 and the

vector β, we denote the derivatives Hα
j1j2

= M∗
j1j2

Ẽ + V ∗
j1j2

, Hβ = −mGS̃�
X̃.

The other related matrices and vectors are expressed as Mβ = 2H�
β H∗, V ∗

j1j2
=

mGS̃�Sα
j1j2

S−1(X̃β), M∗
j1j2

= {mα
j1j2

GS̃�+mGS̃α�
j1j2

+mGS̃�Sα
j1j2

S−1}(Σ1/2
e ⊗

IN ), Mj1j2 = H∗�M∗
j1j2

, and Vj1j2 = H∗�V ∗
j1j2

.
To establish the asymptotic property based on the crawling subsample, we

focus on the following technical conditions on large-scale network data.

(C2) (Network structure)

(C2.1) (Connectivity of the entire network) Let the set of all nodes {1, · · · , N}
be the state space of a Markov chain, with the transition probability
given by W. The Markov chain is assumed to be irreducible and ape-
riodic. Furthermore, π = (πi)

� ∈ R
N is defined as the stationary dis-

tribution vector of the Markov chain (i.e., πi ≥ 0,
∑N

i=1 πi = 1, and

W�π = π). Then, assume that
∑N

i=1 π
2
i = O

(
N−1/2−δ

)
, where

0 < δ ≤ 1/2 is a positive constant.

(C2.2) (Uniformity of the sampled network) Assume that |λmax{g(W+W�)
g}| = O(log ns).

Conditions (C2.1) and (C2.2) are two separate assumptions regarding the overall
network structure. Condition (C2.1) is similar to those in other studies [20, 46].
Condition (C2.1) requires certain connectivity for the network structure. If the
network is fully connected following a limited number of steps, the irreducibility
and aperiodicity can be satisfied simultaneously. This condition is satisfied if the
well-known theory of six-degree separation [26] holds. Moreover, δ represents the
global influence, typically for a large-scale network, where there is no dominant
node (i.e., δ → 1/2). Condition (C2.2) imposes a certain uniformity assumption
only on the sampled network (i.e., Wg, gW�). (C2.2) requires λmax{g(W +
W�)g} to be slowly diverging with a rate of O(log ns). Naturally, condition
(C2.2) can be considered as the generalization of the uniformity assumption of
the entire network [20, 46, 21].

Next, we discuss the sample size required for the subsampling method.
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Proposition 1. Under condition (C2) and (C4), there exists ε > 0, and we
assume that the sample size in Gy satisfies

ns = O(N1−2δ+ε).

Thus, we have n−2
s tr(M∗�

k1k2
M∗

j1j2
M∗�

j1j2
M∗

k1k2
) → 0 and n−2

s V ∗�
j1j2

M∗
k1k2

M∗�
k1k2

V ∗
j1j2

→ 0.

The proof of Proposition 1 is presented in Appendix A.2. Proposition 1 indicates
that the sample size order is related to the nodes with global influence. The
condition of the sample size ns is necessary in Theorem 3. The required sample
size ns will be smaller for networks with smaller global influence. Thus, we state
the condition as follows:

(C3) (Order of sample size) Assume that there exists ε > 0 such that ns =
O(N1−2δ+ε).

(C4) (Covariates): For arbitrary βr ∈ R
pq and R ∈ R

Np×Np, define Rg = GRG
and assume that |N−1{(Ip ⊗ X)βr}�R{(Ip ⊗ X)βr}| ≤ N−1cβ tr(Rg) as
N → ∞, where cβ is a positive constant only related to βr.

(C5) (Noise term) Let ε̃i =
(
Σ

1/2�
e

)−1

εi = (ε̃i1, · · · , ε̃ip)� ∈ Rp. Assume that

E
(
ε̃4ij

)
= κ4 and E (ε̃ij1 ε̃ij2 ε̃ij3) = 0 for 1 ≤ i ≤ N and 1 ≤ j1, j2, j3 ≤ p,

where κ4 is a finite constant.
(C6) (Law of large numbers) For 1 ≤ i1, i2 ≤ p2, assume that the following six

limits exist:

Σ
(i1,i2)
1α = lim

ns→∞
n−1
s

{
4 tr

(
Mj1j2M

�
k1k2

)
+ 4 tr (Mj1j2Mk1k2)

+ 4 (κ4 − 3) tr {diag (Mj1j2) diag (Mk1k2)}+ 4V �
j1j2Vk1k2},

Σ
(i1,·)
1αβ = 2 lim

ns→∞
n−1
s

(
V �
j1j2M

�
β

)
, Σ1β = lim

ns→∞
n−1
s

(
MβM

�
β

)
Σ

(i1,i2)
2α = 2 lim

ns→∞
n−1
s

{
tr

(
M∗�

j1j2M
∗
k1k2

)
+ V ∗�

j1j2V
∗
k1k2

}
,

Σ
(i1,·)
2αβ = 2 lim

ns→∞
n−1
s V ∗�

j1j2Hβ, Σ2β = 2 lim
ns→∞

n−1
s H�

β Hβ.

(2.6)

In the overall network data, conditions (C4) and (C5) set regularity conditions
on the exogenous covariates and noise terms, respectively. In (C6), note that

Σ
(i1,i2)
1α represents the i1th row, i2th column element in Σ

(i1,i2)
1α , whereas Σ

(i1,·)
1αβ

represents the i1 column of Σ1αβ, Σ1β ∈ R
(pq)×(pq). Similarly, Σ

(i1,i2)
2α represents

the i1th row, i2th column element in Σ
(i1,i2)
2α , whereas Σ2αβ represents the i1

column of Σ1αβ, Σ1β ∈ R
(pq)×(pq).

Theorem 3. Assuming conditions (C1) to (C6), the true parameters are rewrit-

ten as θ =
(
vec(α)�,β�)� ∈ R

p2+pq, and θ̂ represents the least-squares esti-

mator. For 1 ≤ i1, i2 ≤ p2, let Σ1α = (Σ
(i1,i2)
1α ) ∈ Rp2×p2

, Σ1αβ =
(
Σ

(i1,·)
1αβ

)
∈

R
p2×(pq), Σ1β ∈ R

(pq)×(pq), Σ2α = (Σ
(i1,i2)
2α ) ∈ R

p2×p2

, Σ2αβ =
(
Σ

(i1,·)
2αβ

)
∈
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R
p2×(pq), Σ2β ∈ R

(pq)×(pq). Then, in the parameter space {|λmax(α)| < 1}, as
ns → ∞, we have

√
ns

(
θ̂ − θ

)
→d N

(
0p2+pq, (Σ2s)

−1
Σ1s (Σ2s)

−1
)
, (2.7)

where

Σ1s =

(
Σ1α Σ1αβ

Σ�
1αβ Σ1β

)
, Σ2s =

(
Σ2α Σ2αβ

Σ�
2αβ Σ2β

)
. (2.8)

The detailed expression of (2.8) is provided in (2.6). The proof of Theorem 3

is presented in Appendix B.3. According to Theorem 3, θ̂ is
√
ns-consistent

and asymptotically normally distributed on the sampled data. The estimate is
obtained by optimizing (2.4) using the Newton–Raphson algorithm.

3. Numerical studies

3.1. Simulation settings

To demonstrate the performance of the parameter estimation on finite sampled
data, we compare four sampling methods on three different networks. The first
three classical sampling methods are simple random sampling (SRS), snowball
sampling (SN), and Metropolis–Hastings random walk (MHRW). The final sam-
pling method is CS. We consider the three traditional sampling methods and
the generation mechanism of the simulated data. We define pi to represent the
sampling probability of node i.

(1) SRS: A simple random sample is drawn by selecting ns nodes from the
total N nodes with equal probability pi = 1/N . Thus, SRS roughly ignores the
network topology.

(2) SN: SN [16] is a traditional network sampling method for capturing the k-
order friends of the initial seed node. The SN sample can be obtained as follows:
(i) First, randomly select a node i and collect all the nodes directly connected
to i. Denote the sampled node set as G1

y = {i}
⋃
{j : 1 ≤ j ≤ N, aij = 1 or

aji = 1}. (ii) Randomly select a node i′ in Gt
y, where t represents the tth step in

the sampling. Thereafter, collect the nodes connected to i′. Denote the sampled
node set as Gt+1

y = Gt
y

⋃
{k : 1 ≤ k ≤ N, ai′k = 1 or aki′ = 1}. (iii) Repeat (ii)

until the sample size reaches ns.
(3) MHRW: MHRW, which is based on random walk sampling, is another

network sampling method for collecting nodes adaptively by means of link trac-
ing [32, 41]. The MHRW sample can be obtained as follows: (i) First, randomly
select a node i, with G1

y = {i}. (ii) Randomly select a node i′ in Gt
y from the con-

nected nodes (i.e., j) of node i′. MHRW adaptively selects a node with unequal
probability pj , where pj = d−1

i min(1, di/dj) and di is the out-degree of node i.
Denote Gt+1

y = Gt
y

⋃
{j}. (iii) Repeat (ii) until the sample size reaches ns.

We consider the following three simulation examples for the network struc-
ture. The three examples have different generation mechanisms for the net-
work structure A. (1) The first example is the dyad independence network [19],
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where a dyad is defined as Aij = (aij , aji) for the ith and jth nodes. We set
P (Aij = (1, 1)) = 20N−1 and P (Aij = (1, 0)) = P (Aij = (0, 1)) = 0.5N−0.8.
(2) The second example is the stochastic block model [38, 27]. We defineK = 100
as the total number of blocks. Then, we set P (aij = 1) = 0.9N−1 if the ith and
jth nodes are in the same block, and P (aij = 1) = 0.3N−1 otherwise. (3) The
third example is the power-law distribution network [10]. The in-degree of node

i is denoted as di (i.e., di =
∑N

j=1 aji). Moreover, di follows the discrete power-

law distribution (i.e., P (di = k) = cnk
−ce), where cn is a normalizing constant.

We set the exponent parameter ce = 2.5.
Finally, we consider the generation mechanism of the noise matrix E and the

exogenous covariate matrix X. We set p = 2, q = 2, α = (0.3, 0;−0.2, 0.1),
and β = (−0.5, 1.3, 1, 0.3)�. For the noise matrix, Ei· (i.e., i = 1, ..., N) is gen-
erated independently: (1) multivariate normal distribution with mean (0, 0)�

and covariance Σe = (0.4, 0.1; 0.1, 0.6) ∈ R
2×2; and (2) t-distribution with the

same mean and covariance as (1) and a degree equal to 5. For the exogenous
covariates of node i, Xi· is generated from a multivariate normal distribution
with mean (0, 0)� and covariance Σx = (0.5|j1−j2|) ∈ R

2×2.

3.2. Performance measurements and simulation results

We compare the different sampling methods in terms of the bias and efficiency
of the estimates. Consider the overall network size (i.e., N = 2000) and dif-
ferent sample sizes (ns=200, 500). In each simulation example, we repeat the
experiment R = 500 times to compare the performance. For the true parameter

αjk(1 ≤ j, k ≤ p), the corresponding estimator is recorded as α̂
(r)
jk , where r

represents the rth replication (i.e., r = 1, ..., R). For the parameter αjk, the

average bias is constructed as R−1
∑R

r=1(α̂
(r)
jk − αjk). The standard deviation

is constructed as [R−1{α̂(r)
jk −R−1

∑R
r=1(α̂

(r)
jk )}2]1/2. The root mean square er-

ror (RMSE) is calculated by {R−1
∑R

r=1(α̂
(r)
jk − αjk)

2}1/2. Furthermore, ŜE
(r)

jk

is denoted as the {(j − 1)p + k}th diagonal element of the asymptotic covari-
ance matrix in (2.7). Then, the empirical 95% confidence interval for αjk is

constructed as CI
(r)
jk = (α̂

(r)
jk − z0.975n

−1
s ŜE

(r)

jk , α̂
(r)
jk + z0.975n

−1
s ŜE

(r)

jk ), where zα
is the αth lower quantile of a standard normal distribution. As a result, using
the empirical 95% confidence interval, the empirical coverage probability is de-

termined as CPjk = R−1
∑R

r=1 I(αjk ∈ CI
(r)
jk ). Moreover, the average running

time with 500 replications can be obtained.
The simulation results are obtained using the four sampling methods. Tables

1 to 2 report the simulation results with 500 replications for examples 1 to 3,
with error terms in the normal distribution. As the simulation results are similar
for the t-distribution, Tables 4 to 5 only present the results for the CS method
with the different examples.

First, by using the CS method, without the entire network data, we only need
ns = 200 for the estimates to perform effectively. Secondly, in each simulation
model, the maximum bias of the CS method is 0.015. This is because the CS
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Table 1

Simulation results with 500 replications for example 1 (dyad independence network). The
error term εi ∼ N(02,Σe). The estimates on the entire network and average running time

are abbreviated as EWN and T, respectively.

ns=N Index α11 α21 α12 α22 B11 B21 B12 B22

Bias 0.003 -0.001 0.002 -0.001 0.001 -0.001 0.002 -0.002

EWN RMSE 0.063 0.046 0.083 0.054 0.017 0.017 0.020 0.021

T:143.2s CP 0.934 0.946 0.948 0.958 0.962 0.972 0.936 0.950

ns=200 Index α11 α21 α12 α22 B11 B21 B12 B22

Bias 0.006 -0.005 -0.002 0.004 0.001 0.000 0.005 -0.002

CS RMSE 0.165 0.144 0.246 0.141 0.053 0.050 0.064 0.063

T: 14.0s CP 0.952 0.954 0.946 0.948 0.952 0.958 0.950 0.960

Bias -0.242 0.162 0.002 -0.084 0.003 -0.001 0.003 0.004

SRS RMSE 0.257 0.175 0.111 0.110 0.057 0.057 0.067 0.067

T: 13.6s CP 0.166 0.268 0.936 0.780 0.956 0.954 0.946 0.952

Bias -0.228 0.155 0.001 -0.087 0.001 -0.002 -0.007 0.006

SN RMSE 0.246 0.171 0.116 0.116 0.052 0.050 0.070 0.064

T: 14.2s CP 0.326 0.404 0.946 0.808 0.948 0.950 0.938 0.948

Bias -0.228 0.156 -0.006 -0.081 -0.004 0.006 0.000 0.005

MHRW RMSE 0.250 0.174 0.128 0.114 0.056 0.052 0.067 0.062

T: 13.9s CP 0.342 0.442 0.940 0.836 0.950 0.954 0.960 0.944

ns=500 Index α11 α21 α12 α22 B11 B21 B12 B22

Bias 0.000 0.004 -0.011 0.008 -0.001 0.000 -0.003 0.001

CS RMSE 0.106 0.091 0.156 0.087 0.033 0.032 0.041 0.039

T: 21.7s CP 0.962 0.958 0.950 0.946 0.952 0.952 0.972 0.960

Bias -0.157 0.106 -0.002 -0.054 -0.003 0.004 0.000 -0.002

SRS RMSE 0.182 0.125 0.115 0.088 0.033 0.034 0.041 0.043

T: 25.2s CP 0.550 0.646 0.934 0.884 0.970 0.948 0.960 0.934

Bias -0.151 0.098 -0.002 -0.045 -0.002 0.001 0.000 0.000

SN RMSE 0.174 0.120 0.113 0.087 0.031 0.031 0.040 0.038

T: 26.6s CP 0.554 0.652 0.938 0.894 0.954 0.950 0.938 0.954

Bias -0.154 0.114 -0.010 -0.060 -0.003 0.002 -0.001 0.001

MHRW RMSE 0.174 0.129 0.110 0.089 0.031 0.033 0.038 0.038

T: 26.5s CP 0.554 0.558 0.950 0.864 0.952 0.940 0.966 0.960

method leads to an unbiased estimation. As ns increases, the RMSE for each
parameter decreases. Moreover, the empirical coverage probabilities of the CS
estimators are stable at a level of 95%, which implies that the estimated standard
error effectively approximates the true standard error SEjk. In contrast, for
the other three traditional sampling methods, the diagonal elements of α are
substantially underestimated. Moreover, the empirical coverage probabilities are
far from the level of 95%. Thus, we can conclude that it is necessary to consider
the related information among the sampled nodes Gy (i.e., the double-layer
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Table 2

Simulation results with 500 replications for example 2 (stochastic block network). The error
term εi ∼ N(02,Σe). The estimates on the entire network and average running time are

abbreviated as EWN and ART, respectively.

ns=N Index α11 α21 α12 α22 B11 B21 B12 B22

Bias 0.000 0.001 0.001 -0.001 -0.002 -0.001 0.000 0.000

EWN RMSE 0.015 0.012 0.018 0.013 0.018 0.018 0.021 0.019

T: 23.6s CP 0.952 0.954 0.946 0.948 0.952 0.958 0.950 0.960

ns=200 Index α11 α21 α12 α22 B11 B21 B12 B22

Bias -0.001 0.002 -0.001 0.003 -0.004 0.004 -0.001 0.003

CS RMSE 0.042 0.035 0.059 0.036 0.053 0.055 0.068 0.068

T: 14.6s CP 0.936 0.952 0.954 0.946 0.946 0.950 0.958 0.958

Bias -0.094 0.059 -0.014 -0.027 -0.079 0.032 0.009 0.004

SRS RMSE 0.126 0.091 0.100 0.071 0.101 0.073 0.068 0.067

T: 11.3s CP 0.846 0.870 0.952 0.942 0.780 0.920 0.948 0.954

Bias -0.060 0.046 -0.013 -0.014 -0.017 0.019 -0.001 -0.002

SN RMSE 0.080 0.064 0.067 0.046 0.061 0.062 0.065 0.066

T: 11.4s CP 0.804 0.794 0.942 0.938 0.950 0.954 0.946 0.948

Bias -0.029 0.008 -0.016 -0.003 -0.030 0.022 0.010 0.001

MHRW RMSE 0.074 0.055 0.063 0.045 0.064 0.057 0.068 0.063

T: 11.6s CP 0.796 0.854 0.955 0.937 0.929 0.941 0.937 0.941

ns=500 Index α11 α21 α12 α22 B11 B21 B12 B22

Bias -0.002 0.003 -0.001 0.001 0.000 0.001 0.002 -0.001

CS RMSE 0.024 0.024 0.036 0.023 0.036 0.035 0.042 0.040

T: 14.7s CP 0.956 0.956 0.946 0.964 0.946 0.972 0.964 0.948

Bias -0.042 0.030 -0.007 -0.012 -0.004 0.015 -0.001 -0.004

SRS RMSE 0.049 0.037 0.035 0.025 0.041 0.040 0.042 0.042

T: 12.1s CP 0.682 0.746 0.948 0.910 0.932 0.928 0.958 0.950

Bias -0.037 0.031 -0.012 -0.011 0.020 -0.015 -0.006 0.004

SN RMSE 0.046 0.039 0.037 0.026 0.040 0.039 0.040 0.040

T: 12.7s CP 0.704 0.746 0.944 0.928 0.932 0.932 0.956 0.958

Bias -0.043 0.028 -0.006 -0.012 -0.016 0.009 0.002 -0.001

MHRW RMSE 0.050 0.036 0.036 0.026 0.037 0.037 0.042 0.042

T: 12.4s CP 0.642 0.760 0.946 0.912 0.946 0.952 0.942 0.944

supplementary information). Moreover, in the face of a large-scale network with
limited storage and computational resources, our method can obtain consistent
estimates on the sampled data.

3.3. Third-party restaurant consumer review website data analysis

In this section, we present the CS implementation for the MSAR model on
third-party restaurant consumer review website data. On the website, users can
comment on the merchant that they visited. We regard the online user behavior
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Table 3

Simulation results with 500 replications for example 3 (power-law distribution network).
The error term εi ∼ N(02,Σe). The estimates on the entire network and average running

time are abbreviated as EWN and ART, respectively.

ns=N Index α11 α21 α12 α22 B11 B21 B12 B22

Bias 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000

EWN RMSE 0.020 0.013 0.024 0.017 0.018 0.017 0.021 0.021

T: 23.7s CP 0.952 0.954 0.946 0.948 0.952 0.958 0.950 0.960

ns=200 Index α11 α21 α12 α22 B11 B21 B12 B22

Bias 0.002 -0.004 0.002 -0.002 -0.003 0.003 0.008 -0.002

CS RMSE 0.056 0.039 0.067 0.047 0.054 0.057 0.070 0.065

T: 13.1s CP 0.948 0.956 0.946 0.958 0.950 0.952 0.948 0.938

Bias -0.127 0.088 -0.006 -0.047 0.010 0.000 -0.002 0.003

SRS RMSE 0.153 0.105 0.103 0.079 0.059 0.058 0.066 0.064

T: 10.6s CP 0.630 0.732 0.966 0.882 0.954 0.950 0.950 0.948

Bias -0.105 0.072 0.001 -0.039 -0.046 0.025 -0.022 0.013

SN RMSE 0.122 0.085 0.077 0.063 0.908 0.480 0.620 0.330

T: 10.8s CP 0.610 0.668 0.940 0.890 0.968 0.960 0.954 0.948

Bias -0.115 0.080 -0.004 -0.043 0.008 0.011 0.020 -0.001

MHRW RMSE 0.132 0.093 0.073 0.068 0.319 0.068 0.262 0.070

T: 10.7s CP 0.588 0.616 0.950 0.888 0.954 0.968 0.950 0.942

ns=500 Index α11 α21 α12 α22 B11 B21 B12 B22

Bias 0.002 -0.001 -0.001 0.004 -0.001 0.002 0.002 0.001

CS RMSE 0.035 0.022 0.042 0.030 0.034 0.032 0.038 0.039

T: 13.5s CP 0.970 0.956 0.936 0.946 0.960 0.926 0.956 0.954

Bias -0.092 0.074 -0.005 -0.037 0.001 -0.005 0.004 0.006

SRS RMSE 0.102 0.078 0.048 0.047 0.034 0.034 0.041 0.042

T: 11.1s CP 0.434 0.178 0.960 0.714 0.958 0.968 0.946 0.964

Bias -0.089 0.061 0.004 -0.030 0.009 0.013 -0.001 -0.001

SN RMSE 0.097 0.066 0.042 0.043 0.037 0.038 0.043 0.043

T: 11.3s CP 0.404 0.392 0.962 0.806 0.954 0.942 0.950 0.946

Bias -0.101 0.069 -0.001 -0.040 -0.013 0.002 0.001 -0.003

MHRW RMSE 0.108 0.074 0.041 0.049 0.035 0.033 0.043 0.039

T: 11.3s CP 0.286 0.284 0.956 0.718 0.960 0.968 0.944 0.954

features (namely, activity and interaction) as responses. The user activity repre-
sents the number of users’ comments for a merchant over the past month. The
user interaction represents the communications among users, which is measured
by the number of likes and comments between users. The log-transformed values
of the activity and interaction are aggregated, following which the responses are
normalized with mean 0 and variance 1. The histograms of the log-transformed
activity and interaction are presented in Figure 4. We collect three user fea-
tures as the exogenous nodal covariates: the registration time, VIP, and gender
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Table 4

CS with 500 replications for three examples. The error term εi follows t(5) with mean 02

and covariance Σe. The results of the average running time are similar to those of the
former cases.

ns=200 α11 α21 α12 α22 B11 B21 B12 B22

Example 1: Dyad Independence Network

Bias -0.015 0.002 -0.015 -0.012 0.002 0.003 0.008 -0.005

RMSE 0.183 0.172 0.282 0.158 0.073 0.070 0.085 0.082

CP 0.956 0.948 0.938 0.958 0.954 0.928 0.960 0.956

Example 2: Stochastic Block network

Bias 0.000 0.003 -0.005 0.000 0.001 0.001 0.008 -0.001

RMSE 0.048 0.042 0.069 0.039 0.070 0.066 0.091 0.084

CP 0.956 0.930 0.952 0.936 0.954 0.948 0.952 0.952

Example 3: Power Law Network

Bias 0.005 -0.001 0.003 0.004 -0.004 0.010 0.001 0.006

RMSE 0.067 0.042 0.075 0.053 0.070 0.070 0.081 0.083

CP 0.960 0.958 0.966 0.960 0.946 0.938 0.938 0.938

ns=500 α11 α21 α12 α22 B11 B21 B12 B22

Example 1: Dyad Independence Network

Bias 0.010 0.004 -0.012 0.007 0.000 0.002 0.000 0.002

RMSE 0.117 0.103 0.177 0.098 0.041 0.041 0.050 0.053

CP 0.950 0.956 0.930 0.958 0.952 0.958 0.948 0.946

Example 2: Stochastic Block network

Bias -0.002 0.003 0.001 0.000 -0.001 0.002 0.002 0.000

RMSE 0.031 0.028 0.042 0.026 0.041 0.046 0.053 0.054

CP 0.928 0.974 0.948 0.946 0.928 0.960 0.956 0.954

Example 3: Power Law Network

Bias 0.004 -0.001 0.003 -0.002 0.002 -0.002 0.001 0.002

RMSE 0.042 0.028 0.048 0.034 0.044 0.045 0.055 0.054

CP 0.950 0.956 0.930 0.958 0.952 0.958 0.948 0.946

(gender = 1 for male and 0 for female). The histograms of the log-transformed
registration time are provided in Figure 4. Moreover, 68.4% of users are VIP
(VIP = 1 for VIP users) and 98.1% of users are male. All the continuous vari-
ables are standardized with mean 0 and variance 1.

Subsequently, for the network structure, we consider the adjacency matrix A
constructed based on the user comments on merchants. If two users i1, i2 have
reviewed the same merchant, ai1i2 = 1 is recorded, and ai1i2 = 0 otherwise. The
histograms of the degrees are presented in Figure 4. The nodes with degrees
higher than 500 are deleted. Moreover, 5534 users are involved in the real data
analysis.

We treat the above N = 5534 nodes and corresponding edges as if they
are the entire network. Furthermore, we regard the least-squares estimates on
the entire network as true parameters. The estimation results on the entire
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Table 5

Estimates on the entire network with 500 replications for three examples. The error term εi
follows t(5) with mean 02 and covariance Σe.

ns = N α11 α21 α12 α22 B11 B21 B12 B22

Example 1: Dyad Independence Network

Bias -0.002 0.001 0.007 0.000 0.001 -0.001 0.000 -0.001

RMSE 0.072 0.06 0.098 0.061 0.021 0.022 0.024 0.025

CP 0.946 0.946 0.940 0.950 0.958 0.966 0.942 0.934

Example 2: Stochastic Block network

Bias -0.001 0.002 -0.001 0.001 0.000 0.000 0.002 -0.002

RMSE 0.016 0.016 0.024 0.014 0.023 0.024 0.027 0.027

CP 0.942 0.938 0.934 0.954 0.950 0.964 0.932 0.940

Example 3: Power Law Network

Bias 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000

RMSE 0.022 0.017 0.026 0.019 0.022 0.022 0.025 0.027

CP 0.956 0.952 0.938 0.940 0.946 0.954 0.946 0.950

Fig 4. Descriptive analysis regarding real data. Top left panels: histogram of log-activity;
top right panels: histogram of log-interaction; bottom left panels: histogram of standardized
log-registration time; bottom right panels: histogram of degrees.

network are summarized in Table 6. The corresponding p-values are all smaller
than 0.01. According to Table 6, the user activity and interaction have a positive
intra-activity effect and extra-activity effect. For the exogenous nodal covariates,
VIP users and male users exhibit significantly higher activity and interaction.
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Table 6

CS estimates with 200 replications on real data. The activity, interaction, and registration
times are abbreviated as ACT, INT, and RET, respectively. The “*” indicates that the
estimates on the entire network are significant under a level of 0.01. The represented

estimates on the sampled real data are the mean of 200 replications. The empirical powers
of the estimates are reported in brackets alongside the corresponding estimates. The

estimates of the intercept term are omitted.

Whole network ns = 300 ns = 500

ACT INT ACT INT ACT INT

ACT (WY·1) 0.605∗ 0.375∗ 0.606(1.00) 0.377(1.00) 0.608(1.00) 0.372(1.00)

INT (WY·2) 0.259∗ 0.599∗ 0.259(0.99) 0.600(1.00) 0.262(1.00) 0.597(1.00)

RET 0.034∗ −0.105∗ 0.034(0.99) −0.105(1.00) 0.034(1.00) −0.105(1.00)

VIP 1.076∗ 0.963∗ 1.076(1.00) 0.963(1.00) 1.076(1.00) 0.963(1.00)

GENDER 0.414∗ 0.456∗ 0.414(1.00) 0.457(1.00) 0.414(1.00) 0.456(1.00)

Moreover, it is found that users with an earlier registration time have higher
activity but lower interaction.

Thereafter, we use only a small number of nodes to approximate the true
parameters. We set the sample size to 300 and 500. For CS, we take the average
of the estimates obtained by R = 200 replications. The estimation results are
summarized in Table 6. We consider the bias, RMSE, and empirical rejection
probability (ERP) as the performance measures. We set the size as α = 0.01.

The ERP for αj1j2 is computed as R−1
∑R

r=1 I(|α̂j1j2/ŜEj1j2 | > zα/2). The
ERP represents the empirical size or power, where α̂j1j2 is 0 or not. Note that
the three traditional sampling methods perform poorly on the bias and ERP.
Thus, we focus on the CS results.

We compare the estimates obtained from the sampled data with the true
parameters. In Table 6, we abbreviate the activity, interaction, and registration
time as ACT, INT, and RET, respectively. The CS performs effectively on a
finite sample size. First, we regard the estimates as unbiased because the max-
imum bias is 0.003. Moreover, as the sample size increases, the RMSE for all
parameters decreases. Secondly, for significant true parameters, the ERP ap-
proaches 100% on the sampled data when ns = 500. Consequently, CS can lead
to a consistent estimation on the sampled data and the double-layer supplemen-
tary information from the sampled nodes is necessary for consistent estimation.
Furthermore, compared to the neighbors’ interaction, the neighbors’ activity has
a stronger impact on the users’ activity and interaction. We suggest rewarding
users and encouraging them to leave more reviews on merchants to make the
website more active.

4. Concluding remarks

In this study, to approximate the estimation for MSAR on the entire network
accurately, we have proposed the CS method for the LSE estimator in a general
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framework. Together with the sampled nodal features and double-layer supple-
mentary information, we constructed the least-squares objective function on the
sampled data. The identification condition for the parameters on the sampled
network was theoretically investigated. Furthermore, the sample size condition
and asymptotic properties of the least-squares estimators were provided. Nu-
merical results for the simulated data and real data were presented.

In conclusion, we consider three interesting topics for future studies. First,
from a model-based viewpoint, we will focus on the sampling scheme for the
MSAR model. Moreover, numerous other models, such as the exponential ran-
dom graph model and network vector autoregressive model, could also be used
to analyze the network data. Thus, to estimate the parameters in these models,
extending the CS method could be an interesting research problem. Secondly,
for the parameters in different network models and the properties of the net-
work, the bootstrap estimator of the parameters deserves a separate study; see
[35, 15, 8] for further discussions. Thirdly, we have regarded the network struc-
ture and nodal features as fixed during the observation period. However, in
practice, the network structure, many responses, and exogenous covariates are
observed in time series. Thus, a dynamic sampling mechanism and correspond-
ing estimators could be designed.

Appendix A

In Appendix A, we present certain notations and verify the least-squares objec-
tive function (2.4) in Appendix A.1. Next, the proof of Proposition 1 is presented
in Appendix A.2.

A.1. Notations and Verification of (2.4)

In this section, we first provide the notations for several useful matrices and
vectors. The MSAR model on the entire network can be rewritten into the
vector form as Y =

(
α� ⊗W

)
Y+ X̃β+E , where X̃ = Ip⊗X and Y = vec(Y) ∈

R
Np. The vector form can also be expressed as Y = S−1(X̃β + E), where S =

INp − α� ⊗W . Consider a matrix R with n1 rows and n2 columns. Here, Rij

represents the ith row and jth column element in matrix R, Ri,· is the i1th
row of matrix R, and R�

i,· ∈ R
n2 . Furthermore, R·,j ∈ R

n1 is the jth column of
matrix R. We define Ri,(−i) as the ith row of matrix R without the ith element,

and R�
i,(−i) ∈ R

n2−1. Similarly, we define R(−i),i ∈ R
n1−1 as the ith column

vector of matrix R without the ith element, and R(−i),(−i) ∈ R(n1−1)×(n2−1)

as R without the ith column and ith row. Furthermore, with respect to αj1j2

and β, the first-order derivatives of R can be written as Rα
j1j2

and Rβ. We
denote Rα

j1j2k1k2
, Rα

j1j2β
, and Rββ to represents the second-order derivatives

∂2R/∂αj1j2∂αk1k2 , ∂
2R/∂αj1j2∂β, and ∂2R/∂β∂β, respectively.

Next, we present the form of the BLP of the Yij element. When the error
term E·j follows a normal distribution; the BLP of Yij given by Y−(i,j) has the
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same form as the conditional mean [31]. Let nij = (j − 1) × N + i; then, the
BLP of Yij can be expressed as

F
(
Yij |Y−(i,j)

)
= μij − Ω−1

nij ,nij
Ωnij ,(−nij)(Y(−nij) − E{Y(−nij)}), (A.1)

Moreover, the precision matrix of Y can be expressed as

Ω = Σ−1 =

(
Ωnij ,nij Ωnij ,(−nij)

Ω(−nij),nij
Ω(−nij),(−nij)

)
= (INp −α� ⊗W )�(Ωe ⊗ IN )(INp −α� ⊗W )

= (Ωe ⊗ IN )−O� −O +Q.

where O = (Ωeα
�) ⊗ W and Q = (αΩeα

�) ⊗ (W�W ). Specifically, be-
cause Wii = 0, we have Ωnij ,nij = Ωe,jj + Qnij ,nij = m−1

nij ,nij
, Ωnij ,(−nij) =

−Onij ,(−nij) − O�
(−nij),nij

+Qnij ,(−nij),m = diag−1(Ω) = [diag
(
Σ−1

e

)
⊗ IN +

diag
(
αΣ−1

e α�)
⊗ diag

(
W�W

)
]−1. Next, we split the product in the form of

vectors in (A.1) (i.e., Ωnij ,(−nij)(Y(−nij) − E{Y(−nij)})) into the sum of the
multipliers of their components. Thus, we have

Ωni1j1 ,(−ni1j1)
(Y(−ni1j1)

− E{Y(−ni1j1)
}) =

(N,p)∑
(i2,j2) 	=(i1,j1)

ri1j1i2j2 (Yi2j2 − μi2j2)

where ri1j1i2j2 = m−1
ni1j1 ,ni1j1

{Oni1j1 ,ni2j2
+Oni2j2 ,ni1j1

−Qni1j1 ,ni2j2
}. We have

mni1j1 ,ni1j1
= ωe,j1j1 +

(
αj1·Ωeα

�
j1·

) (∑
i∈Gy

⋃
Gx

w2
ii1

)
, Oni1j1 ,ni2j2

= αj1·Ωe,·j2

wi2i1 ,Oni2j2 ,ni1j1
= Ωe,j2·α·j1wi1i2 ,Qni1j1 ,ni2j2

=
(
αj1·Ωeα

�
j2·

)
(
∑

i∈Gy
⋃

Gx
wii1

wii2). Thus, the calculation of each element in ri1j1i2j2 only involve the three
types of unsampled nodes in Figure 3. For any node i1 ∈ Gy, since only nodes
i2 ∈ Gy

⋃
Gx are involved in (A.1), we can obtain the BLP of Yi1j1 in (2.2)-(2.3)

as follows:

F
(
Yi1j1 |Y−(i1,j1)

)
=μi1j1+

(Gy

⋃
Gx,p)∑

(i2,j2) 	=(i1,j1)

ri1j1i2j2 (Yi2j2−μi2j2) ,

ri1j1i2j2 =
αj1·Ωe,·j2wi2i1+Ωe,j2·α·j1wi1i2−

(
αj1·Ωeα

�
j2·

) (∑
i∈Gy

⋃
Gx

wii1wii2

)
ωe,j1j1+

(
αj1·Ωeα�

j1·
) (∑

i∈Gy
⋃

Gx
w2

ii1

) .

(A.2)
We define μc = vec{F

(
Yij |Y−(i,j)

)
, 1 ≤ i, j ≤ N} ∈ R

N , μ = E(Y) ∈ R
N , and

we can write (A.2) in the vectorization form as μc = μ−m(Ω−m−1)(Y − μ).
Thus, we have Y − μc = mΩ(Y − μ).

As a result, the objective function with all N nodes can be expressed as
Lw(θ) = ||Y − μc||2. Instead of using all N nodes to establish the objective
function, we construct the objective function L on the sampled data. The form
of L in (2.4) can be written as

L(θ) = ||G(Y − μc)||2 = H�H, (A.3)



3698 W. Hu et al.

where H = G(Y − μc) = mGS�(Ωe ⊗ IN )(SY − X̃β) and G = Ip ⊗ g.

A.2. Proof of Proposition 1

Proof. We need to prove these two inequalities: n−2
s tr(M∗�

k1k2
M∗

j1j2
M∗�

j1j2
M∗

k1k2
)

→ 0 and n−2
s V ∗�

j1j2
M∗

k1k2
M∗�

k1k2
V ∗
j1j2

→ 0. The upper bounds of the elements of
matrix M∗

j1j2
, V ∗

j1j2
need to be considered to prove these two conditions. Fol-

lowing Lemma 3 in [46], we define W ∗ = W�g + W�Wg + W�WgW� +

gW�{W (
∑K

i=1 W
i+1Nπ�)}, where K is a large finite integer [2]. Under condi-

tion (C2.2), we have λmax{g(W�+W )g} = O(log ns). Then, it could be verified
that λmax{g(W�W )g} = O(log n2

s). Furthermore, according to Lemma 3 in [46],
we have

λmax(W
∗�W ∗) =

{
O{(logns)

6N1/2−δ}, 1 < δ < 1/2

O{(logns)
6(logN)2(K+2)}, δ = 1/2

(A.4)

In this case, 1N is an N -dimensional column vector with all elements equal
to 1. Note that |A|e = (|Aij |) takes the absolute value of each element in A.
Moreover, |A|e � B means that each |Aij | is smaller than the corresponding
element Bij . Furthermore, we have |M∗

j1j2
|e � c1M (1p1

�
p )⊗W ∗ and |V ∗

j1j2
|e �

c1M (1p1
�
p )⊗W ∗|(Ip ⊗X)β|e. Then, taking the upper bound of each element of

the matrix as ns → ∞, we assume that there exists ε > 0, ns = O(N1−2δ+ε).
Thus, we have

n−2
s tr(M∗�

k1k2
M∗

j1j2M
∗�
j1j2M

∗
k1k2

) ≤ n−2
s c3m tr(W ∗�W ∗W ∗�W ∗)

≤ n−1
s c3mλ2

max(W
∗�W ∗) → 0,

where c3m is a finite constant. Similarly, for the second condition, we have

n−2
s V ∗�

j1j2M
∗
k1k2

M∗�
k1k2

V ∗
j1j2 ≤ n−2

s cu(|X̃β|e)�(1p1
�
p )⊗ (W ∗�W ∗W ∗�W ∗)(|X̃β|e)

≤ n−1
s cu‖X̃β‖2n−1

s λ2
max(W

∗�W ∗),

where n−1
s λ2

max(W
∗�W ∗) → 0, n−1

s ‖X̃β‖2 = O(1) under condition (C3), and cu
is a finite positive constant. As a result, we have n−2

s V ∗�
j1j2

M∗
k1k2

M∗�
k1k2

V ∗
j1j2

→
0.

Appendix B

We present the proofs of Theorem 1, Theorem 2, and Theorem 3 in Appendix
B.1, Appendix B.2, and Appendix B.3 respectively.

B.1. Proof of Theorem 1

Proof. We assume that the nodal in-degree is finite. Thus, for any sampled
node i1 in Gy,

∑
i w

2
ii1

and
∑

i wii1wii2 are summations of finite terms. The
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computational complexity of each nonzero element in μc is O(1) according to
(A.2). Then, there are only nsp nonzero elements in H. Similarly, the compu-
tational complexity of the objective function L and its derivatives (first–order
and second–order) is linear in the sample size ns. Further, we assume that the
Newton–Raphson algorithm converges in a finite number of steps. As a result,
the computational complexity is linear with the number of sampled nodes ns.
Thus, Theorem 1 is proven.

B.2. Proof of Theorem 2

Proof. In this section, we investigate the identification condition on the sampled

network. In the proof of the identification, θ =
(
vec(α)�,β�)� ∈ R

p2+pq rep-

resents the estimates obtained by calculation, and θ0 =
(
vec(α0)

�,β�
0

)�
rep-

resents the true parameter. Then, we define Vg = (Ip ⊗X
∗
g)(θ0 − θ) ∈ R

nsp and
Mg = (Σ−1

e ⊗ Ins)(Sgm
2
gSg)(Σ

−1
e ⊗ Ins) ∈ R

nsp×nsp, where mg retains the rows
and columns corresponding to sampled nodes in m. Letting λmin(Mg) ≥ cM ,
where cM is a positive constant, we have

n−1
s V

�
g MgVg ≥ cM (θ0 − θ)

�
{
Ip ⊗N−1

(
Xg

∗�
X

∗
g

)}
(θ0 − θ) > 0.

As ns → ∞, under condition (C1), n−1
s V

�
g MgVg = 0 if and only if θ = θ0 on

the sampled network. We provide the details as follows.
First, we can obtain Vg = (Ip ⊗Mg){vec(α0)− vec(α)}+(Ip ⊗Xg)(β0 −β).

Moreover, we define v ∈ R
Np, Σ∗

e = Σe/ tr(Σe), cm = max{m}. We denote
v�g ∈ RNp with only nsp nonzero elements, and the elements corresponding to
the unsampled nodes in vg are all equal to 0. According to Theorem 2, even if
λmin

(
SS�)

≥ cs, we also have

λmin

(
SgS

�
g

)
= min

||vg||=1
v�g (INp −D� ⊗W )G(INp −D ⊗W�)vg

≥ min
||v||=1

v�(INp −D� ⊗W )(INp −D ⊗W�)v

≥ cs > 0.

Moreover, there exists a finite constant ce, and λmax (Σ
∗
e) ≤ ce.

λmin(Mg) = min
‖vn‖=1

v�n Mnvn ≥ c2mλmin{SgS
�
g }λ−2(Σ∗

e)

≥ c2mcsc
−2
e > 0.

As a result, letting cM = c2mcSc
−2
e , we can conclude that λmin(Mg) ≥ cM .

Next, recall thatMp = (Vp⊗Ins)S
−1
0g [Ip⊗(WgXg)]β,Mg = (M1, ...,Mp) ∈ R

nsp.

Then, X∗
g = (Mg,Xg) ∈ R

ns×(p+q). Subsequently, limns→∞ n−1
s

(
X

∗�
g X

∗
g

)
exists

and is nonsingular. Finally, as a result, we have limns→∞ n−1
s V

�
g MgVg = 0 if

and only if θ = θ0 on the sampled network. This completes the proof.
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B.3. Proof of Theorem 3

Proof. In this section, we investigate the asymptotic properties of the least-
squares estimators, defined as θ̂, in two parts. In PART 1, θ̂ is proven to be√
ns-consistent. In PART 2, the asymptotic normality of θ̂ is proven.
PART 1: Consistency. To establish the consistency result, following [13],

we demonstrate that, for any ε > 0, there exists a constant Cs > 0 such that

lim
ns→∞

P{ inf
||u||=Cs

L(θ + n−1/2
s u) > L(θ)} ≥ 1− ε. (B.1)

(B.1) implies that there exists a local minimizer, written as θ̂, in the ball {θ +

n
−1/2
s uCs : ||u|| ≤ 1} with probability at least 1 − ε. For (B.1), using Taylor

expansion, we obtain

inf
‖u‖=1

{
L

(
θ + n−1/2

s u
)
− L(θ)

}
= Csn

−1/2
s L̇(θ)�u+2−1C2

sn
−1
s u�L̈(θ)u+op(1)

≥ 2−1C2
sλmin

{
n−1
s L̈(θ)

}
− Csn

−1/2
s ‖L̇(θ)‖+ op(1), (B.2)

where L̇(θ) = ∂L(θ)/∂θ ∈ Rp2+pq,L̈(θ) = ∂2L(θ)/∂θ∂θ� ∈ R(p2+pq)×(p2+pq).
Next, we discuss L̇(θ) and L̈(θ) in turn.

First, we need to prove that limns→∞ n−1
s cov{L̇(θ), L̇(θ)} = Σ1s. We treat

the right side of (B.2) as a quadratic function of Cs. Then, the linear term

coefficient n
−1/2
s ‖L̇(θ)‖ is Op(1). Next, based on the law of large numbers, we

can prove that n−1
s L̈(θ) →p Σ2s. Thereafter, we can determine that

λmin{n−1
s L̈(θ)} →p λmin(Σ2s) > 0 since Σ2s is a real symmetric matrix; i.e.,

the quadratic term coefficient is asymptotically positive. As a result, there ex-
ists a sufficiently large Cs, and (B.2) is positive with probability 1 when ns goes

to ∞. Furthermore, (B.1) holds, and the consistency of θ̂ can be obtained.
Next, we provide the details. In PART 1 – step 1, we present the proof of

limns→∞ n−1
s cov{L̇(θ), L̇(θ)} = ΣL

1s. In PART 1 – step 2, we present the proof
of n−1

s L̈(θ) →p ΣL
2s. Under condition (C6), we assume that the following six lim-

its exist: limns→∞ n−1
s cov(Lα, Lα) = Σ1α, limns→∞ n−1

s cov(Lα, Lβ) = Σ1αβ,
limns→∞ n−1

s cov(Lβ, Lβ) = Σ1β, limns→∞ n−1
s E(Lαα) = Σ2α, limns→∞ n−1

s E
(Lαβ) = Σ2αβ, and limns→∞ n−1

s E(Lββ) = Σ2β. The detailed expressions are
concluded in (2.6). We denote Lα, Lβ as the first-order derivatives of L with
respect to α and β. Similarly, we denote Lαβ, Lαβ, Lββ as the second-order
derivatives of L.

PART 1 – step 1: In this step, we prove that limns→∞ n−1
s cov(L̇(θ), L̇(θ)) =

Σ1s and that the limit is a matrix with finite values; i.e., we need to prove that
L̇(θ) meets the requirements of Lemma 2 in [46]. For 1 ≤ j1, j2 ≤ p, the deriva-

tive of the objective function can be expressed as L̇(θ) = vec(Lα, Lβ) ∈ R
p2+pq,

where Lα = {Lα
j1j2

} and

Lα
j1j2 = 2Ẽ�Mj1j2 Ẽ + 2Ẽ�Vj1j2 ,

Lβ = 2H�
β H∗Ẽ .
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The detailed notations are provided in section 2.3, where E = SY − X̃β, Ẽ =

(Ẽ�
1 , Ẽ�

2 , · · · , Ẽ�
p )� =

(
Σ

−1/2
e ⊗ IN

)
E ,Qα

j1j2
=

(
Ij1j2Ωeα

� +αΩeIj2j1
)
⊗ (W�

W ), Sα
j1j2

= −Ij2j1 ⊗W, S̃α
j1j2

= − (ΩeIj2j1)⊗W , Ωα
j1j2

= − (Ij1j2Ωe)⊗W� −
(ΩeIj2j1) ⊗W +Qα

j1j2
,mα

j1j2
= −m2 diag

(
Qα

j1j2

)
. Then, the form of the terms

in L̇(θ) (i.e., Lα
j1j2

, Lβ) meet the requirements of Lemma 2 in [46]. As a result,

we have limns→∞ n−1
s cov(L̇(θ), L̇(θ)) = Σ1s and the detailed expressions are

represented in (2.6) to (2.8).
PART 1–step 2: In this step, we prove that n−1

s L̈(θ) →p Σ2s by the law
of large numbers. The second-order derivative of the objective function can be
expressed as

L̈(θ) =

(
Lαα Lαβ

L�
αβ Lββ

)
,

where i1 = (j1 − 1)p + j2, i2 = (k1 − 1)p + k2, Lαα = {L(i1,i2)
αα } ∈ R

p2×p2

,

Lαβ = {L(i1·)
αβ } ∈ R

p2×pq, Lββ ∈ R
pq×pq. Moreover, L

(i1,i2)
αα = 2Hα�

j1j2
Hα

k1k2
+

2H�Hα
j1j2k1k2

, L
(i1·)
αβ = 2Hα�

j1j2
Hβ +H�Hα

j1j2β
, Lββ = 2H�

β Hβ +Hββ. For the
details, we have Hββ = 0 and

Hα
j1j2k1k2

= mα
j1j2k1k2

G{S̃�(SY − X̃β)}+mα
j1j2G{S̃�(SY − X̃β)}αk1k2

+mα
k1k2

G{S̃�(SY − X̃β)}αj1j2 +mG{S̃�(SY − X̃β)}αj1j2k1k2
,

Hα
j1j2β = {mα

j1j2GS̃�(SY − X̃β)}β +m{GS̃�(SY − X̃β)}αj1j2β

= mα
j1j2GS̃�(−X̃) +m{−G(Ij1j2 ⊗W�)(Ωe ⊗ IN )(−X̃)},

where Qα
j1j2k1k2

= (Ij1j2ΩeIk2k1 + Ik1k2ΩeIj2j1)⊗
(
W�W

)
, mα

j1j2k1k2
= 2m3

diag(Qα
j1j2

)diag(Qα
k1k2

) − m2Qα
j1j2k1k2

, Ωα
j1j2k1k2

= Qα
j1j2k1k2

. Now, we express

the mean and variance of each component of limns→∞ n−1
s L̈(θ) (i.e., Lαα, Lαβ,

Lββ).

Thereafter, we provide the mean of Lαα ∈ Rp2×p2

. Consider that L
(i1,i2)
αα

represents the second-order derivative ∂2L(θ)/∂αj1j2∂αk1k2 . Then, we have

E(L(i1,i2)
αα ) = 2E(Hα�

j1j2H
α
k1k2

) + 2E(H�Hα
j1j2k1k2

),

where H�Hα
j1j2k1k2

= I1 + I2 + I3 + I4, in which I1 = E�S̃mGmα
j1j2k1k2

GS̃�E ,
I2 = E�S̃mGmα

j1j2
G

(
S̃α�
k1k2

E + S̃�Sα
k1k2

Y
)
, I3 = E�S̃mGmα

k1k2
G(S̃α�

j1j2
E + S̃�

Sα
j1j2

Y), and I4 = E�S̃mGmGΩα
j1j2k1k2

Y . Using the property that E(Ẽ) =

0, E(Ẽ2) = 1,Y = S−1(E + Xβ), tr(AB) = tr(BA), we obtain E(I1) = tr(S̃mG

mα
j1j2k1k2

GS̃�), E(I2) = tr(mGmα
j1j2

GSα�
k1k2

S̃) + tr(mGmα
j1j2

GS̃�Sα
k1k2

), E(I3)

= tr
(
mGmα

k1k2
GSα�

j1j2
S̃

)
+ tr

(
mmα

k1k2
S̃�Sα

j1j2

)
, E (I4) = tr(m2GQα

j1j2k1k2
).

Thus, we can determine that E (I1 + I4) = −E (I2 + I3). As a result, we have

E(Hα�Hα
j1j2k1k2

) = 0. As Hα
j1j2

= M∗
j1j2

Ẽ + V ∗
j1j2

, the mean of each element in
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Lαα can be expressed as E(L
(i1,i2)
αα ) = 2E(Hα�

k1k2
Hα

j1j2
) = 2 tr(M∗�

j1j2
M∗

k1k2
) +

2V ∗�
k1k2

V ∗
j1j2

.

For the variance of L
(i1,i2)
αα , as ns → ∞, we wish to verify that n−2

s var(Hα�
k1k2

Hα
j1j2

) → 0 and n−2
s var(H�Hα

j1j2k1k2
) → 0. We first prove that n−2

s var(Hα�
k1k2

Hα
j1j2

) → 0. We have

Hα�
k1k2

Hα
j1j2 = Ẽ�M∗�

k1k2
M∗

j1j2 Ẽ + Ẽ�M∗�
k1k2

V ∗
j1j2 + V ∗�

k1k2
M∗

j1j2 Ẽ + V ∗�
j1j2V

∗
k1k2

.

Further, to prove that n−2
s var(Hα�

k1k2
Hα

j1j2
) → 0, we could follow the requirement

of Lemma 2 in [46]. As ns = O(N1−2δ+ε), in Proposition 1 in Appendix A.2, we
obtain that n−2

s tr(M∗�
k1k2

M∗
j1j2

M∗�
j1j2

M∗
k1k2

) → 0 and n−2
s V ∗�

j1j2
M∗

k1k2
M∗�

k1k2
V ∗
j1j2

→ 0. Thus, with ns → ∞, we obtain n−2
s var(Hα�

k1k2
Hα

j1j2
) → 0.

Next, we need to prove that n−2
s var(H�Hα

j1j2k1k2
) → 0.We splitH�Hα

j1j2k1k2

into the form of quadratic terms and linear terms of Ẽ . Thus,

H�Hα
j1j2k1k2

= Ẽ�T1Ẽ+Ẽ�T2Ẽ+Ẽ�T3Ẽ+Ẽ�O1+Ẽ�T4Ẽ+Ẽ�O2+Ẽ�T5Ẽ+Ẽ�O3,

where

T1 = (Σ1/2
e ⊗ IN )S̃mGmα

j1j2k1k2
GS̃�(Σ1/2

e ⊗ IN ),

T2 = (Σ1/2
e ⊗ IN )S̃mGmα

j1j2GS̃α�
k1k2

(Σ1/2
e ⊗ IN ),

T3 = (Σ1/2
e ⊗ IN )S̃mGmα

j1j2GS̃�Sα
k1k2

S−1(Σ1/2
e ⊗ IN ),

O1 = (Σ1/2
e ⊗ IN )S̃mGmα

j1j2GS̃�Sα
k1k2

S−1
X̃β,

T4 = (Σ1/2
e ⊗ IN )S̃mGmα

k1k2
GS̃�Sα

j1j2S
−1(Σ1/2

e ⊗ IN )Ẽ ,
O2 = (Σ1/2

e ⊗ IN )S̃mGmα
k1k2

GS̃�Sα
j1j2S

−1(X̃β),

T5 = (Σ1/2
e ⊗ IN )S̃mGmGΩα

j1j2k1k2
S−1(Σ1/2

e ⊗ IN ),

O3 = (Σ1/2
e ⊗ IN )S̃mGmGΩα

j1j2k1k2
S−1(X̃β).

Next, similar to the proof of Proposition 1 in Appendix A.2, we need to prove
that ∀i, j = 1, 2.., 5,

tr(TiTj)/n
2
s → 0, tr(TiT

�
j )/n2

s → 0,

(O1 +O2 +O3)
�(O1 +O2 +O3)/n

2
s → 0,

where |T1|e � cHH1(1p1
�
p ) ⊗ WHH1 , |T2|e � cHH2(1p1

�
p ) ⊗ WHH2, |T3|e �

cHH3(1p1
�
p )⊗WHH3, |T4|e � cHH4(1p1

�
p )⊗WHH3, and |T5|e � cHH5(1p1

�
p )⊗

WHH5, in which WHH1 = (IN +W )g{W�W + (W�W )2}g(IN +W ), WHH2 =
(IN + W )g{W�W}gW , WHH3 = (IN + W )g{W�W}g(IN + W )WW ∗, and
WHH5 = (IN + W )g{W�W}W ∗. Furthermore, cHH1, cHH2, cHH3, cHH4, and
cHH5 are finite positive constants. Similar to the proof of n−2

s var(Hα�
k1k2

Hα
j1j2

) →
0, we have ∀i, j = 1, 2.., 5, tr(TiTj)/n

2
s → 0, tr(TiT

�
j )/n2

s → 0, and we can obtain

|O1|e � cO1

{
(1p1

�
p )⊗WHH3

}
|X̃β|e, |O2|e � cO2

{
(1p1

�
p )⊗WHH3

}
|X̃β|e,
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|O3|e � cO3

{
(1p1

�
p )⊗WHH5

}
|X̃β|e, where cO1, cO2, and cO3 are finite pos-

itive constants. Therefore, define O123 = (O1 +O2 +O3),we have

O�
123O123/n

2
s ≤ n−2

s cOO(|X̃β|e)�(1p1
�
p )⊗ (WHH3W

�
HH3)|X̃β|e

≤ n−1
s (cOO||X̃β||2)n−1

s {λ2
max(WHH3W

�
HH3)},

where cOO is a finite positive constant. Thus, we have n−1
s (cOO‖X̃β‖2) = O(1),

n−1
s λmax(Woij) → 0. As a result, we have n−2

s var(H�Hα
j1j2k1k2

) → 0. Finally,

as a consequence, we obtain L
(i1,i2)
αα →p Σ

(i1,i2)
2αα , where 1 ≤ i1, i2 ≤ q2.

Next, we provide the expression for the mean and variance of Lαβ={L(i1,·)
αβ }∈

R
p2×(pq). For 1 ≤ i1 ≤ p2, consider that each L

(i1·)
αβ is the i1th row of Lαβ.

Equally, we need to prove that E(L
(i1·)
αβ ) = V ∗�

j1j2
Hβ, var(L

(i1·)
αβ /ns) → 0. We

write L
(i1·)
αβ as

L
(i1·)
αβ = 2Hα�

j1j2Hβ +H�Hα
j1j2β

= 2Ẽ�Oαβ1 + 2Cαβ1 + Ẽ�Oαβ2,

where Oαβ1 = M∗�
j1j2

Hβ, Cαβ1 = V ∗�
j1j2

Hβ and Oαβ2 = H∗�Hα
j1j2β

. As a result,

we have E(L
(i1·)
αβ ) = 2Cαβ1 = 2V ∗�

j1j2
Hβ. Next, we write the variance of L

(i1·)
αβ as

var(L
(i1·)
αβ /ns) = (Oαβ1 +Oαβ2)

�(Oαβ1 +Oαβ2)/n
2
s

≤ 1

ns
(Cαβ|X̃|e)

1

ns
λ2
max[(Õαβ1 + Õαβ2)

�(Õαβ1 + Õαβ2)],

where Õαβ1 = M∗�
j1j2

[−mGS̃�] and Õαβ2 = H∗�[mα
j1j2

GS̃� + m{−G(Ij1j2 ⊗
W�)(Ωe ⊗ IN )}]. The upper bounds of Õαβ1 and Õαβ2 can be expressed as

|Õαβ1|e � cαβ1(1p1
�
p )⊗W ∗G(1p1

�
p )⊗ (IN +W ) and |Õαβ2|e � cαβ2(1p1

�
p )⊗

W ∗{G(1p1
�
p ) ⊗ (W�W )G(1p1

�
p ) ⊗ (IN + W ) + G(1p1

�
p ) ⊗ W , respectively,

where cαβ1 and cαβ2 are finite constants. Thus, we have n−1
s λmax[(Õαβ1 +

Õαβ2)
�(Õαβ1+Õαβ2)] → 0. As a result, we obtain var(L

(i1·)
αβ /ns) → 0. Further-

more, according to the law of large numbers, we can determine that n−1
s L

(i1·)
αβ →p

n−1
s H�

β V ∗
j1j2

= Σ
(i1·)
2αβ.

Finally, we provide the form of the mean and variance of Lββ. We have

n−1
s Lββ →p 2H�

β Hβ/ns because Hβ = −mGS̃X̃ contains no random terms.

As a result, we can write the mean item as E(Lββ) = 2H�
β Hβ. Moreover, the

variance item is represented by var(n−1
s Lββ) = 0. As a result, we use the law of

large numbers for Lαα, Lαβ, Lββ. Then, we obtain n−1
s L̈(θ) →p ΣL

2s.

PART 2: Asymptotic Normality. It has been proven that θ̂ is
√
ns-

consistent. Then, we need to prove the asymptotic normality of θ̂. By applying
Taylor expansion for L̇(θ) on the point of the true parameter θ, we obtain

√
ns(θ̂ − θ) = {n−1

s L̈(θ∗)}−1{n−1/2
s L̇(θ)},
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where θ∗ is between θ and θ̂. We have proven that n−1
s L̈(θ∗) →p Σ2s inPART 1

– step 2. Next, we prove that n−1
s L̇(θ) →d N(0p2+pq,Σ1s). Equally, it suffices

to prove that, for any u = (u�
α, u

�
β )

� ∈ R
p2+pq, we have n

−1/2
s u�L̇(θ) →d

N(0p2+pq, u
�Σ1su), where uα = (uα,1, · · · , uα,p2)� ∈ R

p2

and uβ = (uβ,1, · · · ,
uβ,pq)

� ∈ R
pq. According to [46], we subsequently obtain

u�L̇(θ) = Ẽ�M1uẼ + Ẽ�M2u(X̃β) + Ẽ�M3u

(
X̃uβ

)
,

whereM1u = 2
∑p

j1,j2=1 uα,(j1−1)p+j2Mj1j2 ,M2u = 2
∑p

j1,j2=1 uα,(j1−1)p+j2H
∗�

(mGS̃�Sα
j1j2

S−1), M3u = −2H∗�mS̃�.
Thus, with condition (C4), for arbitrary βr ∈ R

pq and Rg ∈ R
nsp×nsp, it

can be verified that |n−1
s

(
X̃gβr

)�
Rg

(
X̃gβr

)
| ≤ n−1

s cβ tr(Rg). Similar to the

proof in Appendix A.2 and PART 1 – step 2, take the upper bound of each
linear and quadric term coefficients of Ẽ ; it can be verified that

n−2
s tr

(
|M1u|e |M1u|�e |M1u|e |M1u|�e

)
→ 0

n−1
s λ2

max

(
|M2u|e |M2u|�e

)
→ 0, n−1

s λ2
max

(
|M3u|e |M3u|�e

)
→ 0.

As a result, according to Lemma 4 in [46], as ns → ∞, we have n
−1/2
s L̇(θ) →d

N(0p2+pq,Σ1s). Finally, by combining PART 1 and PART 2, we complete the
proof.
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