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The Sato–Tate conjecture has been recently settled in great gen-
erality. One natural question now concerns the rate of conver-
gence of the distribution of the Fourier coefficients of modular
newforms to the Sato–Tate distribution. In this paper, we address
this issue, imposing congruence conditions on the primes and on
the Fourier coefficients as well. Assuming a proper error term in
the convergence to a conjectural limiting distribution, supported
by experimental data, we prove the Lang–Trotter conjecture, and
in the direction of Lehmer’s conjecture, we prove that τ (p) = 0
has at most finitely many solutions. In fact, we propose a con-
jecture, much more general than Lehmer’s, about the vanishing
of Fourier coefficients of any modular newform.

1. INTRODUCTION

Let E/Q be an elliptic curve of conductor N , and for any
given prime p � N , let ap be the trace of the Frobenius
endomorphism acting on the Tate module of its reduction
modulo p. It is well known that

|ap |
2
√

p
< 1.

Independently around 1960, Sato and Tate conjectured
that for elliptic curves without complex multiplication
(CM), these values are equidistributed by the semicircle
distribution function given by

G(x) =
∫ x

−1
g(u) du for x ∈ [−1, 1] ,

where g(u) = 2
√

1 − u2/π. This probability is called the
Sato–Tate measure.

We have known since the Shimura–Taniyama–Weil
conjecture was proved that there exist a normalized new-
form f =

∑
n>0 bnqn ∈ S2(Γ1(N)) with trivial nebenty-

pus and a nonconstant morphism π : X1(N) → E defined
over Q such that π∗(Ω1

E/Q ) = f(q)dq/q Q , and more-
over, ap = bp for all p � N . In fact, it was also expected
that the Sato–Tate measure would govern similarly the
distribution of the Fourier coefficients of other, more
general, normalized modular newforms, i.e., newforms
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whose Fourier expansions f =
∑

n>0 bnqn ∈ S2(Γ1(N))
satisfy b1 = 1. Recently, the following result was proved
[Barnet-Lamb et al. 11, Theorem B].

Theorem 1.1. (Barnet-Lamb, Geraghty, Harris, and Tay-
lor.) Let k and N be integers such that k ≥ 2 and N ≥ 1.
Let f =

∑
n>0 anqn be a normalized newform of level N

and weight k with nebentypus ε and without CM. Let
ζ be a root of unity such that ζ2 ∈ Im(ε). Then for all
a ∈ [−1, 1] we have

lim
x→+∞

#
{

p ∈ P(x) : ε(p) = ζ2 ,
ap

2ζ p (k −1 ) / 2 ≤ a
}

#{p ∈ P(x) : ε(p) = ζ2}
=

2
π

∫ a

−1

√
1 − x2 dx ,

where P(x) denotes the set of primes p � N up to x.

Based on computational evidence, we present two con-
jectures generalizing the previous result. The first of
them, Conjecture 2.2, basically claims that the Sato–
Tate distribution holds when we restrict to primes whose
traces of Frobenius lie in an arithmetic progression con-
taining infinitely many such traces. The second, Conjec-
ture 4.3, states the stochastic independence of Sato–Tate
distributions of several normalized newforms without CM
when they are pairwise algebraically independent (for
this notion see Definition 4.1). Although Conjecture 4.3
generalizes Conjecture 2.2, in order to get a better un-
derstanding of the arguments involved in the exposition,
we have chosen to present them separately in Sections 2
and 4.

Another problem of great interest in this context is
the study of the values that can be taken by the Fourier
coefficients of modular newforms. This problem appeared
from two different directions, first, from the study of the
nonvanishing of the Fourier coefficients, beginning with
Lehmer’s famous conjecture on the Ramanujan tau func-
tion, and then continuing in a wide variety of articles,
initiated by Serre in his well-known article [Serre 81] (see
also [Balog and Ono 01]); and second, with the inten-
sively studied memoir [Lang and Trotter 76] about the
values of the traces of Frobenius elements of elliptic
curves defined over Q .

In this article we also present a conjecture that relates
both topics, the distribution and the particular values of
the Fourier coefficients of modular newforms. More pre-
cisely, in Section 3, we show that a rate of convergence
for Conjecture 2.2 as stated in Conjecture 3.2 would al-
low us to prove the Lang–Trotter conjecture for elliptic
curves over Q and to obtain the finiteness of the set of

vanishing Fourier coefficients of any modular newform of
weight at least four with rational coefficients, and hence
give a proper wide generalization of Lehmer’s conjecture.
Finally, in Section 5, we extend this last result to new-
forms whose Fourier coefficients are in any number field.

Even though the results presented are conditional, the
authors believe that the approach introduced in this pa-
per could provide a new way to attack the problem of
determining the vanishing of Fourier coefficients of mod-
ular newforms without CM.

2. ARITHMETIC DISTRIBUTION

Using results of [Barnet-Lamb et al. 11], Theorem 1.1
was extended in [González et al. 10] by restricting
primes to certain classes of congruences. (In fact, in
[González et al. 10], only the case k = 2 was proved, but
the general case k ≥ 2 follows by similar reasoning.)

Theorem 2.1. Keep the assumptions as in Theorem 1.1.
For any multiple M of the conductor of ε and for a root
of unity ζ such that ζ2 = ε(m) for some integer m, one
has

lim
x→+∞

#
{

p ∈ P(x) : p ≡ m (mod M), ap

2ζ p (k −1 ) / 2 ≤ a
}

# {p ∈ P(x) : p ≡ m (mod M)}
=

2
π

∫ a

−1

√
1 − x2 dx ,

for all a ∈ [−1, 1].

It is well known that for a normalized newform f =∑
n>0 an , qn ∈ Sk (Γ1(N))new , the field K = Q ({an}) is a

number field, and the Fourier coefficients an are in OK ,
where OK denotes the ring of integers of K. Also, for
every prime λ in K over a rational prime �, there is a
continuous λ-adic representation

ρλ : GQ := Gal(Q /Q ) −→ GL(2,Oλ ) ,

where Oλ denotes the completion of OK by λ, unram-
ified at every p � N�, and such that tr(ρλ (Frobp)) = ap

and det(ρλ (Frobp)) = ε(p)pk−1 . For any integer i ≥ 1, we
denote by rλi the representation obtained by reducing
modulo λi , i.e.,

rλi : GQ −→ GL(2,OK /λi) .

Let m be an ideal of OK and t ∈ OK . As a consequence
of the existence of rλi , there exists a representation

rm : GQ −→ GL(2,OK /m)
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FIGURE 1. The graph of the Sato–Tate distribution
function (color figure available online).

unramified at every prime p � N Norm(m) such that
tr(rm(Frobp)) ≡ ap (mod m). By the Čebotarev density
theorem, we know that the following limit exists:

fm(t) := lim
x→+∞

# {p ∈ P(x) : ap ≡ t (mod m)}
#P(x)

.

After several computations, the authors think that the
following conjecture is true.

Conjecture 2.2. Keep the assumptions as in Theorem 1.1
and suppose fm(t) 
= 0. For any multiple M of the con-
ductor of ε and for a root of unity ζ such that ζ2 = ε(m)
for some integer m, one has

lim
x→+∞#

{
p ∈ P(x) : p ≡ m (mod M), ap ≡ t (mod m),

ap

2ζp(k−1)/2 ≤ a
}/

# {p ∈ P(x) : p ≡ m (mod M), ap ≡ t (mod m)}
=

2
π

∫ a

−1

√
1 − x2 dx

for all a ∈ [−1, 1].

The above conjecture states that the Sato–Tate dis-
tribution respects the arithmetic of Z and OK if possi-
ble, i.e., when M is a multiple of the conductor of ε and
fm(t) 
= 0. Note that for m = OK , the above conjecture
is Theorem 2.2. We present a few examples with trivial
nebentypus and M = 1 for this conjecture. The graph of
the Sato–Tate distribution function

G(x) =
1
2

+
(

x
√

1 − x2 +
1
π

arcsin(x)
)

is shown in Figure 1.

FIGURE 2. Graph of G(a, t, m; 30000) for f in Example
2.3 when (t, m) = (2, 3Z) (color figure available online).

For a fixed newform f with real coefficients, set

G(a, t,m;x)

:=
#
{

p ∈ P(x) : ap ≡ t (mod m), ap

2p (k −1 ) / 2 ≤ a
}

#{p ∈ P(x) : ap ≡ t (mod m)} .

Example 2.3. (Weight k = 2.) Let f be the unique nor-
malized newform in S2(Γ0(11)). We obtain the graphs
shown in Figures 2 and 3 for G(a, t,m; 30 000) when
(t,m) = (2, 3Z) and (t,m) = (0, 4Z) respectively.

Example 2.4. (Weight k > 2.) Let f be the discriminant
modular form

∆ = q
∏
n>0

(1 − qn )24 ∈ S12(Γ(1)),

FIGURE 3. Graph of G(a, t, m; 30000) for f in Example
2.3 when (t, m) = (0, 4Z) (color figure available online).
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FIGURE 4. Graph of G(a, t, m; 30000) for f = ∆ when
(t, m) = (2, 3Z) (color figure available online).

x = 30 000, and (t,m) = (2, 3Z) respectively (t,M) =
(0, 4Z) we obtain the graphs of Figures 4 and 5.

Example 2.5. (Nonrational coefficients.) Let f ∈
S2(Γ0(23))new be the newform

f = q +
−1 +

√
5

2
q2 + · · ·

and x = 55000. For m =
(
4 +

√
5
)OK and t = 0, 2 we ob-

tain the graphs shown in Figures 6 and 7, and for m = 3,
OK , t = 0,

(−1 +
√

5
)
/2 we get the graphs of Figures 8

and 9.

The computations of Fourier coefficients were per-
formed with Magma v2.15-13 using a personal computer
with an Intel Core Duo processor running at 2.67 GHz
with 4 GB of memory. The difficulty in obtaining a large
number of Fourier coefficients of a normalized newform

FIGURE 5. Graph of G(a, t, m; 30000) for f = ∆ when
(t, m) = (0, 4Z) (color figure available online).

FIGURE 6. Graph of G(a, t, m; 55000) for f in Example
2.5 when (t, m) = (0, (4+

√
5)OK ) (color figure available

online).

f of level N and weight k is the limitation of the mem-
ory. The necessary memory depends on the modular sym-
bol chosen by the Magma program to identify the new-
form f and the weight k, the degree of the number field
K = Q ({an}), and the genus of the modular curve, which
tends to infinity as the level N approaches +∞. For the
lowest level N = 11, the lowest weight k = 2, and the
lowest number field K = Q , we were able to compute
the first 300 000 Fourier coefficients in 16.6 hours, but we
could not compute the first 400 000.

For a fixed newform f and x, m, M , t, and m as in
Conjecture 2.2, let us denote by n the cardinality of the
set

V := {p ∈ P(x) : p ≡ m mod M, ap ≡ t mod m} .

FIGURE 7. Graph of G(a, t, m; 55000) for f in Example
2.5 when (t, m) = (2, (4+

√
5)OK ) (color figure available

online).
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t m m M n D t m m M n D

1 Z 1 1 9591 0.005 0 3Z 1 3 3229 0.014

1 Z 1 1 25996 0.005 1 3Z 1 3 4883 0.011

0 2Z 1 3 8652 0.006 2 3Z 1 3 4858 0.009

0 2Z 2 3 8691 0.006 0 3Z 2 3 6652 0.008

0 2Z 1 4 8651 0.007 1 3Z 2 3 3196 0.016

0 2Z 3 4 8691 0.008 2 3Z 2 3 3277 0.009

0 2Z 1 5 4316 0.010 0 5Z 1 3 3227 0.013

0 2Z 2 5 4371 0.007 2 5Z 1 3 2224 0.011

0 2Z 3 5 4331 0.011 3 5Z 1 3 3252 0.011

0 2Z 4 5 4325 0.009 4 5Z 1 3 3261 0.009

1 2Z 1 3 4317 0.011 0 5Z 2 3 3260 0.019

1 2Z 2 3 4334 0.010 2 5Z 2 3 3247 0.012

1 2Z 1 4 4328 0.011 3 5Z 2 3 3268 0.006

1 2Z 3 4 4324 0.009 4 5Z 2 3 3249 0.009

1 2Z 1 5 2161 0.013 0 7Z 1 3 1880 0.023

1 2Z 2 5 2149 0.017 0 7Z 1 4 1875 0.015

1 2Z 3 5 2179 0.018 0 7Z 1 5 883 0.018

1 2Z 4 5 2161 0.014 0 7Z 1 7 551 0.021

TABLE 1. Statistic D for f in Example 2.3.

In general, n is expected to be nearly
x

log x

1
Norm(m)ϕ(M)

,

where ϕ denotes the Euler totient function. We point out
that it is hard to test the conjecture for ideals m with
large norm or for large values of M , even with a more
powerful computer, since a large value of x is needed.

To measure the significance level of any sample of
data to the Sato–Tate distribution, we shall use the

Kolmogorov–Smirnov statistic D, which measures the
largest vertical difference between the empirical distri-
bution function and the theoretical distribution. Set

D = max
{∣∣∣∣ 1n#

{
p ∈ V :

ap

2ζp(k−1)/2 ≤ a

}
− 2

π

∫ a

−1

√
1 − x2 dx

∣∣∣∣},

t m m M n D t m m M n D

1 O 1 1 9591 0.005 t0 3O 1 3 1277 0.012

1 O 1 1 17983 0.004 t0 3O 2 3 1291 0.021

0 2O 1 3 8648 0.006 1 + t0 3O 1 3 1316 0.033

0 2O 2 3 8679 0.008 1 + t0 3O 2 3 1305 0.046

1 2O 1 3 4322 0.011 2 + t0 3O 2 3 2297 0.018

1 2O 2 3 4345 0.006 2t0 3O 1 3 1295 0.018

0 3O 1 3 3254 0.010 0 (5 + 2t0 )O 1 1 2594 0.017

0 3O 2 3 3243 0.012 0 (5 + 2t0 )O 1 3 1294 0.024

1 3O 1 3 2280 0.020 0 (5 + 2t0 )O 1 5 636 0.023

2 3O 1 3 2260 0.015 0 (5 + 2t0 )O 1 7 433 0.054

TABLE 2. Statistic D for f in Example 2.5.
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t m m M n D t m m M n D

1 O 1 8 6457 0.007 3 (2 + i)O 3 8 1626 0.017

1 O 3 8 6493 0.008 4 (2 + i)O 3 8 1620 0.016

1 O 5 8 6523 0.006 0 3O 5 8 2421 0.016

1 O 7 8 6522 0.006 i 3O 5 8 2040 0.018

0 (2 + i)O 1 8 1598 0.017 2i 3O 5 8 2062 0.010

2 (2 + i)O 1 8 1614 0.018 0 3O 7 8 2466 0.024

3 (2 + i)O 1 8 1623 0.022 1 3O 7 8 2074 0.020

4 (2 + i)O 1 8 1622 0.017 2 3O 7 8 1982 0.018

0 (2 + i)O 3 8 1612 0.028 0 (3 + 2i)O 1 8 516 0.054

2 (2 + i)O 3 8 1635 0.016 12 (3 + 2i)O 1 8 475 0.035

TABLE 3. Statistic D for the newform f=q − (1+i)q2+· · · ∈ S2 (Γ1 (24)).

where a runs over the set{
ap

2ζp(k−1)/2 : p ∈ V
}

.

Since the Sato–Tate distribution is free-parameter-
dependent, it is possible to evaluate the p-value associ-
ated with a specific value of D calculated from a sample
of size n. A large p-value implies that we should not re-
ject the null hypothesis that the sample comes from the
Sato–Tate distribution.

In Tables 1–3, we present more examples for three dif-
ferent normalized newforms, with the values n and D

for x = 3 · 105 and different congruence classes. In order
to have an idea about the expected size of D, we see
that for the normalized newform as in Example 2.3, we
obtain D = 0.005 for x = 105, and this value does not
change when we consider x = 3 · 105. These are the first
two entries in Table 1, which correspond to cases proved
in Theorem 1.1.

FIGURE 8. Graph of G(a, t, m; 55000) for f in Exam-
ple 2.5 when (t, m) = (0, 3OK ) (color figure available
online).

Table 1 gives values of D for x = 3 · 105 with different
choices of t, m, m, and M , except the initial data, which
are for x = 105, as already mentioned.

For the normalized newform of level 23 as in Example
2.5, we obtain D = 0.005 with x = 105. Then if we choose
x = 3 · 105, D goes down to D = 0.004. These are again
the first two entries of Table 2, which correspond to the
cases proved in Theorem 1.1. The rest of the table collects
values of D again for different choices of t, m, m, and M

and always with x = 3 · 105. For convenience of notation
we fix t0 =

(−1 +
√

5
)
/2 and put O := Z[t0 ].

Finally, we present in Table 3 values for the modular
form f of weight 2 and level 24 with quadratic nebentypus
ε of conductor 8 and q-expansion

f = q − (i + 1)q2 + · · · .

Now O denotes Z[i]. We recall that M must be a multiple
of 8, and for primes p in congruence classes m (mod M)

FIGURE 9. Graph of G(a, t, m; 55000) for f in Exam-
ple 2.5 when (t, m) = ((−1+

√
5)/2, 3OK ) (color figure

available online).
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such that ε(m) = −1, i.e., m ≡ ±3 (mod 8), we are tak-
ing the sequence ap/

(
2i
√

p
)
, and x = 3 · 105 in all cases.

Observe that the first four data in Table 3 correspond to
cases proved in Theorem 2.1.

We used [D’Agostino and Stephens 86, Table 4.2] to
obtain an approximation of the significance level of the
statistic D for each of the 76 samples of Tables 1–3. All
of these levels of significance are greater than 0.05 except
the case (n,D) = (1305, 0.046) in Table 2. Therefore, the
hypothesis that these samples come from the Sato–Tate
distribution will not be rejected from a statistical point
of view.

3. APPLICATIONS

In this section we focus our attention on the case
Q ({an}) = Q . In this case, the weight k of the newform
f must be even, and when M = 1, Conjecture 2.2 can be
rewritten

lim
x→+∞

#
{

p ∈ P(x) : ap ≡ t (mod m), ap

2p (k −1 ) / 2 ≤ a
}

#P(x)

= fm (t)
∫ a

−1
g(u) du , ( 3–1)

for all t ∈ Z, m ∈ Z>0 , and a ∈ [−1, 1]. Here fm denotes
fm for the ideal m = mZ.

With the same notation as in the previous section, it
is proved in [Ribet 85, Theorem 3.1] that

ρ�(GQ ) =
{

σ ∈ GL(2, Z�) : det(σ) ∈ Z∗(k−1)
�

}
for almost all primes �. In particular, SL(2, Z�) ⊂ ρ�(GQ )
for almost all primes �. By the main lemma in [Serre 89,
Chapter 4], the group (

∏
� ρ�)(GQ ) is open in

∏
� ρ�(GQ ).

Now consider the set of positive integers ordered by
the relation m � m′ if m | m′. Since (

∏
� ρ�)(GQ ) is open

in
∏

� ρ�(GQ ) and r�(GQ ) = GL(2, Z/�Z) for almost all
primes �, with arguments used in [Lang and Trotter 76],
we can see that the function F : Z>0 → R with F (t) =
limm→+∞ mfm (t) is well defined, and moreover, there ex-
ists an integer m0 > 0 such that

F (t) = m0fm 0 (t)
∏
��m 0

�f�(t) , ( 3–2)

where for a prime � � m0 we have

�f�(t) =

⎧⎪⎪⎨⎪⎪⎩
�2

�2 − 1
if t ≡ 0 (mod �),

�(�2 − � − 1)
(� − 1)(�2 − 1)

otherwise.
( 3–3)

A natural question to ask is about the rate of convergence
in (3–1). Concretely, we would like to have a bound for
the error function

E(Π(x), t,m; I) ( 3–4)

=
#{p ∈ Π(x) : ap ≡ t (mod m), ap

2p (k −1 ) / 2 ∈ I}
#Π(x)

− fm (t)
∫

I

g(u) du,

for a suitable set of primes Π(x) inside a suitably large
interval, a fixed t, and where I is a subinterval of [−1, 1]
containing 0.

For Π(x) = P(x), note that if p is a prime such that
ap ≡ t (mod m) and

ap

2p(k−1)/2 ∈ I,

then for any x < p we have

E(P(p), t,m; I) − E(P(x), t,m; I) � 1
#P(x)

, ( 3–5)

a natural lower bound for E(P(x), t,m; I) that cannot
be sharpened. In this case, and for m = 1 and k = 2,
Akiyama and Tanigawa, based on some computational
data, made the following conjecture.

Conjecture 3.1. [Akiyama and Tanigawa 99] For all
subintervals I of [−1, 1], one has

E(P(x), t, 1; I) = o

(
1

x1/2−ε

)
as x → ∞ .

For further information, see also [Mazur 08] and
[Stein 07].

It appears natural to claim that the previous conjec-
ture remains true for any fixed m > 1 and k ≥ 2. How-
ever, it would be unrealistic to expect it to be uniform
either in m or in the diameter δ(I) of I. Here, with
applications in mind, we pursue the idea of making a
sharper error term by simply abandoning uniformity in
those parameters. In certain situations we need to deal
with primes of the same order of magnitude, and hence
we will also be considering the following sets of primes.
We will define

Pν (x) := P((1 + ν)x) \ P(x) = {x < p ≤ (1 + ν)x} ,

( 3–6)
for any positive number ν. In some cases, ν will tend to
0 with x very slowly. Note that if, on the other hand, ν

is large enough, then #Pν (x)/#P(x) ∼ ν as x → +∞.
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With this purpose in mind, we simply note that the
main term in

#
{

p ∈ Π(x) : ap ≡ t (mod m), ap

2p (k −1 ) / 2 ∈ I
}

#Π(x)

should match the main term in

fm (t)
∫

I

g(u) du

as m → ∞ or δ(I) → 0.
Firstly, let us consider Fm (t) = mfm (t). Then by (3–2)

and (3–3), we see that for m sufficiently large, Fm (t) >

F (t) for t 
= 0 and Fm (0) < F (0). On the other hand, we
take, without loss of generality,

m = m0

∏
��m 0
�<L

�.

Then for L big enough,

F (t) − Fm (t) = Fm (t)
(∏

�>L

F�(t) − 1
)
.

Now since log(1 − x) = O(x) as x → 0, taking loga-
rithms, we see again from the definitions (3–2) and (3–3)
that ∑

�>L

| log F�(t)| �
∑
�>L

1
�2 = O

(
1
L

)
,

and hence noting that |Fm (t)| is bounded, we get

fm (t) =
F (t)
m

+ O

(
1

mL

)
.

Observe that for t 
= 0, one could replace 1/L by 1/L2 .
Secondly, g is a differentiable function, so there exist

ξ, ξ̂ ∈ I such that∫
I

g(u)du = δ(I)g(ξ) = δ(I)(g(0) + g′(ξ̂)ξ)

= δ(I)g(0) + O(δ(I)3),

by the mean value theorem, as well as the bound g′(x) =
O(x) as x → 0. Combining both estimates, we get

fm (t)
∫

I

g(u) du ( 3–7)

= F (t)g(0)
δ(I)
m

+ O

(
δ(I)
mL

)
+ O

(
δ(I)3

m

)
.

Finally,

#
{

p ∈ Π(x) : ap ≡ t (mod m),
ap

2p(k−1)/2 ∈ I

}
= #

{
p ∈ Π(x) :

(
t

2δ(I)

)2/(k−1)

< p,

ap ≡ t (mod m),
ap

2p(k−1)/2 ∈ I

}
( 3–8)

+ O

((
t

2δ(I)

)2/(k−1)
)

.

Based on the previous analysis, the prime number the-
orem, Conjecture 2.2, and maintaining the square-root
restriction of Conjecture 3.1, we make the following con-
jecture.

Conjecture 3.2. Let x ≥ 2. With notation as above, there
exist constants C1 and C2 depending on t and the new-
form f such that as I runs through subintervals of [−1, 1]
containing 0, we have

E(Π(x), t,m; I) = O

(
δ(I)

m log m

)
,

uniformly in the region given by δ(I) < 1/
√

log m, such
that C1(log x)2 < m ≤ C2δ(I)x(k−1)/2 , where

Π(x) =

{
P(x) for k = 2,

Pν (x) for k > 2,

for any ν decreasing as 1/(log x)A for some A > 0.

Remark 3.3. Firstly, we should mention that the selection
of two different sets of primes depending on k relies on
the natural bound (3–5), which is never attained for k >
2 and Π(x) = P(x). Now the conditions on m and the
length of the interval are obtained by taking care of the
error term in (3–8) and the last error term in (3–7). It
is worth noting that in the case k = 2, the error term
in Conjecture 3.2 when m = δ(I)x1/2 is chosen is better
than that in Conjecture 3.1. We cannot expect such an
error term to be uniform in m. Indeed, as m → ∞, the
right-hand side of (3–4) tends to 0, while on the left-hand
side, it remains

#{p ∈ Π(x) : ap = t}
#Π(x)

.

3.1. The Lang–Trotter Conjecture

We now consider k = 2, and thus there exists an ellip-
tic curve E/Q isogenous over Q to the abelian variety
attached to f by Shimura. Remark 3.3 leads us to the
following question: what about the particular values that
ap attains as p varies? In this sense we are interested in



92 Experimental Mathematics, Vol. 21 (2012), No. 1

the function

Dt(x) = #{p ∈ P(x) : ap = t}.

In principle, one should not expect to derive any prop-
erty of Dt(x) from the Sato–Tate distribution. In gen-
eral, obtaining information about a function knowing
only its average is impossible, unless we know something
else. In the beautiful and frequently cited probabilistic
study [Lang and Trotter 76], the authors made use of ex-
tra arithmetic information about the traces of Frobenius
elements at p, via the Čebotarev density theorem, and
made the following conjecture.

Conjecture 3.4. (Lang–Trotter conjecture.) For any given
integer t we have

Dt(x) = CE (t)
√

x

log x
(1 + o(1)) ,

where CE (t) = g(0)F (t) = 2
π F (t).

In order to make this conjecture, the authors used the
representations ρ� and rM of the Galois group of Q /Q
and defined a probabilistic model for the asymptotic be-
havior of traces of Frobenius. It is, however, interesting
that the authors did not seem to have checked the inde-
pendence of the Sato–Tate distribution and the congru-
ence condition for the traces, even though they use it.
Here, using Conjecture 3.2, we provide a direct proof of
the Lang–Trotter conjecture.

Theorem 3.5. Let t ∈ Z and suppose that Conjecture 3.2
is true for the normalized newform of weight two attached
to an elliptic curve E/Q without CM. Then

#{p ∈ P(x) : ap = t}
#P(x)

=
2
π

F (t)
√

x

log x
(1 + o(1)) .

Proof. For each real x ≥ 2, let us take

Cx1/4 < m <
x1/2

log x
,

where C = max{1, |t|}, let I be an interval of length
δ(I) = (m − |t|)/x1/2 centered at the origin, and consider
the set

P̂(x) =
{

p ∈ P(x) : p >
x|t|2

(m − |t|)2

}
.

Then clearly, we have{
p ∈ P(x) :

∣∣∣∣ ap

2
√

p

∣∣∣∣ < m − |t|
2
√

x
, ap ≡ t (mod m)

}
=
{

p ∈ P̂(x) :
∣∣∣∣ ap

2
√

p

∣∣∣∣ < m − |t|
2
√

x
, ap ≡ t (mod m)

}
+ O

(
x1/2

(log x)2

)
= {p ∈ P(x) : ap = t} + O

(
x1/2

(log x)2

)
.

Now assume Conjecture 3.2. By multiplying the error
E(P(x), t,m; I) by

√
x and using (3–7), we obtain

√
x#{p ∈ P(x) : ap = t}

#P(x)

= mfm (t)

∫ m −|t |
2
√

x

−m −|t |
2
√

x

g(u)du

(m − |t|)/√x
· m − |t|

m
+ O

(
1

log m

)
= F (t)g(0) + O

(
1

log m

)
.

Now taking x → +∞ and then m → +∞ gives

lim
x→+∞

√
x# {p ∈ P(x) : ap = t}

#P(x)
= F (t)g(0) =

2
π

F (t) ,

which completes the proof.

3.2. The Values of Fourier Coefficients of Modular
Newforms of Weight at Least 4

For the Fourier coefficients of the discriminant modular
form ∆ = q

∏
n≥1(1 − qn )24 , i.e., for the values of the Ra-

manujan tau function, Lehmer conjectured that τ(n) 
= 0
for all n and proved that it is enough to verify it for prime
frequencies (cf. [Lehmer 47]).

Conjecture 3.6. (Lehmer’s conjecture.) One has τ(p) 
= 0
for all primes p.

In the direction of the previous conjecture, and assum-
ing Conjecture 3.2, we can prove a general result valid
for any newform f =

∑
n≥1 anqn without CM of weight

k ≥ 4, level N , and such that Q ({an}) = Q , establishing
the finiteness of the set of Fourier coefficients with prime
frequency and fixed value.

Theorem 3.7. Let t be a fixed integer and suppose that
Conjecture 3.2 is true for a newform f =

∑
n≥1 anqn

without CM of weight k ≥ 4, level N , and such that
Q ({an}) = Q . Then the set of primes p such that ap = t

is finite.
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Proof. It suffices to prove that the set {p ∈ P(x) : ap =
t} is bounded, independently of x. For each real x ≥ 2,
we will split the set P(x) into dyadic intervals. For each
interval

(
(1 + ν)l , (1 + ν)l+1

]
, we choose an integer ml

such that

(1 + ν)l/4 < ml <
1
l
(1 + ν)(l+1)/2

(when there is no such integer, we choose ml = 1) and an
interval Il centered at the origin of length

δ(Il) =
ml − |t|

(1 + ν)(l+1)(k−1)/2 .

Let L = log x/ log(1 + ν). Then

#{p ∈ P(x) : ap = t}
=
∑
l≤L

#
{

p ∈ Pν ((1 + ν)l) :
|ap |

2p
k −1

2
∈ Il ,

ap ≡ t (mod ml)
}

=
∑
l≤L

#Pν ((1 + ν)l)fml
(t)
∫ δ ( I l )

2

− δ ( I l )
2

g(u) du

+ O

(∑
l≤L

ν#Pν ((1 + ν)l)

(1 + ν)
( l + 1 ) (k −1 )

2 l

)

= F (t)g(0)

(∑
l≤L

#Pν ((1 + ν)l)

(1 + ν)
( l + 1 ) (k −1 )

2

)

+ O

(∑
l≤L

ν#Pν ((1 + ν)l)

(1 + ν)
( l + 1 ) (k −1 )

2 l

)
.

The statement of the theorem follows by letting x → ∞,
since the right-hand side defines a convergent series.

In the case of vanishing Fourier coefficients for the
case k > 2, a similar argument to that used in the proof
of Theorem 3.5, based on the bound of the error term
E(P(x), 0,m; I) in Conjecture 3.2, would lead us to a
vast generalization of Lehmer’s conjecture by proving

lim
x→+∞#{p ∈ P(x) : ap = 0} = 0 .

Even though it is unlikely that this bound for the error
term is true when the whole of P(x) is used, we still be-
lieve that the following conjecture is true. Observe that
for ε = 1, if p | N , then ap = 0 if and only if p2 | N ; oth-
erwise, ap = ±pk/2−1 .

Conjecture 3.8. Let f =
∑

n≥1 anqn be a newform without
CM of weight k ≥ 4, level N , and such that Q ({an}) =
Q . Then for a prime p we have that ap = 0 if and only
if p2 | N .

This conjecture has been tested for the 49 normalized
newforms without CM, with rational Fourier coefficients
of level N ≤ 10, weight 4 ≤ k ≤ 12, and for all primes
p < 30 000.

In order to study the vanishing of the Fourier coeffi-
cients in general, i.e., not only for prime frequencies, we
need the following result.

Lemma 3.9. Let f =
∑

n>0 anqn ∈ Sk (Γ1(N))new be a
normalized modular newform (with or without CM) with
nebentypus ε and let p be a prime not dividing N . Let ζ
be a root of unity such that ζ2 = ε(p). For every integer
m ≥ 0 there exists a monic polynomial Pm (x) ∈ Z[ζ2 ][x]
of degree m such that apm = Pm (ap) and satisfying

Pm

(
p(k−1)/2ζ

(
x +

1
x

))
xm p−(k−1)m/2

= ζm x2(m+1) − 1
x2 − 1

. ( 3–9)

Proof. We know that for all integers m ≥ 1, one has

apm + 1 = apapm − ε(p)pk−1apm −1 . ( 3–10)

Set P0(x) = 1 and P1(x) = x. For every integer m > 1,
let us denote by Pm (x) ∈ Z[ζ2 ][x] the monic polynomial
of degree m obtained through the recurrent relationship

Pm+1(x) = xPm (x) − ζ2pk−1Pm−1(x) .

By (3–10), it is clear that Pm (ap) = apm . Now the state-
ment can be easily proved by induction.

Next, we present the following generalization of
[Lehmer 47, Theorem 2].

Theorem 3.10. Let f =
∑

n>0 anqn ∈ Sk (Γ0(N))new be a
normalized modular newform (with or without CM) such
that Q ({an}) = Q . If p is a prime such that apm = 0,
then one of the following four conditions is satisfied:

(i) ap = 0 and p2 | N ; in this case, apn = 0 for all n ≥
1.

(ii) ap = 0 and p � N ; in this case, apn = 0 if and only
if n is odd.

(iii) p = 2 and a2 = ±2k/2 ; in this case, a2n = 0 if and
only if n ≡ −1 (mod 4).

(iv) p = 3 and a3 = ±3k/2 ; in this case, a3n = 0 if and
only if n ≡ −1 (mod 6).

Proof. We can assume p � N , since otherwise, apm =
am

p , and part (i) is obvious. Let α ∈ Q be such that
ap = p(k−1)/2(α + 1/α). If apm = 0, then α{2(m+1)=1
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by Lemma 3.9. Since ap=p{(k − 1)/2}(α+1/α) ∈ Z and
k is even, either the order s of α is 4 or the pair (s, p)
must be (8, 2) or (12, 3). Now using (3–9), the statement
follows.

Note that condition (iii), respectively (iv), as in the
above proposition does not occur when 2 | N , respec-
tively 3 | N .

Remark 3.11. The above theorem can be adapted to a
newform f ∈ Sk (Γ1(N))new with even weight and such
that the number field K is Q ({an}) 
= Q . By Lemma 3.9,
the condition apm = 0 implies that either ap = 0 or
there exists a 2(m + 1)th root of unity α such that√

pζ (α + 1/α) ∈ K \ {0}. In this last case, Q (
√

p) ⊆
K(ζ, α + 1/α) and ϕ(2(m + 1)) | 8[K : Q ], where ϕ(·) de-
notes as usual the Euler totient function. In particular,
apm = 0 implies ap = 0 for almost all primes p.

The previous theorem, together with Conjecture 3.8,
allows us to characterize completely the set of vanishing
Fourier coefficients of a general newform.

Theorem 3.12. Assume Conjecture 3.8. Let f be a new-
form

∑
n>0 anqn ∈ Sk (Γ0(N))new without CM, of weight

k ≥ 4, and such that Q ({an}) = Q . Then an = 0 if and
only if there exists a prime p | n satisfying one of the fol-
lowing three conditions (where vp(n) denotes the p-adic
valuation of n):

(i) p2 | N .

(ii) p = 2, a2 = ±2k/2 , and v2(n) ≡ −1 (mod 4).

(iii) p = 3, a3 = ±3k/2 , and v3(n) ≡ −1 (mod 6).

Remark 3.13. Observe that the above theorem states, for
example, that the existence of zero Fourier coefficients
depends only on N , a2 , and a3 . For instance, if 6 | N and
N is square-free, then an 
= 0 for all n.

4. ARITHMETIC INDEPENDENCE

We begin this section by introducing the following defi-
nition.

Definition 4.1. Given two normalized newforms f ∈
Sk (Γ1(N))new and g ∈ Sk ′(Γ1(N ′))new without CM, we
say that f and g are algebraically independent if there is
no Dirichlet character χ such that f = g ⊗ χ. Otherwise,
f and g are said to be algebraically dependent.

Of course, if f and g are algebraically dependent, then
both must have the same weight. We note that for k = 2,
we have the following characterization.

Proposition 4.2. Let f and g be normalized newforms of
weight two without CM and let us denote by Af and Ag

the abelian varieties defined over Q attached by Shimura
to f and g. Then f and g are algebraically dependent if
and only if there is a morphism π from Af to Ag such
that 〈π∗(g)〉 = 〈f〉.

Proof. If g = f ⊗ χ for some Dirichlet character, the as-
sertion follows from [Shimura 73, Proposition 7]. Assume
that there is a nonconstant morphism π : Af → Ag . By
[González-Jiménez and Guitart 10, Proposition 1], Ag is
isogenous over Q to Af⊗χ for some Dirichlet character
χ, and thus there is a σ ∈ GQ such that f ⊗ χ = gσ .
Since there is a nonconstant morphism ν : Af → Ag such
that 〈ν∗(f ⊗ χ)〉 = 〈f〉, if 〈π∗(g)〉 = 〈f〉, then there ex-
ists φ ∈ End(Ag ) such that 〈φ∗(gσ )〉 = 〈g〉. This fact oc-
curs if σ provides an inner twist for g, i.e., if there ex-
ists a Dirichlet character χσ such that gσ = g ⊗ χσ (see
[González and Lario 01, Lemma 2.1]). Therefore, we ob-
tain that f = g ⊗ (χσ · χ−1).

Supported by some computations, we present the fol-
lowing conjecture.

Conjecture 4.3. For every 1 ≤ i ≤ d, let

fi =
∑
n>0

a(i)
n qn ∈ Ski

(Γ1(Ni))new

be a normalized newform without CM and with nebenty-
pus εi. Let Ki = Q ({a(i)

n }) and denote by Oi its ring of
integers. Let mi be an ideal of Oi and ti ∈ Oi. Let M be
any multiple of the conductors of every εi and let ζi be
a root of unity such that ζ2

i = εi(m) for some integer m

coprime to N =
∏d

i=1 Ni. Assume the following:

(i) For every 1 ≤ i ≤ d, fmi
(ti) 
= 0.

(ii) If there is a σ ∈ GQ such that fσ
i = fj , then the con-

gruences x ≡ tσi (mod mσ
i ) and x ≡ tj (mod mj )

have a solution in Oj .

(iii) The newforms f1 , . . . , fd are pairwise algebraically
independent.
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FIGURE 10. Graph of the two-dimensional distribution
function G2 (x, y) = G(x)G(y) (color figure available
online).

Then one has

lim
x→+∞#

{
p ∈ P(x) : p ≡ m(mod M), a(i)

p ≡ ti (mod mi),

a
(i)
p

2ζip(ki −1)/2 ≤ ai , 1 ≤ i ≤ d

}/
#
{
p ∈ P(x) : p ≡ m (mod M),

a(i)
p ≡ ti (mod mi), 1 ≤ i ≤ d

}
=
(

2
π

)d ∫ a1

−1
· · ·
∫ ad

−1

√
1 − x2

1 · · ·
√

1 − x2
d dx1 · · · dxd ,

for all ai ∈ [−1, 1], 1 ≤ i ≤ d, where P(x) denotes the set
of primes up to x not dividing N .

Observe that parts (i) and (ii) are compatibility con-
ditions to avoid finiteness of the set{

p ∈ P(x) : a(i)
p ≡ ti (mod mi), ≤ ai , 1 ≤ i ≤ d

}
.

We present some examples with mi = Oi , trivial
nebentypus, M = 1, and d = 2 to support this conjec-
ture. Let G(x) be the Sato–Tate distribution function
(see Section 2). The graph of the two-dimensional dis-
tribution function G2(x, y) = G(x)G(y) is displayed in
Figure 10.

For two normalized newforms fi =
∑

n>0 a
(i)
n qn ∈

Ski
(Γ0(Ni))new , set

G2(a1 , a2 ;x) :=
#
{

p ∈ P(x) : a
( i )
p

2p (k i −1 ) / 2 ≤ ai, 1 ≤ i ≤ 2
}

#P(x)
,

E(a1 , a2 , ;x) := |G2(a1 , a2 ;x) − G2(a1 , a2)| .

FIGURE 11. Graph of G2 (a1 , a2 , 30000) for f1 and f2 as
in Example 4.4 (color figure available online).

Example 4.4. (Distinct levels.) Let f1 ∈ S2(Γ0(11)) be
the normalized newform f as in Example 2.3 and let
f2 ∈ S2(Γ0(51)) be the unique modular newform with ra-
tional coefficients. The graphs of G2(a1 , a2 ; 30 000) and
E(a1 , a2 ; 30 000) are shown in Figures 11 and 12.

Example 4.5. (Distinct weights.) Let f1 ∈ S2(Γ0(11)) be
as in Example 4.4 and f2 = ∆ ∈ S12(Γ0(1)). The graphs
of G2(a1 , a2 ; 30 000) and E(a1 , a2 ; 30 000) are shown in
Figures 13 and 14.

FIGURE 12. Graph of E(a1 , a2 , 30000) for f1 and f2 as
in Example 4.4 (color figure available online).



96 Experimental Mathematics, Vol. 21 (2012), No. 1

FIGURE 13. Graph of G2 (a1 , a2 , 30000) for f1 and f2 as
in Example 4.5 (color figure available online).

Example 4.6. (Galois conjugates.) Let f1 ∈ S2(Γ0(23))new

be as in Example 2.5 and let f2 be its Galois conjugate.
The graphs of G2(a1 , a2 ; 55 000) and E(a1 , a2 ; 55 000) are
displayed in Figures 15 and 16.

For fixed newforms fi =
∑

n>0 a
(i)
n qn and x, m, M , ti ,

and mi , 1 ≤ i ≤ d, as in Conjecture 4.3, let us denote by
n the cardinality of the set

V :=
{
p ∈ P(x) : p ≡ m (mod M), a(i)

p ≡ ti (mod mi)
for i ≤ d

}
.

FIGURE 14. Graph of E(a1 , a2 , 30000) for f1 and f2 as
in Example 4.5 (color figure available online).

FIGURE 15. Graph of G2 (a1 , a2 , 55000) for f1 and f2 as
in Example 4.6 (color figure available online).

Now in general, n is expected to be nearly

x

log x

1∏d
i=1 Norm(mi)ϕ(M)

.

Set

D = max
{∣∣∣∣ 1n#

{
p ∈ V :

a
(i)
p

2ζip(ki −1)/2 ≤ ai for i ≤ d

}
−
(

2
π

)d d∏
i=1

∫ ai

−1

√
1 − x2 dx

∣∣∣∣},

FIGURE 16. Graph of E · (a1 , a2 , 55000) for f1 and f2

as in Example 4.6 (color figure available online).
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t1 m1 t3 m3 m M n D

1 O1 1 Z 1 1 25995 0.007

1 O1 1 Z 1 3 12970 0.008

1 O1 1 Z 2 3 13024 0.010

0 2O1 1 Z 1 3 8648 0.011

1 2O1 1 Z 1 3 4322 0.014

0 2O1 1 Z 2 3 8679 0.010

1 2O1 1 Z 2 3 4346 0.017

0 2O1 1 3Z 2 3 2138 0.020

1 2O1 0 3Z 1 3 1100 0.039

1 2O1 1 3Z 1 5 629 0.040

0 2O1 2 3Z 1 7 929 0.027

TABLE 4. Statistic D for the three newforms f1 in Table 2, f2

the Galois conjugate of f1 and f3 in Table 1.

as (a1 , . . . , ad) runs over the set

{(
a

(1)
p

2ζ1p(k1 −1)/2 , . . . ,
a

(d)
p

2ζdp(kd −1)/2

)
: p ∈ V

}
.

Next, we present two tables for d = 3 with the values of
n and D for x = 3 · 105 and different congruence classes.
Observe that the independence of such a multivariate
measure implies the independence of the three possible
bivariate measures. Let f1 ∈ S2(Γ0(23)) be as in Table 2,
let f2 be the Galois conjugate of f1 , let f3 ∈ S2(Γ0(11))
be as in Table 1, and let f4 ∈ S2(Γ1(24))new be as in
Table 3. Set O1 := Z[−1+

√
5

2 ] and O2 := Z[i].
By part (ii) of Conjecture 4.3, for the newforms

f1 , f2 , f3 we can take t2 = tσ1 and m2 = mσ
1 without loss

of generality, where σ is the nontrivial Galois conjugation
on Q (

√
5). We obtain the data displayed in Table 4.

For the newforms f1 , f3 , f4 we get the results shown
in Table 5.

As a consequence of Conjecture 4.3, we present the
following result.

Proposition 4.7. Assume that Conjecture 4.3 is true. Let
A/Q be a modular abelian surface of conductor N such
that EndQ (A) ⊗ Q is either a real quadratic field or Q ×
Q . For a prime p � N�, set bp = Tr(ρ�(Frobp)). Then

lim
x→+∞

#
{

p ∈ P(x) : bp

4
√

p ≤ a
}

#P(x)
=
∫ a

−1
h(u) du ,

t1 m1 t3 m3 t4 m4 m M n D

1 O1 1 Z 1 O2 1 8 6457 0.014

1 O1 1 Z 1 O2 3 8 6492 0.011

1 O1 1 Z 1 O2 5 8 6523 0.013

1 O1 1 Z 1 O2 7 8 6521 0.011

1 O1 1 Z 0 (2 + i)O2 1 8 1598 0.018

1 O1 1 2Z 1 O2 3 8 2145 0.023

1 2O1 0 2Z 1 O2 7 8 1434 0.037

1 2O1 2 3Z 1 O2 5 8 690 0.034

TABLE 5. Statistic D for the three newforms f1 in Table 2, f3

in Table 1 and f4 in Table 3.

where

h(u) =

∣∣∣∣∣ 32
3π2 u

(
1 + u2)E

(
1 − 1

u2

)

− 2K
(

1 − 1
u2

)∣∣∣∣∣ ,
and E, K are the elliptic integrals

E(u) =
∫ 1

0

(
1 − t2

)−1/2 (1 − ut2
)−1/2

dt ,

K(u) =
∫ 1

0

(
1 − t2

)−1/2 (1 − ut2
)1/2

dt .

The even moments are given by∫ 1

−1
x2nh(x) dx =

cncn+1

16n
,

where cn = 1
n+1

(2n
n

)
is the nth Catalan number.

Proof. There exist two normalized newforms

fi =
∑
n>0

a(i)
n qn ∈ Ski

(Γ0(Ni))new , 1 ≤ i ≤ 2,

without CM, Ni | N , and algebraically independent such
that bp = a

(1)
p + a

(2)
p for all p � N . Since the sum of two

independent continuous random variables with density
functions g1 and g2 has as density function the convolu-
tion product g1 ∗ g2 , we have that

h(u) = 2(g ∗ g)(2u) = 2
∫ 2

−2
g(t)g(2u − t) dt.
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Since

(g ∗ g)(z)

=

⎧⎪⎪⎨⎪⎪⎩
0 if z /∈ [−2, 2],
4

π 2

∫ 1+z

−1

√
1 − t2

√
1 − (z − t)2dt if z ∈ [−2, 0],

4
π 2

∫ 1
−1+z

√
1 − t2

√
1 − (z − t)2dt if z ∈ [0, 2],

we obtain that (g ∗ g)(−z) = (g ∗ g)(z) for all z ∈ [−2, 2]
and

(g ∗ g)(z) =

⎧⎪⎪⎨⎪⎪⎩
−2z

((
4 + z2

)
E
[
1 − 4

z 2

]
−8K

[
1 − 4

z 2

])
/
(
3π2
)

if z ∈ [−2, 0),
16

3π 2 if z = 0.

Now,

I2n =
∫ 1

−1
x2nh(x) dx = 2

∫ 1

−1
x2n

∫ 2

−2
g(t)g(2x − t) dt dx

=
4
π

∫ 1

−1
x2n

∫ 1

−1

√
1 − t2g(2x − t) dt dx

=
8
π2

∫ 1

−1

√
1 − t2

∫ (t+1)/2

(t−1)/2
x2n
√

1 − (2x − t)2 dx dt

=
1

22n−2π2

∫ 1

−1

√
1 − t2

∫ 1

−1
(t + v)2n

√
1 − v2 dv dt

=
1

22n−2π2

2n∑
j=0

(
2n

j

)∫ 1

−1
tj
√

1 − t2 dt

×
∫ 1

−1
v2n−j

√
1 − v2 dv.

An easy computation gives us

∫ 1

−1
tj
√

1 − t2dt =

{
0 if j = 2k + 1,

π
22 k + 1 ck if j = 2k,

and plugging this back into the previous formula, we get

I2n =
1

24n

n∑
j=0

(
2n

2j

)
cj cn−j .

The result is proved modulo the following lemma.

Lemma 4.8. Let cn be the nth Catalan number. Then

n∑
j=0

(
2n

2j

)
cj cn−j = cncn+1 .

Proof. Noting that cn = (2n)!
n !(n+1)! , we obtain

n∑
j=0

(
2n

2j

)
cj cn−j

= (2n)!
n∑

j=0

1
j!(j + 1)!(n − j)!(n − j + 1)!

,

and multiplying and dividing by n!(n + 1)!, we conclude
that

n∑
j=0

(
2n

2j

)
cj cn−j =

cn

16n

n∑
j=0

1
(n − j + 1)

(
n

j

)(
n + 1
n − j

)
.

We now consider the Chu–Vandermonde identity (see,
e.g., [Askey 75]) given by

n∑
j=0

(
x

j

)(
y

n − j

)
=
(

x + y

n

)
. ( 4–1)

Then(
2n + 1

n

)
=

n∑
j=0

(
n

j

)(
n + 1
n − j

)

=
n∑

j=0

n − j + 1
n − j + 1

(
n

j

)(
n + 1
n − j

)

= (n + 1)
n∑

j=0

1
n − j + 1

(
n

j

)(
n + 1
n − j

)

−
n∑

j=1

j

n − j + 1

(
n

j

)(
n + 1
n − j

)

= (n + 1)
n∑

j=0

1
n − j + 1

(
n

j

)(
n + 1
n − j

)
−
(

2n + 1
n − 1

)
,

where we have used again the identity in (4–1) after some
rearrangement of the variables in the last sum. The pre-
vious identity is the same as

n∑
j=0

1
n − j + 1

(
n

j

)(
n + 1
n − j

)
=

1
n + 1

((
2n + 1

n

)
+
(

2n + 1
n − 1

))
= cn+1 ,

which ends the proof of the lemma.

Remark 4.9. The result of the above proposition agrees
with that obtained in [Fité et al. 11]. However, when
EndQ (A) = EndQ (A) is a real quadratic field, the authors
of [Fité et al. 11] indeed deduce the same distribution for
bp/

√
p, but from an assumption different from ours.
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5. THE VALUES OF COEFFICIENTS OF MODULAR
NEWFORMS

In this section we want to generalize the results ob-
tained in Section 3.1 for newforms of weight at least
four with rational Fourier coefficients to normalized new-
forms with Fourier coefficients lying in any number field.
While the source of inspiration for Section 2 is the
probabilistic model presented in [Lang and Trotter 76],
this section is based on the generalization of this prob-
abilistic model to modular abelian varieties made in
[Bayer and González 97].

Let f =
∑

n>0 anqn ∈ Sk (Γ1(N)) be a normalized
newform without CM and with nebentypus ε. Set

K := Q ({an}), F := Q ({a2
p/ε(p) : p � N}),

d := [F : Q ] .

The field F , with ring of integers OF , is a totally real
subfield of K. We recall that a Dirichlet character χ is
called an inner twist of f if there is a σ ∈ GQ satisfying
σap = χ(p)ap for all primes p � N . If for an embedding σ :
K ↪→ Q there is an inner twist, it is unique and is denoted
by χσ . The extension K/F is Galois, and moreover, σ ∈
GQ provides an inner twist if and only if σ ∈ Gal(Q /F ).
In particular, if {σ1 , . . . , σd} is a set of embeddings of
F into Q , then the newforms fσ1 , . . . , fσd are pairwise
algebraically independent.

Let L = Q
∩σ ker χσ , where σ runs over the set of

F -embeddings of K into Q . The extension L/Q is
the compositum of the cyclic extension Q

ker ε
and a

polyquadratic extension of Q . Notice that L is contained
in the Nth cyclotomic field.

Set GL := Gal(Q /L). Let κ be the residue degree of
a prime p � N� in L. With the same arguments used
in [Bayer and González 97, Lemma 6.1], we obtain that
the trace and determinant of ρ�(Frobκ

p ) are in OF ⊗ Z� .
So ρ� can be taken such that ρ�(GL ) ⊆ GL(2,OF ⊗ Z�).
Let Σ be the set of primes of L not dividing N . As in
[Bayer and González 97, Section 7], for a prime p ∈ Σ
such that � � NL/Q (p), we write

a(p) := Tr(ρ�|GL
(Frobp)) .

Replacing ρ� with ρ�|GL
, we redefine fm(t) as follows. For

an ideal m of OF and t ∈ OF , we now define

fm(t)

:= lim
x→+∞

#
{
p ∈ Σ : NL/Q (p) ≤ x, a(p) ≡ t (mod m)

}
#
{
p ∈ Σ : NL/Q (p) ≤ x

} .

Since

lim
x→+∞

#{p ∈ Σ : NL/Q (p) = p ≤ x}
#{p ∈ Σ : NL/Q (p) ≤ x} = 1,

we have

fm(t) = lim
x→+∞

# {p ∈ PL (x) : ap ≡ t (mod m)}
#PL (x)

,

where PL (x) denotes the set of rational primes up to x

not dividing N that split completely in L.
In this case, Conjecture 4.3 allows us to write, for t ∈

OF and an ideal m of OF ,

lim
x→+∞#

{
p ∈ PL (x) : ap ≡ t(mod m),

aσi
p

2p(k−1)/2 ≤ ai,

1 ≤ i ≤ d

}/
#PL (x)

= fm(t)
(

2
π

)d ∫ a1

−1
· · ·
∫ ad

−1

√
1 − x2

1 · · ·

×
√

1 − x2
d dx1 · · · dxd ,

for all ai ∈ [−1, 1].
Again by [Ribet 85, Theorem 3.1],

ρ�(GL ) =
{

σ ∈ GL(2,OF ⊗ Z�) : det(σ) ∈ Z∗(k−1)
�

}
for almost all primes �. In particular, SL(2,OF ⊗
Z�) ⊂ ρ�(GL ) for almost all primes �. By
[Bayer and González 97, Lemma 7.1], the group
(
∏

� ρ�)(GQ ) is open in
∏

� ρ�(GQ ).
Now we consider the sequence N F /Q (m)fm(t), where

the indices m run through the filter of all nonzero ideals of
the ring OF . Since (

∏
� ρ�)(GQ ) is open in

∏
� ρ�(GQ ) and

rλ (GQ ) = GL(2,OF /λ) for almost all primes λ of F , by
[Bayer and González 97, Lemma 7.4 and Theorem 7.5],
there exists a bounded function F : O → R with F (t) =
limm N L/Q (m)fm(t), and moreover, there exists an ideal
m0 such that

F (t) = NF /Q (m0)fm0 (t)
∏
λ�m0

NF /Q (λ)fλ (t),

where for the prime ideal λ � m0 of F whose norm is �ν ,
we have

NF /Q (λ)fλ (t) =

⎧⎨⎩
�2 ν

�2 ν −1 if t ≡ 0 (mod λ),

�ν (�2 ν −�ν −1)
(�ν −1)(�2 ν −1) otherwise.

In order to simplify the notation, for a prime p we
write

�Ap =
(

aσ1
p

p(k−1)/2 , . . . ,
aσd

p

p(k−1)/2

)
,



100 Experimental Mathematics, Vol. 21 (2012), No. 1

and µd denotes the d-dimensional measure with density
function

∏d
i=1 g(xi), where we recall that g(x) is the den-

sity of the Sato–Tate distribution. As in Section 3, we
want to have a bound for the error function

E(Π(x), t,m; I)

=
#
{

p ∈ Π(x) : ap ≡ t (mod m), �Ap ∈ Id
}

#Π(x)

− fm(t)
∫

I d

dµd

for a fixed t ∈ OF , where I is a subinterval of [−1, 1]
containing 0. A completely analogous argument as in Sec-
tion 3 leads us to

fm(t)
∫

I

dµd = F (t)
(

2
π

)d
δ(I)d

NF /Q (m)
( 5–1)

+ O

(
δ(I)d

NF/Q (m) log(NF/Q (m))

)
+ O

(
δ(I)d+2

NF /Q (m)

)
.

Hence, again by the previous identity, the Čebotarev den-
sity theorem, equation (3–8), Conjecture 4.3, and the
square-root restriction, we end up with the following con-
jecture. We will use the set

PL,ν (x) := {p ∈ PL (x) : x < p ≤ (1 + ν)x} .

Conjecture 5.1. Let x ≥ 2. With the notation as above,
there exist constants C1 and C2 depending on t and the
newform f such that as I runs through subintervals of
[−1, 1] containing 0, we have

E(Π(x), t,m; I) = O

(
δ(I)d

NF/Q (m) log(NF/Q (m))

)
,

uniformly in the region

δ(I) <
1√

log NF/Q (m)
,

C1(log x)2 < NF/Q (m) ≤ C2

(
δ(I)x(k−1)/2

)d

,

where

Π(x) =

{
PL (x) for (k − 1)d = 1,
PL,ν (x) for (k − 1)d ≥ 2,

and ν is any positive number ν > 1/log x.

Theorem 5.2. Keep the notation as above. Assume
that Conjecture 5.1 is true. Let f =

∑
n>0 anqn ∈

Sk (Γ1(N))new be a normalized newform without CM and

k ≥ 2. Then

#{p ∈ PL (x) : ap = t}

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

π [L :Q ] F (t)
√

x
log x (1 + o(1)) if (k − 1)d = 1,

1
[L :Q ] F (t)

( 2
π

)d log(log x)

×(1 + o(1)) if (k − 1)d = 2,
O(1) if (k − 1)d > 2.

Proof. The cases (k − 1)d = 1 and (k − 1)d ≥ 3 are com-
pletely analogous to Theorems 3.5 and 3.7 by replacing m

by NF/Q (m) and using intervals of the appropriate length

δ(I) =
|NF/Q (m)|1/d − |NF/Q (t)|1/d

x(k−1)/2

in the first case, and in the second,

δ(Il) =
|NF/Q (ml)|1/d − |NF/Q (t)|1/d

2(l+1)(k−1)/2 .

We then focus on the case (k − 1)d = 2.
For each real x ≥ 2, we will choose ν > 1/ log x and

split the set PL (x) into dyadic intervals of length (1 + ν).
On each interval Jν (l) = [(1 + ν)l , (1 + ν)l+1) we choose
an integer ml such that

(1 + ν)l/4 < ml <
(1 + ν)(l+1)/2

l

(when there is no such integer, we choose ml = 1) and an
interval Il of length

δ(Il) =
|NF/Q (m)|1/d − |NF/Q (t)|1/d

x(k−1)/2

centered at the origin. Then

{p ∈ PL (x) : ap = 0}
=
∑
l≤B

{
p ∈ PL,ν ((1 + ν)l) : �Ap ∈ Il , ap ≡ 0 (mod ml)

}
=
∑
l≤B

#PL,ν ((1 + ν)l)fm(t)
∫

I d

dµd

+ O

(∑
l≤B

#PL,ν ((1 + ν)l)

(1 + ν)
d ( l + 1 ) (k −1 )

2 l

)
. ( 5–2)
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We now use (5–1) to obtain∑
l≤B

#PL,ν ((1 + ν)l)fm(t)
∫

I d

dµd

= F (t)(g(0))d

(∑
l≤B

#PL,ν ((1 + ν)l)

(1 + ν)
d ( l + 1 ) (k −1 )

2

)

= F (t)(g(0))d

(∑
l≤B

∑
p∈Jν (l)
p∈PL (x)

1
p

)

+ O

(∑
l≤B

ν#PL,ν ((1 + ν)l)

(1 + ν)
d ( l + 1 ) (k −1 )

2

)
= F (t)(g(0))d

( ∑
p≤x

p∈PL (x)

1
p

)

+ O

(∑
l≤B

ν#PL,ν ((1 + ν)l)

(1 + ν)
d ( l + 1 ) (k −1 )

2

)
.

The result follows by plugging this back into (5–2) and
using ∑

p≤x
p∈PL (x)

1
p

=
1

[L : Q ]
log log x + O(1).

This completes the proof of the theorem.

We also state the following generalization of Conjec-
ture 3.8 and thus also of Lehmer’s conjecture.

Conjecture 5.3. With the same notation as in Theorem
5.2, if (k − 1)[F : Q ] > 2 and ap = 0, then p | N or p does
not split completely in L. In particular, if f does not have
any inner twist and (k − 1)[K : Q ] > 2, then ap = 0 if
and only if p2 | N .
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