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Abstract: The aim of this paper is to establish non-asymptotic minimax
rates for goodness-of-fit hypotheses testing in an heteroscedastic setting.
More precisely, we deal with sequences (Yj)j∈J of independent Gaussian
random variables, having mean (θj)j∈J and variance (σj )j∈J . The set J will
be either finite or countable. In particular, such a model covers the inverse
problem setting where few results in test theory have been obtained. The
rates of testing are obtained with respect to l2 norm, without assumption
on (σj)j∈J and on several functions spaces. Our point of view is entirely
non-asymptotic.
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1. Introduction

We consider the following heteroscedastic statistical model

Yj = θj + σjǫj , j ∈ J, (1.1)

where θ = (θj)j∈J is unknown, (σj)j∈J are assumed to be known, and the vari-
ables (ǫj)j∈J are i.i.d. standard normal variables. The set J is either {1, . . . , N}
for some N ∈ N

∗ (which corresponds to a Gaussian regression model) or N
∗

(which corresponds to the Gaussian sequence model). The sequence θ has to be
tested from the observations (Yj)j∈J in order to decide whether “θ = 0” or not.
The particular case σj = σ for all j ∈ J corresponds to the classical statistical
model where the variance of the observations is always the same. It has been
widely considered in the literature, both for test and estimation approaches. In
this paper, we consider a slightly different setting in the sense that the variance
of the sequence is allowed to depend on j.

We point out that the model (1.1) can describe inverse problems. Indeed, for
a linear operator T on an Hilbert space H with inner product (., .), consider an
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unknown function f indirectly observed in a Gaussian white noise model

Y (g) = (Tf, g) + σǫ(g), g ∈ H, (1.2)

where ǫ(g) is a centered Gaussian variable with variance ‖g‖2 := (g, g). If T
is assumed to be compact, it admits a singular value decomposition (SVD)
(bj , ψj , φj)j≥1 in the sense that

Tφj = bjψj , T ∗ψj = bjφj , j ∈ N
⋆,

with T ∗ the adjoint operator of T . Hence considering the observations Y (ψj),
model (1.2) becomes

Zj = bjθj + σǫj , j ∈ N
⋆, (1.3)

with ǫj = ǫ(ψj), (Tf, ψj) = bjθj and θj = (f, φj). This model is often considered
in the inverse problem literature, see eg [7]. Setting Yj = b−1

j Zj and σj = σb−1
j

for all j ∈ N
⋆, we obtain (1.1). Hence inference on observations from model

(1.1) provides the same results for inverse problems. We stress that if estimation
issues for inverse problem have been well studied over the past years (see for
instance [21], [7] or [19, 20] for a model selection approach). The first results
on signal detection over ellipsoids in the heterogeneous case are given in [10].
However note that tests for inverse problems have been mostly investigated only
for the very specific case of the convolution problem, see in [6] and references
therein or for image analysis in [5]. Hence in this paper we present a general
framework for signal detection with heterogeneous variance or equivalently for
inverse problems. We provide non asymptotic testing procedures that enable
us to assess optimality of testing procedures in this context as shown in [17].
Simultaneously to this work, minimax signal detection for inverse problems was
considered in [13].

For all θ ∈ l2(J), we set ‖θ‖2 =
∑

j∈J θ
2
j . The purpose of this paper is to

provide rates of testing for the hypothesis

H0 : θ = 0

against the alternative

Hρ : θ ∈ F , ‖θ‖ ≥ ρ.

More precisely, let us fix some level α ∈]0, 1[, and consider a level α test Φα

with values in {0, 1} in order to test the null hypothesis “θ = 0” (we reject
the null hypothesis when Φα = 1). Then, given β ∈]0, 1[, and a class of vectors
F ⊂ l2(J), we define the uniform separation rate ρ(Φα,F , β) of the test Φα over
the class F with respect to the l2 norm as the smallest radius ρ such that the
test guarantees a power greater that 1 − β for all alternatives θ ∈ F such that
‖θ‖ ≥ ρ. More formally

ρ(Φα,F , β) = inf

{

ρ > 0, inf
θ∈F ,‖θ‖≥ρ

Pθ(Φα = 1) > 1− β

}

.
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We define the (α, β) minimax rate of testing (also called in the non asymptotic
framework the minimax separation radius) over the class F by

ρ(F , α, β) = inf
Φα

ρ(Φα,F , β),

where the infimum is taken over all level α test Φα. The aim of the paper is to
determine this minimax rate of testing over various classes of alternatives F ,
for signal detection in Model (1.1) with respect to the l2 norm.

The main reference for computing minimax rates of testing over non para-
metric alternatives is the series of paper due to Ingster [12], where various sta-
tistical models and a wide range of sets of alternatives are considered. Lepski
and Spokoiny [18] obtained minimax rates of testing over Besov bodies Bs,p,q(R)
in the irregular case (when 0 < p < 2), see also [14]. Ermakov [11] determines a
family of asymptotic minimax procedures for testing that the signal belongs to
a parametric set against nonparametric sets of alternatives in the heteroscedas-
tic Gaussian white noise. In all these references, asymptotic minimax rates of
testing are established. In Model (1.1), with σj = σ for all j ∈ J , Baraud in [2]
considers a non asymptotic point of view, which means that the noise level σ
is not assumed to converge towards 0. This is the point of view that we adopt
in this paper. We describe how the minimax rates of testing depend on the se-
quence (σj)j∈J . The particular cases of interest correspond to polynomial and
exponentially increasing sequences, which in the case of Model (1.3) leads to
the so-called mildly and severely ill-posed inverse problems. When allowing the
noise level to decrease towards zero, we recover asymptotic rates of testing. Note
that we do not aim at providing adaptive minimax rates, which will be the core
of a future work.

The paper is organized as follows. In Section 2, we provide lower bounds for
the minimax separation rate over classes of vectors θ with a finite number of
non-zero coefficients, which yet covers sparse signals. In Section 3, we determine
upper bounds for those minimax rates. In Section 4 and 5, we compute mini-
max rates of testing over ellipsoids and lp balls. Some conclusions are drawn in
Section 6. The proofs are gathered in Sections 6 and 7.

To end this introduction, let us define some notations. Assume that Y =
(Yj)j∈J obeys to Model (1.1). We denote by θ the vector (or sequence) (θj)j∈J

and by Pθ the distribution of Y . All along the paper, we consider the test of null
hypothesis “θ = 0”. Let α ∈]0, 1[ be some prescribed level. A test function Φα

is a measurable function of the observation Y , with values in {0, 1}. The null
hypothesis is accepted if Φα = 0 and rejected if Φα = 1. Finally, for all x ∈ R,
we denote by ⌊x⌋ the greater integer smaller than x and we set ⌈x⌉ = ⌊x⌋+ 1.

2. Non asymptotic lower bounds

The bounds will be established for two classes of signals characterized by their
non zeros coefficients. The first one deals with the elementary case where the
coefficients are equal to zero after a certain rank. The second one concerns the so-



94 B. Laurent et al.

called sparse signals which are defined by the amount of non zeroes coefficients
which can be located at different scales.

In this section, we generalize the results obtained in [2] in an homoscedastic
model to the heteroscedastic Model (1.1).

We first give a lower bound for the minimax separation radius over the set
SD, defined for all D ≥ 1 by

SD = {θ ∈ l2(J), ∀j > D, θj = 0} .

When J = {1, . . . , N}, we assume that D ≤ N .

Proposition 1. Assume that Y = (Yj)j∈J obeys to Model (1.1). Let β ∈]0, 1−
α[, c(α, β) = (2 ln(1 + 4(1− α− β)2))1/4 and

ρD =





D
∑

j=1

σ4
j





1/4

.

The following result holds:

∀ρ ≤ c(α, β)ρD , inf
Φα

sup
θ∈SD,‖θ‖=ρ

Pθ(Φα = 0) ≥ β.

This implies that the minimax separation radius over SD with respect to the l2
norm satisfies

ρ(SD, α, β) ≥ c(α, β)ρD.

This proposition can be understood as follows: whatever the α-level test
chosen, for all ρ ≤ c(α, β)ρD , there exists a signal θ ∈ SD with norm ρ, such that
the error of the second kind is greater than β. The result obtained in Proposition
1 coincides with the lower bound established in [2] in the homoscedastic model
(σj = σ ∀j ∈ J).

Let us now consider the problem of sparse signal detection. Let k, n ∈ N
∗

with k ≤ n. When J = {1, . . . , N}, we assume that n ≤ N . We want to obtain
lower bounds for the minimax separation radius over the set Sk,n defined by

Sk,n = {θ ∈ l2(J), ∀j > n, θj = 0, Card {j ≤ n, θj 6= 0} ≤ k} . (2.1)

Theorem 1. Assume that Y = (Yj)j∈J obeys to Model (1.1). Let σ(1) ≤ σ(2) ≤
· · · ≤ σ(n), we define for all l ∈ {0, . . . , n− k},

Σ2
l,k =

l+k
∑

j=l+1

σ2
(j). (2.2)

Let β ∈]0, 1− α[, such that α+ β ≤ 0.59 and

ρk,n =






max

0≤l≤n−k
Σl,k ln

1/2

(

1 +
n− l

k2
∨
√

n− l

k2

)

∨





n
∑

j=n−k+1

σ4
(j)





1/4





.

(2.3)
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The following result holds

inf
Φα

sup
θ∈Sk,n,‖θ‖≥ρk,n

Pθ(Φα = 0) ≥ β.

This implies that the minimax separation radius over Sk,n with respect to the l2
norm satisfies

ρ(Sk,n, α, β) ≥ ρk,n.

Comments: Let us consider three cases governing the behaviour of the se-
quence (σj)j∈J .

1. In the homoscedastic case, σj = σ for all j ∈ J . In this case, Σ2
l,k = σ2k

for all l and, taking l = 0, we obtain that

ρ2k,n ≥ σ2k ln

(

1 +
n

k2
∨
√

n

k2

)

,

which corresponds to the lower bound established in [2].
2. When k ≤ n/2 and Σ2

⌊n/2⌋,k ≥ CΣ2
n−k,k for some absolute constant C

(independent of k and n), we obtain that

ρ2k,n ≥






CΣ2

n−k,k ln

(

1 +
n

2k2
∨
√

n

2k2

)

∨





n
∑

j=n−k+1

σ4
(j)





1/2





. (2.4)

At the price of a factor 2 in the logarithm (n is replaced by n/2), the
variance term appearing in the lower bound for ρ2k,n is Σ2

n−k,k which
corresponds to the largest possible variance for a set of cardinality k in
{1, . . . , n}, indeed

Σ2
n−k,k = max

m∈Mk,n

∑

j∈m

σ2
j ,

where Mk,n denotes the set of all subsets of {1, . . . , n} with cardinality k.
This situation occurs for example when (σj)j∈J grows at a polynomial
rate, σj = σjγ for some σ > 0 and γ > 0. Actually this corresponds to a
mildly ill-posed inverse problem. In this case,

Σ2
n−k,k ≤ kσ2n2γ , Σ2

n/2,k ≥ kσ2σ2
(n

2

)2γ

≥ 1

22γ
Σ2

n−k,k.

3. When (σj)j∈J grows at an exponential rate: σj = σ exp(γj) for some σ > 0
and γ > 0, we obtain that ρ2k,n ≥ σ2

(n), providing a bound for the severely
ill-posed inverse problems.

3. Non asymptotic upper bounds

In this section, we construct upper bounds for the (α, β) minimax separation ra-
dius over the sets SD and Sk,n that we compare with the lower bounds obtained
in the previous section.
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In order to show that the (α, β) minimax separation radius with respect to
the l2 norm over a set F is bounded from above by ρ, it suffices to define a
test statistic Φα such that the power of the test at each point θ in F satisfying
‖θ‖ ≥ ρ is greater than 1− β.

Proposition 2. Assume that Y = (Yj)j∈J obeys to Model (1.1). Let α, β ∈]0, 1[,
and let tD,1−α(σ) denote the 1− α quantile of

∑D
j=1 σ

2
j ǫ

2
j :

P





D
∑

j=1

σ2
j ǫ

2
j ≥ tD,1−α(σ)



 = α.

Let ΦD,α be the level-α test defined by

ΦD,α = 1∑D
j=1

Y 2
j >tD,1−α(σ). (3.1)

We define xα = ln(α−1), xβ = ln(β−1)

C(α, β) =
√

2xβ +
√

2(xα + xβ) +
√
2(
√
xα +

√
xβ)

1/2 (3.2)

and ρD = (
∑D

j=1 σ
4
j )

1/4.
For all θ ∈ SD such that ‖θ‖ ≥ C(α, β)ρD we have Pθ(ΦD,α = 1) > 1 − β.

Hence, we obtain that
ρ(SD, α, β) ≤ C(α, β)ρD .

We deduce from Propositions 1 and 2 that

c(α, β)ρD ≤ ρ(SD, α, β) ≤ C(α, β)ρD .

Hence the upper and lower bounds coincide up to multiplicative constants. By
simple computations we can notice that the ratio of these two constants is
bounded by 10 for admissible values of α and β. Note that the computation of
optimal constants remains an open problem.

Let us now propose a testing procedure for sparse signal detection. This
procedure will be defined by a combination of two tests. The first one is based
on a thresholding method, which was already used for detection of irregular
alternatives in [3] and in [9]. The second one is the test (3.1) with D = n. More
precisely, for all α ∈]0, 1[, let tn,1−α(σ) denotes the 1−α quantile of

∑n
j=1 σ

2
j ǫ

2
j .

Let Φ
(1)
α be the test defined by

Φ(1)
α = 1∑n

j=1
Y 2
j >tn,1−α(σ).

Let qn,1−α denote the 1 − α quantile of max1≤j≤n ǫ
2
j and Φ

(2)
α the test defined

by
Φ(2)

α = 1
max1≤j≤n

(

Y 2
j

σ2
j

)

>qn,1−α

.

Then define the level-α test

Φα = max
(

Φ
(1)
α/2,Φ

(2)
α/2

)

. (3.3)
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Theorem 2. Assume that Y = (Yj)j∈J obeys to Model (1.1). Let α, β ∈]0, 1[
and Φα defined in (3.3). Let C(α, β) be defined by (3.2), If α ≤ 1/e and n ≥ 3,
for all θ ∈ Sk,n satisfying

‖θ‖2 ≥ 4C2(α, β)











n
∑

j=1

σ4
j





1/2

∧
∑

j,θj 6=0

σ2
j ln(n)






, (3.4)

we have
Pθ(Φα = 1) > 1− β.

Hence, we obtain that for all k ∈ {1, . . . , n},

ρ2(Sk,n, α, β) ≤ 4C2(α, β)











n
∑

j=1

σ4
j





1/2

∧ Σ2
n−k,k ln(n)






, (3.5)

where Σl,k has been defined in (2.2).

Comments: Let us compare these results with the lower bounds obtained
in Theorem 1. For the sake of simplicity, we do not compute explicit constants
until the end of this section.

1. We first assume that (σj)j∈J grows at a polynomial rate: ∀j ∈ J , σj = σjγ

for some γ ≥ 0 (this includes the homoscedastic case). In this case, when
k ≤ n/2 there exists a constant C > 0 such that Σ2

⌊n/2⌋,k ≥ CΣ2
n−k,k.

A lower bound for the (α, β) minimax separation rate of signal detection
over Sk,n is given by (2.4). This lower bound has to be compared with the
upper bound (3.5).

(a) When k = nl with l < 1/2, the upper and lower bounds coincide and
are of order Σ2

n−k,k ln(n).

(b) When k = nl with l ≥ 1/2, the lower bound is of order Σ2
n−k,k

√
n/k

and Σ2
n−k,k ≥ Ckσ2n2γ , which leads to a lower bound of order

Cσ2n2γ+1/2. The upper bound is smaller that (
∑n

j=1 σ
4
j )

1/2, which

is smaller than σ2n2γ+1/2. Hence, the two bounds coincide.

(c) When k =
√
n/φ(n) where φ(n) → +∞ and φ(n)/n→ 0 as n→ +∞

(typically φ(n) = ln(n)), the lower bound is of order Σ2
n−k,k ln(φ(n))

and the upper bound is of order Σ2
n−k,k ln(n).

In this case, the upper and lower bound are of same order up to
a logarithmic term. This gap is also observed in the homoscedastic
model (see [2]) and remains, up to our knowledge, an open problem.

2. Let us now assume that (σj)j∈J grows at an exponential rate: ∀j ∈ J ,
σj = σ exp(γj) for some γ > 0. The lower bound is greater than σ2

n =
σ2 exp(2γn) and the upper bound is smaller that 4C2(α, β)(

∑n
j=1 σ

4
j )

1/2,

which is bounded from above by C(α, β, γ)σ2 exp(2γn). Hence the two
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bounds coincide. Note that in this case, the test Φ
(2)
α based on thresholding

is useless and one can simply consider that the test

Φα = Φ(1)
α ,

which achieves the lower bound for the separation rate.
3. The result stated in (3.4) is more precise than the minimax upper bound

given in (3.5). If the set J1 = {j, θj 6= 0} corresponds to small values for
the variances (σj)j∈J1

, it is not required that ‖θ‖2 is greater than the
right hand term in (3.5) for the test to be powerful for this value of θ.
The minimax bound given in (3.5) corresponds to the worst situation,
that is the case where the set J1 corresponds to the largest values for the
variances.

Hence, we have provided, for the specific problem of signal detection for inverse
problems, minimax separation radius for the both mildly and severely ill-posed
problems except for the particular case of mildly inverse problems with a number
of non zero coefficients of order

√
n/φ(n) specified in 1. (c).

4. Minimax rates over ellipsoids

In the previous sections, the only constraint on the signal was expressed through
the number of non-zero coefficients. In several situations, one deals instead with
infinite sequences having a finite number of significant coefficients, the reminder
being considered as negligible (in a sense to be made precise later on). To this
end, we consider in this section a slightly different framework. Our aim is to
study the link between the decay of the θk’s and the associated rate of testing.
We consider in the following two different kinds of function spaces: ellipsoids
and lp-bodies.

4.1. Non asymptotic minimax separation radius over ellipsoids

In the following, we assume that the sequence θ = (θj)j∈J belongs to the ellipsoid
Ea,2(R) defined as

Ea,2(R) =
{

ν ∈ l2(J),
∑

j∈J

a2jν
2
j ≤ R2

}

,

where a = (ak)k∈J denotes a monotone non-decreasing sequence. For instance,
if θ corresponds to the sequence of Fourier coefficients of a function f and aj
is of order js with s > 0, then assuming that θ ∈ Ea,2(R) is equivalent to
impose conditions on the s-th derivative of f and thus can be considered as
a regularity assumption on our signal. The following result characterizes the
minimax separation radius over Ea,2(R).
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Proposition 3. Let α, β be fixed and denote by ρ(Ea,2(R), α, β) the minimax
separation radius over Ea,2(R) with respect to the l2 norm. Then

ρ2(Ea,2(R), α, β) ≥ sup
D∈J

(c2(α, β)ρ2D ∧R2a−2
D ),

where ρD and c(α, β) have been introduced in Proposition 1. Moreover, for all
D ∈ J ,

sup
θ∈Ea,2(R),‖θ‖2≥C2(α,β)ρ2

D+R2a−2

D

Pθ(ΦD,α = 0) ≤ β,

where ΦD,α and C(α, β) are respectively defined by (3.1) and (3.2). Hence,

ρ2(Ea,2(R), α, β) ≤ inf
D∈J

(C2(α, β)ρ2D +R2a−2
D ).

Proposition 3 presents both an upper and a lower bound for the minimax
separation radius over Ea,2(R). Remark that the upper bound is attained by
the test Φα introduced in Proposition 2 where only signals with a finite number
of non-zero coefficients were considered. We point out that we do not use the
whole sequence (Yj)j∈J in order to test the null hypothesis “θ = 0” but only
the first D coefficients. The price to pay is to introduce some bias in the test-
ing procedure. However this bias can be controlled by taking advantage of the
constraint expressed on the decay of θ.

4.2. Asymptotic minimax rates of testing for inverse problems

The aim of this discussion is to show that our approach can lead to important
minimax results. Some of these rates have already been presented in the litera-
ture. Indeed, a good characterization of ρ(Ea,2(R), α, β) can be obtained as soon
as the lower and upper bounds in Proposition 3 are of the same order. As many
statistical problems encountered in the literature, one has to find a trade-off
between the bias R2a−2

D and ρ2D, which corresponds up to some constant to the

standard deviation of
∑D

j=1 Y
2
j under the null hypothesis. This trade-off can

be performed in several situations, when introducing specific constraints on the
sequences (ak)k∈J and (bk)k∈J , hence leading to explicit rates of convergence as
shown below.

Let α, β be fixed. We assume that J = N
⋆ and (Zj)j∈J obeys to Model (1.3).

For a sequence of real numbers (νk)k∈N⋆ , we write νk ≍ kl if there exist positive
constants c1 and c2 such that, for all k ∈ N

⋆, c1k
l ≤ νk ≤ c2k

l.
The Table 1 below presents the minimax rates of testing over the ellipsoids

Ea,2(R) with respect to the l2 norm. We consider various behaviours for the
sequences (ak)k∈N⋆ and (bk)k∈N⋆ . For each case, we give f(σ) such that for all
1 > σ > 0, C1(α, β)f(σ) ≤ ρ2(Ea,2(R), α, β) ≤ C2(α, β)f(σ) where C1(α, β) and
C2(α, β) denote positive constants independent of σ.

In the following table, s, t, ν, γ and r denote positive constants.
Here D̃ denotes the integer part of the solution of ρ2D = R2a−2

D .
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Table 1

Asymptotic minimax rates of testing on ellipsoids

Mildly ill-posed Severely ill-posed

bk ≍ k−t bk ≍ exp(−γkr)

ak ≍ ks σ
4s

2s+2t+1/2
(

log(σ−2)
)

−2s/r

ak ≍ exp(νks) σ2
(

log(σ−2)
)(2t+1/2)/s

e−2νD̃s
(s ≤ 1)

We point out that similar rates are also available in [6] in the context of good-
ness of fit testing in density model with errors in the variables. In the Gaussian
white noise model tackled in this paper, some of these rates have been presented
in other work. Indeed, the case ak ∼ ks and bk ∼ k−t was first studied in [10]
and [15]. Concerning severely ill-posed problems with supersmooth functions
(i.e. bk ∼ exp(−γkr) and ak ∼ exp(νks)), we do not handle the general case
since we assume that s ≤ 1. When this assumption is violated, the upper and
lower bounds in Proposition 3 do not coincide: our test does not attain the min-
imax rate of testing. This is certainly due to our approach, which in some sense
is related to a rough regularization scheme.

We pinpoint that simultaneously to this work minimax rates of testing for
inverse problems were obtained in [13] providing a complementary analysis to
this important issue. Actually, they provide asymptotic results which can be
compared to the ones presented in Table 1. They restricted themselves to the
case r = s = 1. In the specific case ak ≍ exp(νk) and bk ≍ exp(−γk), they
obtain an explicit rate with respect to σ while our result depends on D̃. For the
other cases the rates are the same. Yet our study is more complete since we deal
with all the values of r and s.

The whole algebra leading from Proposition 3 to the rates presented in Table
1 can be found in Section 7.3.2.

5. Minimax rates of testing for inverse problems over lp-bodies

Ellipsoids can be related to classes of smooth functions. In the particular case
where θ corresponds to the Fourier coefficients of a given function f , the con-
straints expressed through the belonging to one of the spaces introduced above
may be incompatible with the presence of discontinuities. In order to extend the
covered cases, we consider in this subsection sequences θ belonging to lp-bodies
Ea,p(R) defined as

Ea,p(R) =
{

ν ∈ l2(J),
∑

j∈J

apjν
p
j ≤ Rp

}

,

where a = (ak)k∈J denotes a monotone non-decreasing sequence and 0 < p < 2.

5.1. Non asymptotic lower bounds

Let (Zj)j∈J obey to the model

Zj = bjθj + σǫj , j ∈ J.
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From now to the end of this section, we assume that the sequence (bj)j∈J is
polynomially or exponentially decreasing, which yet correspond to the main
cases of interest in inverse problems. The lower bounds are given in the following
theorem.

Theorem 3. Assuming that for all j ∈ J , bj = j−γ for some γ ≥ 0, we obtain

ρ2(Ea,p(R), α, β) ≥
1

21+2γ
sup
D∈J

[√
D

1−2/p
R2a−2

D ∧ ρ̃2D
]

where

ρ̃2D = σ2D1/2+2γ ln

(

1 +

√

(

1

2
− 1

D

)

∨ 0

)

.

Assuming that for all j ∈ J , bj = exp(−γj) for some γ > 0, we obtain

ρ2(Ea,p(R), α, β) ≥ sup
D∈J

[√
D

1−2/p
R2a−2

D ∧ σ2 exp(2γD)

]

.

5.2. Non asymptotic upper bounds

In order to attain the lower bound presented above, a test similar to the one
introduced in Proposition 2 is not sufficient. On lp-bodies, the bias after a given
rank D is indeed more difficult to control than for ellipsoids. Some significant
coefficients (in a sense which will be made precise in the proof) may be contained
in the sequence θ after the rank D. Hence, we have to introduce specific tests
in order to detect these coefficients. We first define

D† = inf

{

D ∈ J,R2a−2
D

√
D

1−2/p ≤ σ2D1/2+2γ ln

(

1 +

√

(

1

2
− 1

D

)

∨ 0

)}

,

(5.1)
if the problem is mildly ill-posed and

D† = inf

{

D ∈ J,R2a−2
D

√
D

1−2/p ≤ σ2 exp(2γD)

}

. (5.2)

if the problem is severely ill-posed. By convention, D† = N if the set in (5.1)
(or in (5.2)) is empty.

For all j ∈ J and α ∈]0, 1[, we introduce

Φ{j},α = 1{|Yj |≥zj,α},

where zj,α denotes the 1 − α/2 quantile of a Gaussian random variable with
mean 0 and variance σ2

j . We now define the test

Φloc,α/2 =

{

supj∈{D†+1,...N} Φ{j},α/2(N−D†) if D
† < N,

0 if D† = N.
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The final test that we consider is a combination of these two procedures:

Φ†
α = Φloc,α/2 ∨ ΦD†,α/2,

where the testing procedure ΦD†,α/2 is defined by (3.1).

The following proposition emphasizes the performances of the test Φ†
α. The

constants C1,p and C2,p given below are explicitly computable. An interested
reader can find the value of C1,p at the end of the proof of Proposition 4.

Proposition 4. Let α, β ∈]0, 1[. We assume that (a−p
j b

−(2−p)
j )j∈N∗ is a mono-

tone non-increasing sequence. One observes

Zj = bjθj + σǫj , j ∈ J = {1, . . . , N}.

The following result holds

sup
θ∈Ea,p(R),‖θ‖2≥νNρ2(Ea,p(R),α,β)

Pθ(Φ
†
α = 0) ≤ β,

with

• νN = C1,p log
1−p/2(N) when bk = k−γ for all k ∈ J (mildly ill-posed

inverse problems).

• νN = C2,p log
1−p/2(N)

√
D†1−p/2

when bk = e−γk for all k ∈ J (severely
ill-posed inverse problems),

where C1,p, C2,p denote positive constants independent of σ.

Remark that the test Φ†
α reaches the lower bound established in Corollary 3

up to some logarithmic term. Hence, the lower and upper bounds presented
respectively in Theorem 3 and Proposition 4 do not coincide. This drawback is
not characteristic of the heteroscedastic model since a similar property occurs
in the homoscedastic case (γ = 0): see [2] for more details. In this particular
homoscedastic setting, the lower bound of Theorem 3 is known to be sharp
according to the results on Besov spaces in [22]. We do not know if a simi-
lar property occurs in the heteroscedastic model. This a difficult problem that
should be addressed in a separate paper.

For the sake of convenience, the upper bound is only presented for J =
{1, . . . , N} which, roughly speaking, corresponds to the regression setting. Nev-
ertheless, our result can be easily extended to the case where J = N

⋆. In such
a situation, our test will be performed on {1, . . . , Ñ}, where Ñ is a trade-off
between the bias after the rank Ñ on Ea,p(R) and the growth of log(N). A good

candidate for Ñ is a power of σ−2.
In order to conclude this discussion, we point out that we impose a condition

on the sequence (a−p
j b

−(2−p)
j )j∈N. This condition is necessary in order to control

the bias after the rank D†. It always holds when p = 2 since (aj)j∈N is an
increasing sequence. When p < 2, the considered function has to be sufficiently
smooth with respect to the ill-posedness of the problem. A similar condition can
be found for instance in [8].
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5.3. Asymptotic minimax rates for inverse problems

The non asymptotic study of minimax rate of testing is at the core of the
present paper. Nevertheless, in some particular settings, we can obtain asymp-
totic results. For instance, we have presented in Section 4.2 some cases where
our results lead to explicit rates on ellipsoids, hence recovering some existing
properties. Such a discussion is possible on lp bodies, although, up to our knowl-
edge, explicit asymptotic minimax rates of testing in an inverse problem setting
have never been obtained.

Here, we deal with mildly ill-posed problems with polynomial lp-bodies, i.e.
(ak)k∈N ∼ (ks)k∈N for some s > 0.

Corollary 1. Assume that ak ∼ ks and bk ∼ k−γ for all k ∈ N
∗ where s, γ

denote positive constants such that s > γ(2/p− 1). Then

C2 log
1−p/2(N)σ

4s+2/p−1

2s+2γ+1/p ≥ ρ2(Ea,p(R), α, β) ≥ C1σ
4s+2/p−1

2s+2γ+1/p ,

where C1, C2 denote positive constant independent of σ.

Remark that the sequence (a−p
j b

−(2−p)
j )j∈N∗ is monotone non-increasing as

soon as s > γ(2/p− 1). Hence the conditions of Proposition 4 are satisfied. The
proof follows the same argument as on ellipsoids and will therefore be omitted.

6. Conclusion

We first highlight the fact that our procedures are non asymptotic. For practical
purposes, it is of high importance to control the level of a test whatever the
noise level. By the same way, we are able to characterize a set over which the
power of the test is guaranteed. Moreover, we are able to deal with the cases of
signals characterized only by their sparsity without an additional smoothness
constraint. Actually, we point out that to achieve these goals we build in this
paper precise deviation inequalities for statistics with heterogeneous variance
which generalize the one established for non centered χ2 variables in [4], which
provides an interesting concentration result.

We do not consider adaptation in this paper. However, by introducing multi-
ple testing procedures in the spirit of [3], we could easily provide non asymptotic
adaptive testing procedures in the framework of this paper.

The issue of signal detection for inverse problems has been paid much atten-
tion over the last years. A complementary study in [13], focuses on an asymptotic
point of view on this problem. In very particular, rates of testing as well as their
adaptive version are provided.

Finally, we point out that the results presented in this paper, enabled us
to assess optimality of testing strategies for inverse problem, as stated in [17].
Actually, we were able to decide whether tests for inverse problems should be
performed or if direct inference on the observations could be sufficient or even
lead to better results.
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7. Proofs

7.1. Proof of the lower bounds

The proofs of the lower bounds use a Bayesian approach extending the methods
developed in the papers by Ingster [12] and by Baraud [2]. We use the following
lemma:

Lemma 1. Let F be some subset of l2(J). Let µρ be some probability measure
on

Fρ = {θ ∈ F , ‖θ‖ ≥ ρ}

and let

Pµρ =

∫

Pθdµρ(θ).

Assuming that Pµρ is absolutely continuous with respect to P0, we define

Lµρ(y) =
dPµρ

dP0
(y).

For all α > 0, β ∈]0, 1− α[, if

E0

(

L2
µρ∗

(Y )
)

≤ 1 + 4(1− α− β)2,

then

∀ρ ≤ ρ∗, inf
Φα

sup
θ∈Fρ

Pθ(Φα = 0) ≥ β.

This implies that

ρ(F , α, β) ≥ ρ∗.

For the proof of this lemma, we refer to [2], Section 7.1.

7.1.1. Proof of Proposition 1

Let ρ > 0, we set for 1 ≤ j ≤ D,

θj = ωjσ
2
j ρ





D
∑

j=1

σ4
j





−1/2

where (ωj , 1 ≤ j ≤ D) are i.i.d. Rademacher random variables: P(ωj = 1) =
P(ωj = −1) = 1/2. Let µρ be the distribution of (θ1, . . . , θD). µρ is a probability
measure on

{θ ∈ SD, ‖θ‖ = ρ} .
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Let us now evaluate the likelihood ratio Lµρ(Y ) =
dPµρ

dP0
(Y ).

Lµρ(Y ) = Eω






exp






−1

2

D
∑

j=1

1

σ2
j



Yj −
σ2
jωjρ

√

∑D
j=1 σ

4
j





2





exp





1

2

D
∑

j=1

Y 2
j

σ2
j











= exp

(

−ρ
2

2

∑D
j=1 σ

2
j

∑D
j=1 σ

4
j

)

D
∏

j=1

cosh





ρYj
√

∑D
j=1 σ

4
j



 .

Let Z be some standard normal variable. For all λ ∈ R,

E(cosh2(λZ)) = exp(λ2) cosh(λ2). (7.1)

Hence, since Yj/σj ∼ N (0, 1),

E0

(

L2
µρ
(Y )

)

=
D
∏

j=1

cosh

(

ρ2σ2
j

∑D
j=1 σ

4
j

)

.

Since for all x ∈ R, cosh(x) ≤ exp(x2/2), we obtain

E0

(

L2
µρ
(Y )

)

≤ exp

(

ρ4

2
∑D

j=1 σ
4
j

)

.

For ρ = c(α, β)ρD we obtain:

E0

(

L2
µρ
(Y )

)

≤ 1 + 4(1− α− β)2,

which implies that ρ(SD, α, β) ≥ c(α, β)ρD by Lemma 1.

7.1.2. Proof of Theorem 1

Without loss of generality, we can assume that the sequence (σj)j∈J is non de-
creasing (if this is not the case, we can reorder the observations Yj). We fix some
l ∈ {0, 1, . . . , n − k}. Let Mk,l,n denote the set of all subsets of {l+ 1, . . . , n}
with cardinality k. Let m̂ be a random set of {l+ 1, . . . , n}, which is uniformly
distributed onMk,l,n. This means that for allm ∈ Mk,l,n, P(m̂ = m) = 1/Ck

n−l.
Let (ωj , 1 ≤ j ≤ n) be i.i.d. Rademacher random variables, independent of m̂.
Let us recall that

Σ2
l,k =

l+k
∑

j=l+1

σ2
j .

We set

θj = (ρωjσj/Σl,k)1j∈m̂ (7.2)
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Note that θ = (θj)j∈J ∈ Sk,n and that, since (σj)j∈J is non decreasing,

‖θ‖2 = ρ2
∑

j∈m̂ σ2
j

Σ2
l,k

≥ ρ2.

Lµρ(Y ) = Em̂,ω



exp



−1

2

∑

j∈J

1

σ2
j

(Yj − θj)
2



 exp



−1

2

∑

j∈J

Y 2
j

σ2
j









= Em̂,ω



exp





∑

j∈m̂

Yjθj
σ2
j



 exp



−1

2

∑

j∈m̂

θ2j
σ2
j







 .

= Em̂,ω



exp





∑

j∈m̂

Yjωjρ

σjΣl,k



 exp

(

− kρ2

2Σ2
l,k

)



 .

Lµρ(Y ) =
1

Ck
n−l

∑

m∈Mk,l,n

Eω



exp





∑

j∈m

Yjωjρ

σjΣl,k



 exp

(

− kρ2

2Σ2
l,k

)





= exp

(

− kρ2

2Σ2
l,k

)

1

Ck
n−l

∑

m∈Mk,l,n

∏

j∈m

cosh

(

ρYj
σjΣl,k

)

.

We use (7.1) together with E(cosh(λZ)) = exp(λ2/2) for a standard Gaussian
variable Z. Since Yj/σj is a standard normal variable, we obtain that

E0

(

L2
µρ
(Y )
)

= exp

(

− kρ2

Σ2
l,k

)

1

(Ck
n−l)

2

∑

m,m′∈Mk,l,n

∏

j∈m\m′

exp

(

ρ2

2Σ2
l,k

)

×
∏

j∈m′\m
exp

(

ρ2

2Σ2
l,k

)

∏

j∈m∩m′

exp

(

ρ2

Σ2
l,k

)

cosh

(

ρ2

Σ2
l,k

)

.

Since, for all m,m′ ∈ Mk,l,n,

|m\m′|+ |m′\m|+ 2|m ∩m′| = |m|+ |m′| = 2k,

we obtain

E0

(

L2
µρ
(Y )
)

=
1

(Ck
n−l)

2

∑

m,m′∈Mk,l,n

(

cosh

(

ρ2

Σ2
l,k

))|m∩m′|

.

The end of the proof is similar to the proof of Theorem 1 in [2], similar arguments
are also given in [9]. Let us recall these arguments.

E0

(

L2
µρ
(Y )
)

= E

[

exp

(

|m̂ ∩ m̂′| ln cosh
(

ρ2

Σ2
l,k

))]

,
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where m̂, m̂′ are independent random subsets with uniform distribution on
Mk,l,n. For fixed m̂, |m̂ ∩ m̂′| is an hypergeometric variable with parameters
(n− l, k, k/(n− l)). This leads to

E0

(

L2
µρ
(Y )

)

= E [exp(H ln(s))] , where s = cosh

(

ρ2

Σ2
l,k

)

and H is an hypergeometric variable with parameters (n− l, k, k/(n− l)). The
variable H can be decomposed into a sum of dependent Bernoulli variables:
H = H1 + · · ·+Hk. Hence, we obtain

E [exp(H ln(s))] = E





k
∏

j=1

(1 + (s− 1)Hj)



 .

For all j ∈ {1, . . . , k}, the distribution of (Hk1
, . . . , Hkj ) is independent of

{k1, . . . kj} and coincides with the distribution of (H1, . . . , Hj). Note that

E(H1 . . . Hj) = P(H1 = 1, . . . , Hj = 1) =
k(k − 1) . . . (k − j + 1)

(n− l)(n− l − 1) . . . (n− l − j + 1)

≤
(

k

n− l

)j

.

This implies that

E





k
∏

j=1

(1 + (s− 1)Hj)



 ≤
k
∑

j=0

Cj
k

(

(s− 1)k

n− l

)j

=

(

1 +
(s− 1)k

n− l

)k

.

Hence,

E0

(

L2
µρ
(Y )
)

≤ exp

[

k ln

(

1 +
k

n− l

(

cosh

(

ρ2

Σ2
l,k

)

− 1

))]

.

Let c = 1 + 4(1 − α − β)2, and A = n−l
k2 ln(c). Since the function cosh is

increasing on R
+, we obtain that if

ρ2

Σ2
l,k

≤ ln
(

1 +A+
√

2A+A2
)

,

then

cosh

(

ρ2

Σ2
l,k

)

− 1 ≤ 1

2

(

A+
√

2A+A2 − 1
)

+
1

2

(

A+
√

2A+A2 + 1
)−1

.

The right hand side of the above inequality equals A. We finally obtain that

E0

(

L2
µρ
(Y )
)

≤ exp

[

k ln

(

1 +
k

n− l
A

)]

≤ c.
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By Lemma 1, this implies that

ρ2(Sk,n, α, β) ≥ Σ2
l,k ln

(

1 +A+
√

2A+A2
)

≥ Σ2
l,k ln

(

1 + 2A ∨
√
2A
)

.

If α+ β ≤ 0.59, ln(c) ≥ 1/2, which implies that

ρ2(Sk,n, α, β) ≥ Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

.

Since this result holds for all l ∈ {0, n− k}, we get

ρ2(Sk,n, α, β) ≥ max
0≤l≤n−k

Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

.

In order to prove that

ρ2(Sk,n, α, β) ≥





n
∑

j=n−k+1

σ4
j





1/2

,

we define, as in the proof of Proposition 1,

θj = ωjσ
2
jρ
(

∑n
j=n−k+1 σ

4
j

)−1/2

∀j ∈ {n− k + 1, . . . , n},
= 0 ∀j /∈ {n− k + 1, . . . , n},

where (ωj , n − k + 1 ≤ j ≤ n) are i.i.d. Rademacher random variables. Note
that (θj)j∈J ∈ Sk,n and that ‖θ‖2 = ρ2. We now conclude as in the proof of

Proposition 1, using that c(α, β) = (2 ln(c))
1/4 ≥ 1 if α+ β ≤ 0.59.

7.2. Proof of the upper bounds

7.2.1. Proof of Proposition 2

In order to prove Proposition 2, we have to show that for all θ ∈ SD such that
‖θ‖ ≥ C(α, β)ρD ,

Pθ





D
∑

j=1

Y 2
j ≤ tD,1−α(σ)



 < β. (7.3)

We denote by tD,β(θ, σ) the β quantile of
∑D

j=1 Y
2
j , when Y = (Yj)j∈J obeys

to Model (1.1). In order to prove (7.3), it suffices to show that

tD,1−α(σ) < tD,β(θ, σ).

To prove this inequality, we will first give an upper bound for tD,1−α(σ) and
then a lower bound for tD,β(θ, σ).
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Upper bound for tD,1−α(σ):
We use an exponential inequality for chi-square distributions due in [16] (see
Lemma 1). It follows from this inequality that for all x ≥ 0,

P







D
∑

j=1

σ2
j (ǫ

2
j − 1) ≥ 2

√
x





D
∑

j=1

σ4
j





1/2

+ 2x sup
1≤j≤D

(σ2
j )






≤ exp(−x).

Setting xα = ln(1/α), we obtain that

tD,1−α(σ) ≤
D
∑

j=1

σ2
j + 2

√
xα





D
∑

j=1

σ4
j





1/2

+ 2xα sup
1≤j≤D

(σ2
j ).

Since sup1≤j≤D σ2
j ≤

(

∑D
j=1 σ

4
j

)1/2

,

tD,1−α(σ) ≤
D
∑

j=1

σ2
j + C(α)





D
∑

j=1

σ4
j





1/2

. (7.4)

Lower bound for tD,β(θ, σ):
We prove the following lemma, which generalizes the results obtained in [4] to
the heteroscedastic framework:

Lemma 2. Let
Yj = θj + σjǫj , 1 ≤ j ≤ D,

where ǫ1, . . . ǫD are i.i.d. Gaussian variables with mean 0 and variance 1.
We define T̂ =

∑D
j=1 Y

2
j and

Σ =

D
∑

j=1

σ4
j + 2

D
∑

j=1

σ2
j θ

2
j .

The following inequalities hold for all x ≥ 0:

P

(

T̂ − E(T̂ ) ≥ 2
√
Σx+ 2 sup

1≤j≤D
(σ2

j )x

)

≤ exp(−x). (7.5)

P

(

T̂ − E(T̂ ) ≤ −2
√
Σx
)

≤ exp(−x). (7.6)

The proof of this lemma is given in the Appendix.
Inequality (7.6) provides a lower bound for tD,β(θ, σ). Indeed, setting xβ =

log(1/β), we obtain that

P

(

T̂ − E(T̂ ) ≤ −2
√

Σxβ

)

≤ β.
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Hence, tD,β(θ, σ) ≥ ∑D
j=1(θ

2
j + σ2

j ) − 2
√

Σxβ . Inequality (7.3) is satisfied if
tD,1−α(σ) < tD,β(θ, σ), which holds as soon as

D
∑

j=1

θ2j − 2
√

Σxβ > 2
√
xα

√

√

√

√

D
∑

j=1

σ4
j + 2xα sup

1≤j≤D
(σ2

j ). (7.7)

Let us note that

√
Σ =

√

√

√

√

D
∑

j=1

σ4
j + 2σ2

j θ
2
j ≤

√

√

√

√

D
∑

j=1

σ4
j +

√
2

√

√

√

√

D
∑

j=1

σ2
j θ

2
j

≤

√

√

√

√

D
∑

j=1

σ4
j +

√
2 sup
1≤j≤D

(σj)

√

√

√

√

D
∑

j=1

θ2j

Hence, the following inequality implies (7.7):

D
∑

j=1

θ2j−2
√
2 sup
1≤j≤D

(σj)
√
xβ

√

√

√

√

D
∑

j=1

θ2j−2

√

√

√

√

D
∑

j=1

σ4
j (
√
xβ+

√
xα)−2 sup

1≤j≤D
(σ2

j )xα> 0.

Easy computations show that this inequality holds if





D
∑

j=1

θ2j





1/2

≥ ρD

[

√

2xβ +
√

2(xα + xβ) +
√
2(
√
xα +

√
xβ)

1/2

]

.

Hence, we have proved that

ρ(SD, α, β) ≤ C(α, β)ρD .

which concludes the proof of Proposition 2.

7.2.2. Proof of Theorem 2

The test Φα is obviously of level α thanks to Bonferroni’s inequality:

P0(Φα = 1) ≤ P0(Φ
(1)
α/2 = 1) + P0(Φ

(2)
α/2 = 1)

≤ α

2
+
α

2
≤ α.

Let us now evaluate the power of the test.

Pθ(Φα = 1) ≥ max
(

Pθ(Φ
(1)
α/2 = 1),Pθ(Φ

(2)
α/2 = 1)

)

.

It follows from Proposition 2 that for all θ ∈ Sk,n such that

‖θ‖2 ≥ C2(α/2, β)





n
∑

j=1

σ4
j





1/2

,
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we have Pθ(Φ
(1)
α/2 = 1) > 1−β. Let us remark that C(α/2, β) ≤

√
2C(α, β) since

α ≤ 1/2.

It remains to evaluate the power of the test Φ
(2)
α/2.

Pθ(Φ
(2)
α = 0) = Pθ(∀j ∈ {1, . . . , n},

Y 2
j

σ2
j

≤ qn,1−α)

≤ inf
1≤j≤n

Pθ(
Y 2
j

σ2
j

≤ qn,1−α).

Pθ(
Y 2
j

σ2
j

≤ qn,1−α) = P
(

|θj + σjǫj | ≤ σj
√
qn,1−α

)

≤ P
(

|θj | − σj |ǫj | ≤ σj
√
qn,1−α

)

≤ P
(

σj |ǫj | ≥ |θj | − σj
√
qn,1−α

)

.

Let q1−β denote the 1− β quantile of |ǫj |. We obtain that if

∃j ∈ {1, . . . , n}, |θj | > σj(q1−β +
√
qn,1−α), (7.8)

then
Pθ(Φ

(2)
α = 0) ≤ β.

Condition (7.8) is equivalent to

∃m ∈ Mk,n,
∑

j∈m

θ2j >
∑

j∈m

σ2
j (q1−β +

√
qn,1−α)

2.

In particular, if

‖θ‖2 >





∑

j,θj 6=0

σ2
j



 (q1−β +
√
qn,1−α)

2,

then (7.8) holds. This implies that for all θ ∈ Sk,n such that

‖θ‖2 > max
m∈Mk,n





∑

j∈m

σ2
j



 (q1−β +
√
qn,1−α)

2,

we have Pθ(Φ
(2)
α = 0) < β. It remains to give an upper bound for qn,1−α. We

use the inequality P(|ǫ1| ≥ x) ≤ exp(−x2/2). This leads to

P( max
1≤j≤n

ǫ2j ≥ 2 ln(n/α)) ≤ nP(|ǫ1| ≥
√

2 ln(n/α))

≤ α.

Hence, qn,1−α ≤ 2 ln(n/α) and q1−β ≤
√

2 ln(1/β). By assumption, ln(n) ≥
1 and ln(1/α) ≥ 1. This implies that ln(n/α) ≤ 2 ln(n) ln(1/α). Let us now
remark that

√

2xβ+2
√
2xα ≤ 2C(α, β), which implies that q1−β+

√
qn,1−α/2 ≤

2C(α, β). This concludes the proof of Theorem 2.
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7.3. Proof of minimax rates on ellipsoids and lp-bodies

7.3.1. Proof of Proposition 3

We first prove the lower bound. For all D ∈ J , introduce r2D = c2(α, β)ρ2D ∧
R2a−2

D , where c(α, β) is introduced in Proposition 1. Let D be fixed. Then for
all θ ∈ SD such that ‖θ‖2 = r2D

∑

j∈J

a2jθ
2
j =

D
∑

j=1

a2jθ
2
j ≤ a2D‖θ‖2 ≤ R2.

Hence
{

θ ∈ SD, ‖θ‖2 = r2D
}

⊂
{

θ ∈ Ea,2(R), ‖θ‖2 ≥ r2D
}

.

Since rD ≤ c(α, β)ρD, we get from Proposition 1

inf
Φα

sup
θ∈Ea,2(R),‖θ‖≥rD

Pθ(Φα = 0) ≥ inf
Φα

sup
θ∈SD,‖θ‖=rD

Pθ(Φα = 0) ≥ β, (7.9)

where the infinimum is taken over all possible level-α testing procedures.
Since inequality (7.9) holds for all D ∈ J , we obtain ρ2(Ea,2(R), α, β) ≥
supD∈J(c

2(α, β)ρ2D∧R2a−2
D ). Concerning the upper bound, we know from Propo-

sition 2 that the test ΦD,α is powerful as soon as:

D
∑

j=1

θ2j ≥ C2(α, β)ρ2D ⇔ ‖θ‖2 ≥ C2(α, β)ρ2D +
∑

k>D

θ2k,

where C(α, β) is defined by (3.2). Since θ ∈ Ea,2(R), we get

∑

k>D

θ2k ≤ R2a−2
D and sup

θ∈Ea,2(R),‖θ‖2≥C2(α,β)ρ2
D+R2a−2

D

Pθ(Φα = 0) < β.

This concludes the proof since the previous result holds for all D ∈ J .

7.3.2. Asymptotic minimax rates of testing on ellipsoids

First case: ak ∼ ks and bk ∼ k−t. Choosing

D̄ =
⌊

σ
2

4s+4t+1

⌋

,

we can remark that ρ2
D̄

and R2a−2
D̄

are of the same order, hence leading to the
desired rate.

Second case: ak ∼ eνk
s

and bk ∼ k−t. Set

D0 =

⌈

(

1

2ν
log(σ−2)

)1/s
⌉

.
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Then

ρ2(Ea,2(R), α, β) ≤ Cρ2D0
+R2a−2

D0
,

≤ Cσ2
(

log(σ−2)
)(2t+1/2)/s

+ σ2,

≤ (C + 1)σ2
(

log(σ−2)
)(2t+1/2)/s

,

where C denotes a constant independent of σ. Concerning the lower bound, we
set

D1 =

⌊

(

1

4ν
log(σ−2)

)1/s
⌋

.

Then

ρ2(Ea,2(R), α, β) ≥ ρ2D1
∧R2a−2

D1
,

≥ Cσ2
(

log(σ−2)
)(2t+1/2)/s ∧ σ = Cσ2

(

log(σ−2)
)(2t+1/2)/s

,

for some C > 0.

Third case: ak ∼ ks and bk ∼ e−γkr

. Set

D0 =

⌊

(

1

4γ
log σ−2)

)1/r
⌋

.

Then

ρ2(Ea,2(R), α, β) ≤ ρ2D0
+R2a−2

D0
,

≤
√

D0σ
2b−2

D0
+R2a−2

D0
,

≤ σ + C
(

log(σ−2)
)−2s/r ≤ (C + 1)

(

log(σ−2)
)−2s/r

,

for some C > 0. Concerning the lower bound, we set

D1 =

⌈

(

1

2γ
log(σ−2)

)1/r
⌉

.

Then

ρ2(Ea,2(R), α, β) ≥ ρ2D1
∧R2a−2

D1
,

≥ σ2b−2
D1

∧R2a−2
D1
,

≥ 1 ∧ C
(

log(σ−2)
)−2s/r

= C
(

log(σ−2)
)−2s/r

,

for some C > 0.

Fourth case: ak ∼ eνks and bk ∼ e−γkr

. Denote by D̃ the solution of the equation

ρ2D = R2a−2
D .
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Remark that

ρ2D0
≤ R2a−2

D0
where D0 = ⌊D̃⌋,

since (ρ2D)D∈N⋆ and (a2D)D∈N⋆ are monotone increasing. Hence

ρ2(Ea,2(R), α, β) ≤ Cσ2e2γD
r
0 +R2e−2νDs

0 ≤ C′e−2νDs
0 .

Then

ρ2D1
≥ R2a−2

D1
where D1 = ⌈D̃⌉.

We get

ρ2(Ea,2(R), α, β) ≥ C
(

ρ2D1
∧R2a−2

D1

)

≥ C′R2a−2
D1

≥ C′R2e−2νDs
1 .

In order to conclude the proof, we have to prove that the lower and upper
bounds coincide. To this end, remark that D1 = D0 + 1. Thus

e−2νDs
1 = e−2ν(D0+1)s = e−2νDs

0 × e2ν{D
s
0−(D0+1)s} ≥ e−2νDs

0e−2ν

as soon as s ≤ 1.

7.3.3. Proof of Theorem 3

The proof of this theorem will require the following proposition

Proposition 5. Let (Yj)j∈J obey to Model (1.1). Let α ∈]0, 1[, β ∈]0, 1−α[ such
that α+β ≤ 0.59 and denote by ρ(Ea,p(R), α, β) the minimax rate of testing over

Ea,p(R) with respect to the l2 norm. For all D ∈ J and for all 0 ≤ l ≤ D−⌈
√
D⌉,

we set

ρ2⌈
√
D⌉,D,l

= Σ2
l,⌈

√
D⌉ ln

(

1 +

√

1− l

D

)

,

where Σ2
l,⌈

√
D⌉ is given in (2.2). Then

ρ2(Ea,p(R), α, β) ≥ sup
D∈J

(ρ1(D) ∨ ρ2(D)) ,

where

ρ1(D) = max
0≤l≤D−⌈

√
D⌉

(

√
D

1−2/p
R2a−2

D

Σ2
l,⌈

√
D⌉

Σ2
D−⌈

√
D⌉,⌈

√
D⌉

∧ ρ2⌈√D⌉,D,l

)

,

and

ρ2(D) =
√
D

1−2/p
R2a−2

D ∧





D
∑

j=D−⌈
√
D⌉+1

σ4
(j)





1/2

.
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Proof. The proof will use the one of Theorem 1. We assume that (σj)j∈J is non-
decreasing. Let us first establish a relation between the lp ball Ea,p(R) and the

sets Sk,n. For all D ∈ J , for all θ ∈ S[√D],D such that ‖θ‖2 ≤
√
D

1−2/p
R2a−2

D ,

we have θ ∈ Ea,p(R). Indeed, using Hölder’s inequality

+∞
∑

j=1

apjθ
p
j =

∑

j:θj 6=0

apjθ
p
j ≤ (

√
D)1−p/2(‖θ‖2)p/2apD ≤ Rp.

We set k = ⌈
√
D⌉, n = D and for all l ∈ {0, 1, . . . , n− k}, we define θ = (θj , j ∈

J) by (7.2). As pointed out in the proof of Theorem 1, θ ∈ Sk,n and ‖θ‖2 ≥ ρ2.
We also have ‖θ‖2 ≤ ρ2Σ2

n−k,k/Σ
2
l,k. This implies that if

ρ2
Σ2

n−k,k

Σ2
l,k

≤ (
√
D)1−2/pR2a−2

D ,

then θ ∈ Ea,p(R).
Moreover, in the proof of Theorem 1, we proved that if

ρ2 ≤ Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

,

then
E0(L

2
µρ
(Y )) ≤ 1 + 4(1− α− β)2.

This implies by Lemma 1 that ρ2(Ea,p(R)) ≥ ρ2. We finally get

ρ2(Ea,p(R)) ≥ Σ2
l,k ln

(

1 +
n− l

k2
∨
√

n− l

k2

)

∧
√
D

1−2/p
R2a−2

D

Σ2
l,k

Σ2
n−k,k

.

Since the result holds for all l ∈ {0, 1, . . . , n− k}, we obtain that ρ2(Ea,p(R)) ≥
ρ1(D). To obtain that ρ2(Ea,p(R)) ≥ ρ2(D), we consider, as in the proof of

Theorem 1, for k = ⌈
√
D⌉ and n = D

θj = ωjσ
2
j ρ
(

∑n
j=n−k+1 σ

4
j

)−1/2

∀j ∈ {n− k + 1, . . . , n},
= 0 ∀j /∈ {n− k + 1, . . . , n}.

Since ρ2(Ea,p(R)) ≥ ρ1(D) ∨ ρ2(D) for all D ∈ J , the result follows.

Then, we complete the proof of Theorem 3. We now assume that bj = j−γ

which leads to σj = σjγ for some γ ≥ 0. Using the inequalities

Σ2
l,[

√
D]

≥ σ2l2γ [
√
D], Σ2

D−[
√
D],[

√
D]

≤ σ2D2γ+1/2,

one derives from Theorem 5 that

ρ1(D) ≥ max
0≤l≤D−[

√
D]

(

√
D

1−2/p
R2a−2

D

l2γ

D2γ
∧ σ2l2γ [

√
D] ln

(

1 +

√

1− l

D

))

.
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Taking l = [D/2] + 1 in the above inequality leads to the result stated in
Corollary 3 for the polynomial case.

Let us now assume that σj = σ exp(jγ). It is obvious that

ρ2(D) ≥
√
D

1−2/p
R2a−2

D ∧ σ2 exp(2γD),

which leads to the desired result.

7.3.4. Proof of Proposition 4

For the sake of convenience, we only prove this proposition in the particular case
where bk = k−γ for all k ∈ N

⋆. The proof for severly ill-posed inverse problems
follows essentially the same algebra.

It follows from Bonferonis’s inequality that Φ†
α is a level-α test. Then intro-

duce

A =

{

D ∈ J,R2a−2
D

√
D

1−p/2 ≤ σ2D1/2+2γλ2D

}

,

where

λ2D = ln

(

1 +

√

(

1

2
− 1

D

)

∨ 0

)

.

In a first time, we suppose that A is empty. From the definition of D†, we get
D† = N and

Pθ(Φ
†
α = 0) ≤ Pθ(ΦD†,α/2 = 0) = Pθ(ΦN,α/2 = 0) ≤ β,

for all sequence θ satisfying

∑

j∈J

θ2j = ‖θ‖2 ≥ C2(α, β)ρ2N ,

where C(α, β) has been introduced in (3.2). Since A is empty, we get

C2(α, β)ρ2N ≤ C2(α, β)σ2
√
NN2γ ,

≤ C2(α, β)σ2N1/2+2γλ2N ln−1

(

1 +

√

1

2
− 1

N

)

,

≤ 22γ+1C2(α, β) ln−1

(

1 +

√

1

2
− 1

N

)

ρ2(Ea,p(R), α, β). (7.10)

From now on, we assume that the set A is not empty and that D† < N . Let

µ2
N = 2(

√
5 + 4) ln

(

2(N −D†)

αβ

)

.

Two different situations may occur:
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1/ There exists at least j ∈ {D†, . . . , N} such that b2jθ
2
j ≥ σ2µ2

N , i.e. there

exist significant coefficients after the rank D†.
2/ For all j > D†, b2jθ

2
j ≤ σ2µ2

N i.e. all the coefficients θk have poor importance

after the rank D†.

First consider the case 1/. Recall that in this case, the set A is not empty and
there exists j′ ∈ {D† + 1, . . . , N} such that b2j′θ

2
j′ > σ2µ2

N . In this particular
setting, we have to use the threshold test in order to detect these coefficients.
More precisely,

Pθ(Φ
†
α = 0) ≤ Pθ

(

sup
j>D†

Φ{j},α/2(N−D†) = 0

)

≤ Pθ

(

Φ{j′},α/2(N−D†) = 0
)

.

Thanks to inequality (29) of [2], we know that this probability is smaller than
β as soon as:

θ2j′ > σ2b−2
j′ ln

(

2(N −D†)

αβ

)

2(
√
5 + 4).

This inequality is implied by the assuption made in the case 1/.

Now, we consider point 2/. Let j > D†,

θ2j = θ2−p
j b2−p

j θpj b
−(2−p)
j ,

≤ σ2−pµ2−p
N θpj b

−(2−p)
j .

Then, we get

∑

j>D†

θ2j ≤ σ2−p
∑

j>D†

θpj b
−(2−p)
j µ2−p

N ,

≤ σ2−p
∑

j>D†

apjθ
p
j a

−p
j b

−(2−p)
j µ2−p

N ,

≤ σ2−pRp max
j>D†

a−p
j b

−(2−p)
j µ2−p

N .

Since the sequence (a−p
j b

−(2−p)
j )j∈N is assumed to be monotone non increasing,

we can control the bias as follows

∑

j>D†

θ2j ≤ σ2−pRpa−p
D†b

−(2−p)

D† µ2−p
N .

In order to conclude the proof, we have to bound the right hand side of the
above inequality. Remark that

D† = inf
{

D ∈ J,R2a−2
D (

√
D)1−2/p ≤ σ2D2γ+1/2λ2D

}

,

= inf
{

D ∈ J,R2a−2
D ≤ σ2D2γ+1/pλ2D

}

.
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Thus
∑

j>D†

θ2j ≤ σ2−pσp(D†)γp+1/2(D†)2γ−γpµ2−p
N λp

D†

≤ σ2(D†)2γ+1/2µ2−p
N λp

D† .

Hence, we deduce from Proposition 2 that

Pf (Φ
†
α = 0) ≤ Pθ(ΦD†,α/2 = 0) ≤ β,

for all sequence θ satisfying
∑D†

j=1 θ
2
j ≥ C2(α, β)σ2(D†)2γ+1/2, which is equiva-

lent to
‖θ‖2 ≥ C2(α, β)σ2(D†)2γ+1/2 +

∑

j>D†

θ2j . (7.11)

In order to conclude, just remark that

C2(α, β)σ2(D†)2γ+1/2 +
∑

j>D†

θ2j

≤ C2(α, β)σ2(D†)2γ+1/2 + σ2(D†)2γ+1/2µ2−p
N λp

D† ,

≤ 2σ2(D†)2γ+1/2(µ2−p
N ∨ 1)

(

C2(α, β) + λ2N
)

,

≤ C1,pρ
2(Ea,p(R), α, β)(ln(N))1−p/2, (7.12)

where

C1,p = 22γ+1 ln−1

(

1 +
1√
6

)(

C2(α, β) + ln

(

1 +
1√
2

))

×
(

4(
√
5 + 4) ln(2/αβ)

)1−p/2

.

The result follows from (7.11) and (7.12). Note that when D† = N ,
∑

j>D† θ2j =
0 and the above result also holds in this case.

8. Appendix

Proof of Lemma 2. We first compute the Laplace transform of T̂ . Easy compu-
tations show that for t < 1/(2σ2

j ),

E
[

exp(t(θj + σjǫj)
2)
]

=
1

√

1− 2tσ2
j

exp

(

tθ2j
1− 2tσ2

j

)

.

This implies that for t < min1≤j≤D 1/(2σ2
j ),

E

[

exp(tT̂ )
]

= exp





D
∑

j=1

tθ2j
1− 2tσ2

j





D
∏

j=1

1
√

1− 2tσ2
j

.
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Moreover,

E(T̂ ) =

D
∑

j=1

θ2j +

D
∑

j=1

σ2
j .

This leads to

E

[

exp(t(T̂ − E(T̂ ))
]

= exp





D
∑

j=1

2t2θ2jσ
2
j

1− 2tσ2
j

− tσ2
j





D
∏

j=1

1
√

1− 2tσ2
j

= exp





D
∑

j=1

2t2θ2jσ
2
j

1− 2tσ2
j

− tσ2
j



 exp



−1

2

D
∑

j=1

log(1 − 2tσ2
j )



 .

We use the following inequality which holds for x < 1/2:

x

[

1

2
log (1− 2x) + x+

x2

1− 2x

]

≥ 0. (8.1)

This inequality implies that for all t < min1≤j≤D 1/2σ2
j ,

logE
[

exp(t(T̂ − E(T̂ ))
]

≤
D
∑

j=1

t2σ4
j

1− 2tσ2
j

+ 2t2
D
∑

j=1

θ2jσ
2
j

1− 2tσ2
j

.

This leads to

logE
[

exp(t(T̂ − E(T̂ ))
]

≤ t2Σ

1− 2t sup1≤j≤D(σ2
j )
.

We now use the following lemma which is proved in [4] (see Lemma 8.2):

Lemma 3. Let X be a random variable such that

log (E [exp(tX)]) ≤ (at)2

1− bt
for 0 < t < 1/b

where a and b are positive constants. Then

P
(

X ≥ 2a
√
x+ bx

)

≤ exp(−x) for all x > 0.

Hence, inequality (7.5) is proved. Let us now prove inequality (7.6).
For all z ∈ R,

P

(

T̂ − E(T̂ ) ≤ −z
)

= P

(

−T̂ + E(T̂ )− z ≥ 0
)

≤ inf
t>0

E

(

et(−T̂+E(T̂ )−z)
)

≤ inf
t<0

E

(

et(T̂−E(T̂ )+z)
)

.
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We have, from the above computations

ln
(

E

(

et(T̂−E(T̂ )+z)
))

=

D
∑

j=1

[

2t2θ2jσ
2
j

1− 2tσ2
j

− tσ2
j −

1

2
ln(1− 2tσ2

j )

]

+ tz.

We now use (8.1) for x = tσ2
j with t < 0. We obtain

1

2
ln(1− 2tσ2

j ) + tσ2
j +

t2σ4
j

1− 2tσ2
j

≤ 0.

This implies that

2t2θ2jσ
2
j

1− 2tσ2
j

≤ −2tθ2j −
θ2j
σ2
j

ln(1− 2tσ2
j ).

Hence, for all t < 0, z ∈ R,

E

(

et(T̂−E(T̂ )+z)
)

≤ exp



−
D
∑

j=1

(

1

2
log
(

1− 2tσ2
j

)

+ tσ2
j

)

(

1 + 2
θ2j
σ2
j

)

+ tz



 .

We use this inequality with z = 2
√
Σx, and tx = −√

x/
√
Σ.

P

(

T̂ − E(T̂ ) ≤ −2
√
Σx
)

≤ E

(

etx(T̂−E(T̂ )+2
√
Σx)
)

.

Moreover,

E

(

etx(T̂−E(T̂ )+2
√
Σx)
)

= exp



−
D
∑

j=1

(

1

2
log

(

1− 2

√
x√
Σ
σ2
j

)

−
√
x√
Σ
σ2
j

)

(

1 + 2
θ2j
σ2
j

)

− 2x



 .

We use the following inequality which holds for all u ≥ 0:

1

2
log(1 + 2u)− u ≥ −u2,

and we apply this inequality to u = −txσ2
j . We obtain that for all x ≥ 0,

P

(

T̂ − E(T̂ ) ≤ −2
√
Σx
)

≤ exp(−x).

This concludes the proof of Lemma 2.
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