
Experimental Mathematics, 21(1):69–83, 2012
Copyright C© Taylor & Francis Group, LLC
ISSN: 1058-6458 print / 1944-950X online
DOI: 10.1080/10586458.2011.606184

Certified Numerical Homotopy Tracking
Carlos Beltrán and Anton Leykin

CONTENTS

1. Introduction
2. Preliminaries
3. The Homotopy Method: An Algorithm for Finding One Root
4. Finding All Roots
5. Random Linear Homotopy and Polynomial Time
6. Implementation of the Method
7. Experimental Results
Acknowledgments
References

2000 AMS Subject Classification: 14Q20, 65H10, 65H20
Keywords: Computational aspects of algebraic geometry, systems
of equations, continual methods, homotopy methods, approximate
zero, certified algorithms, complexity

Given a homotopy connecting two polynomial systems, we pro-
vide a rigorous algorithm for tracking a regular homotopy path
connecting an approximate zero of the start system to an ap-
proximate zero of the target system. Our method uses recent
results on the complexity of homotopy continuation rooted in
the alpha theory of Smale. Experimental results obtained with
an implementation in the numerical algebraic geometry pack-
age Macaulay2 demonstrate the practicality of the algorithm. In
particular, we confirm the theoretical results for random linear
homotopies and illustrate the plausibility of a conjecture by Shub
and Smale on a good initial pair.

1. INTRODUCTION

Numerical homotopy continuation methods are the back-
bone of the area of numerical algebraic geometry; while
this area has a rigorous theoretical base, its existing soft-
ware relies on heuristics to perform homotopy tracking.

This paper has two main goals: On the one hand, we
intend to provide an overview of some recent develop-
ments in the analysis of the complexity of polynomial
homotopy continuation methods with a view to a practi-
cal implementation. In recent years, there has been much
progress in the understanding of this problem. We sum-
marize the main results obtained, writing them in a uni-
fied and accessible way.

On the other hand, we present for the first time an im-
plementation of a certified homotopy method that does
not rely on heuristic considerations. Experiments with
this algorithm are also presented, providing for the first
time a tool to study deep conjectures on the complexity of
homotopy methods (such as Shub and Smale’s conjecture
discussed below) and illustrating known—yet somehow
surprising—features of these methods, such as equiprob-
ability of the output in the case of random linear ho-
motopy and the average polynomial or quasipolynomial
time of the algorithms studied by several authors.

Our project constructs a certified homotopy-tracking
algorithm and delivers the first practical implementation
of a rigorous path-following procedure. In particular, the
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case of a linear homotopy is addressed in full detail in
Algorithm 1.

We begin by fixing some notation. Let n ≥ 1. For
a positive integer d0 ≥ 1, let Pd0 = C d0 [X1 , . . . , Xn ] be
the vector space of all polynomials of degree at most
d0 with complex coefficients and unknowns X1 , . . . , Xn .
Then for a list of degrees (d) = (d1 , . . . , dn ), let P(d) =
Pd1 × · · · × Pdn

. Note that elements in P(d) are n-tuples
f = (f1 , . . . , fn ), where fi is a polynomial of degree di .
An element f ∈ P(d) will be seen both as a vector in some
high-dimensional vector space and as a system of n equa-
tions in n unknowns. Homotopy methods are among the
most successful tools for solving the following problem.

Problem 1.1. Assuming that f ∈ P(d) has finitely many
zeros, find approximately one, several, or all zeros of f in
C n .

It is helpful to consider the homogeneous version of
this problem: For a positive integer d0 ≥ 1, let Hd0 be the
vector space of all homogeneous polynomials of degree
d0 with complex coefficients and unknowns X0 , . . . , Xn .
Then for a list of degrees (d) = (d1 , . . . , dn ). let H(d) =
Hd1 × · · · × Hdn

. Note that elements in H(d) are n-tuples
h = (h1 , . . . , hn ), where hi is a homogeneous polynomial
of degree di . An element h ∈ H(d) will be seen both as
a vector in some high-dimensional vector space and as a
system of n homogeneous equations in n + 1 unknowns.
Note that if ζ ∈ C n+1 is a zero of h ∈ H(d) , then so is λζ,
λ ∈ C . Hence it makes sense to consider zeros of h ∈ H(d)

as projective points ζ ∈ P (C n+1). Abusing notation, we
will denote both a point in P (C n+1) and a representative
of the point in C n+1 by the same symbol. Moreover, if
necessary, it is implied that the norm of this representa-
tive is 1. The homogeneous version of Problem 1.1 is as
follows.

Problem 1.2. Assuming that h ∈ H(d) has finitely many
zeros, find approximately one, several, or all zeros of h in
P (C n+1).

There is a correspondence between Problems 1.1 and
1.2. Given f = (f1 , . . . , fn ) ∈ P(d) ,

fi =
∑

α1 + ···+αn ≤di

ai
α1 ,...,αn

Xα1
1 · · ·Xαn

n ,

we can consider its homogeneous counterpart h =
(h1 , . . . , hn ) ∈ H(d) , where

hi =
∑

α1 + ···+αn ≤di

ai
α1 ,...,αn

X
di−(α1 + ···+αn )
0 Xα1

1 · · ·Xαn
n .

If (η1 , . . . , ηn ) is a zero of f , then (1, η1 , . . . , ηn ) is a zero
of h. Conversely, if (ζ0 , . . . , ζn ) ∈ P (C n+1) is a zero of h

and ζ0 �= 0, then
(

ζ1
ζ0

, . . . , ζn

ζ0

)
is a zero of f .

The general idea of homotopy methods is as follows:
Choose some system g ∈ H(d) that has a known solu-
tion ζ0 . Then consider a path ht ⊆ H(d) , 0 ≤ t ≤ T , such
that h0 = g and hT = h is the target system (for the
time being, the reader may think of the linear path
ht = (1− t)g + th). If the homotopy is well posed, the
solution ζ0 can be continuously deformed to a solution
ζt of ht . One can try to follow this path ζt numerically
to get an approximation ζT of a zero of h. An important
ingredient is how fine the discretization of our numeri-
cal method has to be. Depending on a certain geometric
property of the path (ht, ζt), its condition length, see (3–
7) below, we will need finer or coarser discretization. A
longstanding conjecture by Shub and Smale is the follow-
ing (see Section 7.2 for a detailed description): Let1

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

d
1/2
1 xd1−1

0 x1 ,
...

d
1/2
n xdn −1

0 xn ,

ζ0 = e0 =

⎛
⎜⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎟⎠ . (1–1)

Then the running time of a well-designed homotopy
method for following linear paths starting at (g, e0) is
polynomial in the size of the input on average (i.e., if h

is chosen “randomly,” according to a particular probabil-
ity distribution). In this paper we give experimental data
that confirm this conjecture, and we suggest, moreover,
a more specific version of it; see (7–3).

The structure of the paper is as follows. In Section 2,
we recall the definition of approximate zero, condition
number, and Newton’s method, and equip the space of
polynomial systems with a Hermitian product. In Sec-
tion 3, we describe a certified algorithm to follow a ho-
motopy path. An overview of approaches to finding all
the roots of a system is presented in Section 4. In Sec-
tion 5, we give an algorithm to construct a random linear
homotopy with good average complexity. In Section 6, we
explain briefly how to use the software. Section 7 demon-
strates the practicality of computation with the devel-
oped algorithm and discusses experimental data that
could be used to obtain intuition, in particular, with re-
gard to the conjecture of Shub and Smale.

1 The original pair suggested by Shub and Smale had no d
1/2
i factors

like those here. As has been done in other papers by several authors,
we add these factors here to optimize the condition number µ(g, e0 ).
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2. PRELIMINARIES

Let d = max{d1 , . . . , dn} and D = d1 · · · dn . Note that d

is a small quantity, but in general, D is an exponential
quantity. We denote by N + 1 the complex dimension of
H(d) and P(d) as vector spaces. Namely,

N + 1 =
n∑

i=1

(
n + di

di

)
.

2.1. Approximate Zeros and Newton’s Method

In general, it is hard to describe zeros of f ∈ P(d) or h ∈
H(d) exactly. One may ask for points that are “ε-close”
to some zero, but this is not a very stable concept. The
concept of an approximate zero of [Smale 86] fixes that
gap.

Given f ∈ P(d) , consider the Newton operator associ-
ated to f ,

N(f)(x) = x−Df(x)−1f(x),

where Df(x) is the n× n derivative matrix of f at x ∈
C n , also often called the Jacobian (matrix). Note that
N(f)(x) is defined only if Df(x) is an invertible matrix.
We will define

N(f)l(x) = N(f)
l︷ ︸︸ ︷◦ · · · ◦N(f)(x),

the result of l iterations of Newton’s method starting
at x.

Definition 2.1. We say that x ∈ C n is an approximate
zero of f ∈ P(d) with associated zero η ∈ C n if N(f)l(x)
is defined for all l ≥ 0 and∥∥N(f)l(x)− η

∥∥ ≤ ‖x− η‖
22 l−1

, l ≥ 0.

The homogeneous version of Newton’s method
[Shub 93] is defined as follows. Let h ∈ H(d) and z ∈
P (C n+1). Then

NP (h)(z) = z − (Dh(z) |z⊥)−1 h(z),

where Dh(z) is the n× (n + 1) Jacobian matrix of h at
z ∈ P (C n+1), and

Dh(z) |z⊥
is the restriction of the linear operator defined by Dh(z) :
C n+1 → C n to the orthogonal complement z⊥ of z.
Hence (Dh(z) |z⊥)−1 is a linear operator from C n to z⊥,
and NP (h)(z) is defined if this operator is invertible. The
reader may check that NP (h)(λz) = λNP (h)(z), namely

that NP (h) is a well-defined projective operator. Note
that NP (h) may be written in a matrix form

NP (h)(z) = z −
(

Dh(z)
z∗

)−1(
h(z)

0

)
,

which is more convenient for computations. As before,
we denote by NP (h)l(z) the result of l consecutive appli-
cations of NP (h) with the initial point z.

Definition 2.2. We say that z ∈ P (C n+1) is an approxi-
mate zero of h ∈ H(d) with associated zero ζ ∈ P (C n+1)
if NP (h)l(z) is defined for all l ≥ 0 and

dR (NP (h)l(z), ζ) ≤ dR (z, ζ)
22 l−1

, l ≥ 0.

Here dR is the Riemann distance in P (C n+1), namely

dR (z, z′) = arccos
|〈z, z′〉|
‖z‖ ‖z′‖ ∈ [0, π/2],

where 〈·, ·〉 and ‖ · ‖ are the usual Hermitian product
and norm in C n+1. Note that dR (z, z′) = dR (λz, λ′z′)
for λ, λ′ ∈ C ; namely dR is well defined in P (C n+1)×
P (C n+1).

The reader familiar with Riemannian geometry may
check that dR (z, z′) is the length of the shortest C1

curve with extremes z, z′ ∈ P (C n+1) when P (C n+1)
is endowed with the usual Hermitian structure (see
[Blum et al. 98, p. 226]).

Let f ∈ P(d) and let h ∈ H(d) be the homogeneous
counterpart of f . In contrast to the case of exact zeros, it
may happen that z = (z0 , . . . , zn ) is an approximate zero
of h but still

(
z1
z0

, . . . , zn

z0

)
is not an approximate zero of

f . In Proposition 2.5 we explain how to fix that gap.

2.2. The Bombieri–Weyl Hermitian Product

In studying Problems 1.1 and 1.2, it is very helpful to in-
troduce some geometric and metric properties in the vec-
tor spaces P(d) and H(d) . We recall now the unitarily in-
variant Hermitian product in H(d) , sometimes called the
Kostlan Hermitian product [Blum et al. 98] or Bombieri–
Weyl Hermitian product [Beltrán and Shub 10]. Given
d0 ∈ N and two polynomials v, w ∈ Hd0 ,

v =
∑

α0 + ···+αn =d0

aα0 ,...,αn
Xα0

0 · · ·Xαn
n ,

and

w =
∑

α0 + ···+αn =d0

bα0 ,...,αn
Xα0

0 · · ·Xαn
n ,
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we consider their (Bombieri–Weyl) product

〈v, w〉 =
∑

α0 +α1 + ···+αn =d0

(
d0

(α0 , . . . , αn )

)−1

× aα0 ,...,αn
bα0 ,...,αn

,

where · is complex conjugation and(
d0

(α0 , . . . , αn )

)
=

d0 !
α0 ! · · ·αn !

is the multinomial coefficient.
Then, given two elements h = (h1 , . . . , hn ) and h′ =

(h′1 , . . . , h
′
n ) of H(d) , we define

〈h, h′〉 = 〈h1 , h
′
1〉+ · · ·+ 〈hn , h′n 〉, ‖h‖ = 〈h, h〉1/2 .

This Hermitian product defines a real inner product in
H(d) as usual,

〈h, h′〉R = Re (〈h, h′〉) .

We also define a Hermitian product and the associated
norm in P(d) as follows: Given f, f ′ ∈ P(d) , let h, h′ ∈ H(d)

be the homogeneous counterparts of f, f ′. Then define

〈f, f ′〉 = 〈h, h′〉, ‖f‖ = ‖h‖.
From now on, we will denote by S the unit sphere in H(d)

for this norm, namely

S = {h ∈ H(d) : ‖h‖ = 1}.
Note that for solving Problem 1.2, we may restrict our
input systems h ∈ H(d) to h ∈ S, for zeros of a system of
equations do not change if the system is multiplied by a
nonzero scalar number.

2.3. The Condition Number

The condition number at (h, z) ∈ H(d) × P (C n+1) is de-
fined as follows:

µ(h, z) = ‖h‖
∥∥∥(Dh(z) | z⊥)−1Diag

(
‖z‖di−1d

1/2
i

)∥∥∥ ,

or µ(h, z) =∞ if Dh(ζ) | z⊥ is not invertible. Here, ‖h‖
is the Bombieri–Weyl norm of h, and the second norm
in the product is the operator norm of that linear opera-
tor. Note that µ(h, z) is essentially equal to the operator
norm of the inverse of the Jacobian Dh(ζ), restricted to
the orthogonal complement of z. The rest of the factors
in this definition are normalizing factors that make re-
sults look nicer and allow projective computations. See
[Shub and Smale 93] for more details. Sometimes µ is de-
noted by µnorm or µpro j, but we keep the simpler notation
here.

The two following results are versions of Smale’s γ-
theorem, and follow from the study of the condition num-
ber in [Shub and Smale 93, Shub 09].

Proposition 2.3. [Beltrán and Pardo 09, Proposition 4.1]
Let f ∈ P(d) and let h ∈ H(d) be its homogeneous coun-
terpart. Let η = (η1 , . . . , ηn ) ∈ C n be a zero of f , and let
ζ = (1, η1 , . . . , ηn ) ∈ P (C n+1) be the associated zero of h.
Let x ∈ C n satisfy

‖x− η‖ ≤ 3−√7
d3/2µ(h, ζ)

.

Then x is an affine approximate zero of f , with associated
zero η.

Proposition 2.4. [Beltrán 11] Let ζ ∈ P (C n+1) be a zero
of h ∈ H(d) and let z ∈ P (C n+1) be such that

dR (z, ζ) ≤ u0

d3/2µ(h, ζ)
, where u0 = 0.17586.

Then z is an approximate zero of h with associated zero ζ.

The following result gives a tool to obtain affine ap-
proximate zeros from projective ones.

Proposition 2.5. [Beltrán and Pardo 09, Proposition 4.5]
Let f ∈ P(d) and let h ∈ H(d) be its homogeneous coun-
terpart. Let η = (η1 , . . . , ηn ) ∈ C n be a zero of f , and let
ζ = (1, η1 , . . . , ηn ) ∈ P (C n+1) be the associated zero of h.
Let z = (z0 , . . . , zn ) ∈ P (C n+1) be a projective approxi-
mate zero of h with associated zero ζ such that

dR (z, ζ) ≤ arctan

(
3−√7

d3/2µ(h, ζ)

)

(dR (z, ζ) ≤ u0
d3 / 2 µ(h,ζ ) suffices).

Let zl = N P (h)l(z), where l ∈ N is such that

l ≥ log2 log2
(
4
(
1 + ‖η‖2)) .

Let xl =
(

zl
1

zl
0
, . . . ,

zl
n

zl
0

)
. Then

∥∥xl − η
∥∥ ≤ 3−√7

d3/2µ(h, ζ)
.

In particular, xl is an affine approximate zero of f with
associated zero η by Proposition 2.3.

Thus, if we have a bound on ‖η‖ and a projective
approximate zero of h with associated zero the projective
solution ζ, we just need to apply the projective Newton
operator NP (h) a few times �log2 log2(4(1 + ‖η‖2))� to
get an affine approximate zero of f with associated zero



Beltrán and Leykin: Certified Numerical Homotopy Tracking 73

η. Here by �λ�, we mean the smallest integer greater than
λ, λ ∈ R . Thus, a solution to Problem 1.1 follows from
a solution to Problem 1.2 and a control on the norm of
the affine solutions of f ∈ P(d) . The latter can be done
either on per case basis or via a probabilistic argument
as in [Beltrán and Pardo 09, Corollary 4.9], where it is
proved that for f such that ‖f‖ = 1 and δ ∈ (0, 1), we
have ‖η‖ ≤ D√πn/δ with probability greater than 1− δ.

From now on, we center our attention on Problem 1.2,
and we will assume that all the input systems h have unit
norm, namely h ∈ S.

3. THE HOMOTOPY METHOD: AN ALGORITHM
FOR FINDING ONE ROOT

Let V = {(f, ζ) ∈ S × P (C n+1) : f(ζ) = 0} be the so-
called solution variety. Elements in V are pairs (system,
solution). Consider the projection on the first coordinate
π : V → S. The condition number defined above is an up-
per bound for the norm of the derivative of the local in-
verse of π near π(f, ζ); see, for example, [Blum et al. 98,
Chapter 12]. In particular, π is locally invertible near
(f, ζ) if µ(f, ζ) <∞.

Let t→ ht ∈ S, 0 ≤ t ≤ T , be a C1 curve, and let ζ0

be a solution of h0 . If µ(h0 , ζ0) <∞, then π is locally
invertible near h0 . Thus, there exists some ε > 0 such
that for 0 ≤ t < ε, the zero ζ0 can be continued to a zero
ζt of ht in such a way that t→ ζt is a C1 curve. We call
the curve t→ (ht, ζt) the lifted curve of t→ ht . There
are two possible scenarios:

Regular: The whole curve t→ ht , 0 ≤ t ≤ T , can be
lifted to t→ (ht, ζt).

Singular: There is some ε ≤ T such that t→ ht can be
lifted for 0 ≤ t < ε, but µ(ht, ζt)→∞ as t→ ε.

Problem 3.1. Create a homotopy continuation algorithm,
a numerical procedure that follows closely the lifted
curve. Namely, in the regular case, the goal of such an
algorithm is to construct a sequence 0 = t0 < t1 < · · · <
tk = T and pairs (gi, zi) ∈ S × P (C n+1) such that for all
i = 0, . . . , k we have gi = hti

and zi is an approximate
zero associated with the zero ζi of gi with (g0 , ζ0) and
(gi, ζi) lying on the same lifted curve.

The homotopy method that we have in mind solves
the problem above (in the regular case) and creates an
infinite sequence {ti} converging to the first singularity
on the curve in the singular case.

Remark 3.2. A homotopy algorithm still may be useful
in a singular case in which the curve can be lifted for t ∈
[0, T ), which is the scenario, for example, of a homotopy
curve leading to a singular solution. One may use zi for ti
close to T as an empirical approximation of the singular
zero. Approximate zeros (defined before) associated to
a singular zero might not exist, since Newton’s method
loses its quadratic convergence near a singularity.

Given a C1 curve t→ ht , we define ḣt = d
dt ht . Namely,

ḣt is the tangent vector to the curve at t. Note that ḣt

depends on the parameterization of the curve, not only
on the geometric object (the arc defined by the curve).

A continuous curve t→ ht ∈ S, 0 ≤ t ≤ T , is of class
C1+Lip if it is of class C1 in [0, T ] (i.e., it has a continu-
ous derivative in (0, T ) and one-sided derivatives at t = 0
and t = T , making ḣ(t) continuous in [0, T ]), and if the
mapping t→ ḣt is a Lipschitz map, namely if there exists
a constant K > 0 such that

‖ḣt − ḣs‖ ≤ K|t− s|, ∀ t, s ∈ [0, T ].

By Rademacher’s theorem, this implies that the second
derivative ḧt exists almost everywhere and is bounded by
‖ḧt‖ ≤ K.

3.1. Explicit Construction of the Homotopy Method

A certified homotopy method and its complexity
was shown for the first time in [Shub and Smale 93,
Shub and Smale 94], at least for the case of linear ho-
motopy. In a recent work [Shub 09], the theoretical com-
plexity of such methods was greatly improved, although
no specific algorithm was shown because the choice of the
step size was not specified. This last piece can be done in
several ways; see [Beltrán 11, Bürgisser and Cucker 12,
Dedieu et al. 12]. We now recall the homotopy method
of [Beltrán 11], designed to follow a C1+Lip curve t→
ht ∈ S, t ∈ [0, T ]. We make the following assumptions:

1. We know an approximate zero z0 , ‖z0‖ = 1, of
g0 = h0 , satisfying

dR (z0 , ζ0) ≤ u0

2d3/2µ(h0 , ζ0)
, (3–1)

where u0 = 0.17586, for some exact zero ζ0 of h0 .

2. Given t ∈ [0, T ], it is possible to compute ht and
ḣt = dht

dt .

3. We know some real number H ≥ 0 satisfying

‖ḧt‖ ≤ d3/2H‖ḣt‖2 , (3–2)
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for almost every t ∈ [0, T ]. From now on, we de-
fine

P =
√

2 +
√

4 + 5H2 ∈ R .

For i ≥ 1, define (gi+1 , zi+1) inductively as follows. Let
a representative of zi be chosen such that ‖zi‖ = 1. Let
s ∈ [0, T ] be such that hs = gi and let ġi = ḣs ∈ H(d) be
the tangent vector to the curve t→ ht at t = s. Let

χi,1 =

∥∥∥∥∥∥∥∥∥∥
(

Dgi(zi)
z∗i

)−1

⎛
⎜⎜⎜⎜⎝

√
d1

. . . √
dn

1

⎞
⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥
(3–3)

and

χi,2 =

⎛
⎝‖ġi‖2 +

∥∥∥∥∥
(

Dgi(zi)
z∗i

)−1(
ġi(zi)

0

)∥∥∥∥∥
2
⎞
⎠1/2

, (3–4)

and consider

ϕi = χi,1χi,2 . (3–5)

Let

c =
(1−√2u0/2)

√
2

1 +
√

2u0/2

(
1−

(
1− u0√

2 + 2u0

)P /
√

2
)

,

and let ti be chosen in such a way that
c

2Pd3/2ϕi
≤ ti ≤ c

Pd3/2ϕi
, (3–6)

or ti = T − s if
c

2Pd3/2ϕi
≥ T − s.

Note that this last case occurs when the step ti chosen
with the formula above takes us beyond the limits of
the interval [0, T ]. The lower bound on (3–6) is used to
guarantee that the homotopy step is not too small (and
thus the total number of steps is not too big).

Note that in order to compute ϕi , we must compute
the norm of a vector (for χi,2) and the norm of a ma-
trix (for χi,1). However, we need to do these tasks only
approximately, for we just need to compute a number in
[ϕi, 2ϕi ].

In Section 3.3 below, we describe the value of the con-
stants to be taken in the case of linear homotopy.

Let gi+1 = hs+ti
and let

zi+1 =
NP (gi+1)(zi)
‖NP (gi+1)(zi)‖ .

In this way, we generate (g1 , z1), (g2 , z2), etc. We stop at
k such that gk = hT , and we output zk ∈ P (C n+1).

3.2. Convergence and Complexity of the Homotopy
Method

The homotopy method is guaranteed to produce an ap-
proximate zero of the target system h = hT if we are
in the regular scenario. Moreover, its complexity (num-
ber of projective Newton’s method steps) is also well un-
derstood and attains the theoretical result of [Shub 09].
With the notation above, let

C0 =
∫ T

0
µ(ht, ζt)

∥∥∥(ḣt , ζ̇t)
∥∥∥ dt. (3–7)

The reader may observe that C0 (called the condition
length of the path (ht, ζt) in S × P (C n+1)) is the length
of the path (ht, ζt) in the condition metric, which is the
metric in the solution variety V obtained by pointwise
multiplying the usual metric inherited from that of the
product S × P (C n+1) by the condition number µ.

Theorem 3.3. [Beltrán 11] With the notation and hypothe-
ses above, assume that

dR (z0 , ζ0) ≤ u0

2d3/2µ(h0 , ζ0)
, u0 = 0.17586.

Then for every i ≥ 0, zi is an approximate zero of gi,
with associated zero ζi, the unique zero of gi that lies in
the lifted path (ht, ζt). Moreover,

dR (zi, ζi) ≤ u0

2d3/2µ(hi, ζi)
, i ≥ 1.

If C0 <∞, there exists k ≥ 0 such that hT = gk . Namely,
the number of homotopy steps is at most k. Moreover,

k ≤ �Cd3/2C0�,
where

C =
2P

(1−√2u0/2)1+
√

2

⎛
⎝1

c
+

1 +
√

2u0/2(
1−√2u0/2

)√2

⎞
⎠ .

In particular, if C0 <∞, the algorithm finishes and out-
puts zk , an approximate zero of hT = gk with associated
zero ζk , the unique zero of hT that lies in the lifted path
(ht, ζt).

Remark 3.4. Since �λ� ≤ λ + 1 for λ ∈ R , we have that
the number of steps is at most

1 + Cd3/2C0 .

Remark 3.5. If the curve t→ ht is piecewise C1+Lip , we
may divide the curve into L pieces, each of them of class
C1+Lip and satisfying a.e. ‖ḧt‖ ≤ d3/2H‖ḣt‖2 for a suit-
able H ≥ 0. The algorithm may then be applied to each
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of these pieces, and an upper bound on the total number
of steps is at most

L + Cd3/2C0 .

Remark 3.6. If more than one approximate zero of g = h0

is known, the algorithm described above may be used to
follow each of the homotopy paths starting at those zeros.
From Theorem 3.3, if the approximate zeros of g corre-
spond to different exact zeros of g, and if C0 is finite for all
the paths (i.e., if the algorithm finishes for every initial
input), then the exact zeros associated with the output of
the algorithm correspond to different exact zeros of hT .

3.3. Linear Homotopy

Note that given g, h ∈ S, the segment joining g, h is not
contained in S. One can still follow the (short) portion
of the great circle in S containing those two systems. We
refer to such “great circle homotopy” as linear homotopy,
because it is the projection of linear homotopies on S.
The arc-length parameterization of the path is

t→ ht = g cos(t) +
h− Re(〈h, g〉)g√
1− Re(〈h, g〉)2

sin(t), t ∈ [0, T ] ,

(3–8)
where

T = arcsin
√

1− Re〈h, g〉2 = distance(g, h) ∈ [0, π].

Note that this is a C∞ parameterization, so in particular,
it is C1+Lip . From [Beltrán 11, Section 2.2], in this case
we may take the following value of c/P in the description
of the algorithm:

c

P
= 0.04804448 . . . .

The procedure of certified tracking for a linear homo-
topy is presented by Algorithm 1.

The bound on the number of steps in Algorithm 1
given by Theorem 3.3 is

k ≤
⌈
71d3/2C0

⌉
. (3–9)

4. FINDING ALL ROOTS

Let us consider polynomial functions in O(d) , where O(d)

is one of {P(d) ,H(d) , S} with zeros in O n , where O n is
either C n or P (C n+1).

Consider a homotopy t→ ht ∈ O(d) , t ∈ [0, T ], con-
necting the target system hT and the start system h0

along with a set of start solutions Z0 ⊂ h−1
0 (0) ⊂ O n .

Algorithm 1 Certified tracking for a linear homotopy,
z∗ = TrackLinearHomotopy(h, g, z0).
Require: h, g ∈ S; z0 is an approximate zero of g satis-

fying (3–1).
Ensure: z∗ is an approximate zero of h associated with

the end of the homotopy path starting at the zero
of g associated with z0 and defined by the homotopy
(3–8).

1: i← 0; si = 0.
2: while si �= T do
3: Compute

ġi ← ḣs = −g sin(s) +
f − Re(〈f, g〉)g√
1− Re(〈f, g〉)2

cos(s)

at s = si .
4: Determine ϕi using (3–3), (3–4), and (3–5).
5: Let ti be any number satisfying

0.04804448
2d3/2ϕi

≤ ti ≤ 0.04804448
d3/2ϕi

.

6: if ti > T − s then
7: ti ← T − s.
8: end if
9: si+1 ← si + ti ; gi+1 ← hsi + 1 ; zi+1 ← NP (gi + 1 )(zi )

‖NP (gi + 1 )(zi )‖ .
10: i← i + 1.
11: end while
12: z∗ ← zT .

Suppose the homotopy curve t→ ht can be lifted to
t→ (ht, ζt) ∈ O(d) × O n , t ∈ [0, T ], such that the projec-
tion map π : O(d) × O n → O(d) is locally invertible at
any t ∈ [0, T ). A homotopy path is defined as the pro-
jection of such a lifted curve onto the second coordinate.
If the map π is locally invertible at t = T as well, then
the path is called regular.

The homotopy t→ ht is called optimal if every ζ0 ∈ Z0

is the beginning of a regular homotopy path. If every
solution of hT is the (other) end of the homotopy path
beginning at some ζ0 ∈ Z0 , then we call the homotopy
total.

The field of numerical algebraic geometry (see, e.g.,
[Sommese and Wampler 05]) relies on the ability to re-
liably track optimal homotopies and find all roots of a
given 0-dimensional polynomial system of equations in
O(d) . One way to accomplish this is to arrange a total-
degree homotopy.
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4.1. Total-Degree Homotopy

For a target system f ∈ P(d) , (d) = (d1 , . . . , dn ), define a
total-degree linear homotopy to be

t→ ft = (T − t)f0 + γtfT , γ ∈ C ∗, t ∈ [0, T ], (4–1)

where the start system is

f0 =
(
xd1

1 − 1, . . . , xdn
n − 1

)
∈ P(d) . (4–2)

One can readily write down the zeros of f0 , the number
of which equals the total degree, i.e., d1 · · · dn .

Proposition 4.1. Assume that fT has a finite number of
zeros, and let Z0 be the set of zeros of f0 above. Then
for all but finitely many values of the constant γ, the
homotopy (4–1) is total.

If the number of solutions to the target system fT ∈
P(d) equals the total degree, then (for a generic γ) this
homotopy is optimal.

If the target system fT ∈ P(d) has fewer solutions than
the total degree, then:

� Some solutions of the target system may be multiple
(singular).

� If O n = C n , some of the homotopy paths may di-
verge (to infinity) when approaching t = T .

To compute singular solutions, one may track regu-
lar homotopy paths to t = T − ε for a small ε > 0 (as
in Remark 3.2) and then use either singular endgames
[Sommese and Wampler 05, Section 10.3] or deflation
[Leykin et al. 06, Leykin et al. 08]. To avoid diverging
paths, one may homogenize the homotopy passing from
P(d) to H(d) . The start system of the total homotopy is
then the homogenized version of (4–2), that is,

g =
(
xd1

1 − xd1
0 , . . . , xdn

n − xdn
0

)
∈ H(d) . (4–3)

4.2. Other Homotopy Methods

There are other ways to obtain all solutions with homo-
topy continuation that exploit either sparseness or the
special structure of a given polynomial system. Here we
list a few:

� Polyhedral homotopy continuation based on
[Huber and Sturmfels 95] allows one to recover
all solutions of a sparse polynomial system in the
torus (C ∗)n .

� In many cases presented with a parametric family of
polynomial systems, it is enough to solve one system

given by a generic choice of parameters. Then, given
another system in the family, the chosen generic
system may be used as a start system in the so-
called coefficient-parameter or cheater’s homotopy
[Sommese and Wampler 05, Chapter 7] to recover
all solutions of the latter.

� Special homotopies, such as Pieri homotopies aris-
ing in the Schubert calculus [Huber et al. 98], are
total and optimal by design.

5. RANDOM LINEAR HOMOTOPY AND
POLYNOMIAL TIME

Suppose we are given a system h ∈ H(d) all of whose so-
lutions are regular, and we would like to construct an
initial pair (g, ζ0) in a random fashion such that every
root of h is equally likely to be at the end of the linear
homotopy path determined by this initial pair. A sim-
ple solution to this problem would be to take g to be the
start system (4–3) of the total-degree homotopy and pick
ζ0 from the start solutions with uniform probability dis-
tribution on the latter. It has been very recently proved
[Bürgisser and Cucker 12] that this is a fairly good can-
didate for the linear homotopy starting pair, since the to-
tal average number of steps for each path is O(d3Nnd+1),
that is, O(N log(log(N ))), hence close to polynomial in the
input size, mainly when n� d.

In [Beltrán and Pardo 08, Beltrán and Pardo 09,
Beltrán and Pardo 11], a probabilistic way to choose the
initial pair was proposed. We now center our attention
on the last and most recent of these works, where it
is proved that if the initial pair (g, ζ0) is chosen at
random (with a certain probability distribution), then
the average number of steps performed by the algorithm
described in Section 3 is O(d3/2nN), thus almost linear
in the size of the input. It is also proved that in this
way, we obtain an approximation of a zero of h, so that
all the zeros of h are equiprobable if h has no singular
solution. In [Beltrán and Shub 10], it is seen that some
higher moments (in particular, the variance) of that
algorithm are also polynomial in the size of the input.
In this section, we describe in detail how the process of
randomly choosing (g, ζ0) works, and we recall the main
results of [Beltrán and Pardo 11, Beltrán and Shub 10].

Given ζ ∈ P (C n+1), we consider the set

Rζ =
{

h̃ ∈ H(d) : h̃(ζ) = 0,Dh̃(ζ) = 0
}

.

Note that Rζ is defined as the set of polynomials in
H(d) whose coefficients (in the usual monomial basis)
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satisfy n2 + 2n linear homogeneous equalities. Thus,
Rζ is a vector subspace of H(d) . Moreover, let e0 =
(1, 0, . . . , 0)T . Then Re0 is the set of polynomial systems
h̃ = (h̃1 , . . . , h̃n ) ∈ H(d) such that all the coefficients of
h̃i containing Xdi

0 or Xdi−1
0 are zero, namely

h̃i = Xdi−2
0 p2,i(X1 , . . . , Xn )

+ Xdi−3
0 p3,i(X1 , . . . , Xn ) + · · · ,

where pk,i is a homogeneous polynomial of degree k with
unknowns X1 , . . . , Xn .

Recall that N + 1 is the (complex) dimension of H(d) .
The process of choosing (g, ζ0) at random is as follows:

1. Let (M, �) ∈ C n2 +n × C N +1−n2−n = C N +1 be chosen
at random with the uniform distribution in

B(C N +1) =
{
r ∈ C N +1 : ‖r‖2 ≤ 1

}
,

where ‖ · ‖2 is the usual Euclidean norm in C N +1. Thus,
M is an (n2 + n)-dimensional complex vector, which we
consider as an n× (n + 1) complex matrix. Note that
choosing ‖(M, �)‖2 ≤ 1 implies that ‖M‖F ≤ 1, and in-
deed, the expected value of ‖M‖2F is

n2 + n

N + 2
.

At this point, we can discard � and just keep M . Note that
this procedure is different from just choosing a random
matrix, since it induces a certain distribution in the norm
of the matrix that is precisely the one in which we are
interested. Hence, choosing (M, �) in the unit ball and
then discarding � is not a fool’s errand!

2. With probability 1, the choice above has produced a
matrix M whose kernel has complex dimension 1. Let
ζ0 be a unit norm element of ker(M), randomly chosen
in ker(M) with the uniform distribution (we may obtain
any such ζ0 simply by solving Mζ0 = 0 with our preferred
method, and then multiplying ζ0 by a uniformly chosen
random complex number of modulus 1). Let V be any
unitary matrix such that V ∗ζ0 = e0 . Choose a system h̃

at random in the unit ball (for the Bombieri–Weyl norm)
of Re0 . Then consider h = h̃ ◦ V ∗. (This last procedure
is equivalent to choosing a system at random with the
uniform distribution in B(Rζ0 ) = {h ∈ Rζ0 : ‖h‖ ≤ 1}.)

3. Let ĝ ∈ H(d) be the polynomial system defined by

ĝ(z) =
√

1− ‖M‖2F h(z)

+

⎛
⎜⎜⎝
〈z, ζ0〉d1−1√d1

. . .

〈z, ζ0〉dn −1√dn

⎞
⎟⎟⎠Mz.

4. Let

g =
ĝ

‖ĝ‖ .

Then we have chosen (g, ζ0), and the reader may check
that g(ζ0) = 0, so ζ0 is an exact zero of g.

Consider the randomized algorithm defined as follows:

1. Input h ∈ S.

2. Choose (g, ζ0) at random with the process de-
scribed above.

3. Consider the path

t→ ht = g cos(t) +
h− Re(〈h, g〉)g√
1− Re(〈h, g〉)2

sin(t),

t ∈ [0, T ], where T = arcsin
√

1− Re〈h, g〉2 , and
note that h0 = g, hT = h. Use Algorithm 1 to
follow the path ht and output an approximate
zero of h.

For given h ∈ S, let NS(h) be the expected number of
homotopy steps performed by this algorithm on input
h ∈ S. We have seen in (3–9) that

NS(h) ≤
⌈
71d3/2C0

⌉
.

The main theorems of [Beltrán and Pardo 11,
Beltrán and Shub 10] are now summarized as follows.

Theorem 5.1. If h ∈ S is such that every zero of h is
nonsingular (thus h has exactly D = d1 · · · dn projective
zeros), then:

� The algorithm above finishes with probability 1 on
the choice of (g, ζ0).

� Every zero of h is equally probable as the exact zero
associated with the output of the algorithm (which
is an approximate zero of h).

Assuming that h ∈ S is chosen at random with the uni-
form distribution on S, the expected value and variance
of NS(h) satisfy

E(NS(h)) ≤ C1nNd3/2 ,

Var(NS(h)) ≤ C2n
2N 2d3 ln(D),
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where C1 and C2 are universal constants. One may
choose C1 = 71π/

√
2.

Note that this theorem gives not only a uniform distri-
bution of the probability of producing any given root of
a regular system, but also a good expected running time
with the number of steps almost linear in the size of the
input.

An algorithm for finding all solutions of a system h

with regular zeros follows from Theorem 5.1: repeatedly
create and follow random homotopies to find one root
of the system until the number of roots found equals
the total degree. Tracking �2D logD� such random ho-
motopies, one finds all zeros of h with (high) probabil-
ity 1− 1/D (see [Beltrán and Pardo 11, Corollary 27]).
Thus, the expected number of steps of the proposed pro-
cedure is O(d3/2nND logD), which grows fast as the to-
tal degree of the system increases. This fast growth is
necessary if we are attempting to find all D solutions of
the system. The bound O(d3/2nND logD) is the small-
est proven value for the complexity of finding all roots of
a system. However, this algorithm may not be the most
practical one. Using the naive start system (4–3) should
require, according to [Bürgisser and Cucker 12], an aver-
age number of steps O(d3/2nd+1ND), which is a bigger
bound than O(d3/2nND logD) but guarantees that just
D homotopy paths have to be followed.

6. IMPLEMENTATION OF THE METHOD

The computer algebra system Macaulay2—to
be more precise, the NAG4M2 (internal name
NumericalAlgebraicGeometry) package [Leykin 11]—
hosts the implementation of Algorithm 1, which is the
first implementation of certified homotopy tracking in
numerical polynomial homotopy continuation software.
The current implementation is carried out with stan-
dard double-precision floating-point arithmetic without
analyzing effects of round-off errors. For a variant of
the algorithm that facilitates rigorous error control, see
[Beltrán and Leykin 12].

6.1. NAG4M2: User Manual
There are several functions that we would like to describe
here. First, let us give an example of launching the track
procedure with the certified homotopy tracker:

i1 : loadPackage "NumericalAlgebraicGeometry";

i2 : R = CC[x,y,z];

i3 : T = {x^2+y^2-z^2, x*y};

i4 : (S,x0) = totalDegreeStartSystem T;

i5 : x1 = first track(S,T,x0,
Predictor=>Certified,Normalize=>true)

o5 = {.00000207617, -.706804, .70744}

o5 : Point

i6 : x1.NumberOfSteps

o6 = 129

The values for the optional arguments Predictor and
Normalize specify that the certified homotopy tracking
is performed and the polynomial systems are normal-
ized to the unit sphere S. In this particular example,
totalDegreeStartSystem creates an initial pair based
on the system described in (4–3), and track follows the
linear homotopy starting at this initial pair and finishing
at the given target system.

The user can also get a good initial pair (1–1) dis-
cussed below with the function goodInitialPair as well
as a random pair of start system and solution as described
in Section 5 with randomInitialPair.

It is possible for track to return a solution marked
as failure. This happens when the step size becomes
smaller than the threshold set by the optional parameter
tStepMin, which has the default value 10−6 .

6.2. Uncertified Homotopy Continuation

All existing software, such as HOM4PS2 [Lee et al 11],
Bertini [Bates et al. 11], and PHCpack [Verschelde 99],
utilize algorithms based on alternating predictor and cor-
rector steps. Here is a summary of operations performed
at a point of continuation sequence t ∈ [0, T ] starting
with a pair (ht, xt), where xt approximates some zero
ηt of ht :

1. Decide heuristically on the step size ∆t that the
predictor should take.

2. Use a predictor method, i.e., one of the methods
for numerical integration of the system of ODEs

ż = −(Dht)−1 ḣt

to produce an approximation of ζt+∆t , a solution
of ht+∆t .

3. Apply the corrector: perform a fixed number l

of iterations of Newton’s method to obtain a re-
fined approximation xt+∆t = N(ht+∆t)l(xt+∆t).

4. If the estimated error bound in step 3 is larger
than a predefined tolerance, decrease ∆t and go
to step 1.

After the parameters, e.g., tolerance values, have been
tuned, the application of the described heuristics often
produces correct solutions.
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Number of Steps per Path
System Number of Solutions (C) (H)
Random(2 ,2) 4 198.5 31
Random(2 ,2 ,2) 8 370.125 23
Random(2 ,2 ,2 ,2) 16 813.812 44.375
Random(2 ,2 ,2 ,2 ,2) 32 1542.5 48.5312
Random(2 ,2 ,2 ,2 ,2 ,2) 64 2211.58 58.5312
Katsura3 4 569.5 25.75
Katsura4 8 1149.88 41.5
Katsura5 16 1498.38 39.0625
Katsura6 32 2361.81 55.5625

TABLE 1. Comparison of the number of steps in the certified and a heuristic algorithm.

We can imagine several “unfortunate” scenarios in
which two distinct homotopy paths come too close
to each other. Consider sequences z0 , zt1 , . . . , ztk

and
z′0 , z

′
t ′1

, . . . , z′t ′
k ′

created by an uncertified algorithm in an
attempt to approximate these two paths:

� If there are subsequences in two sequences that ap-
proximate a part of the same path, then this is re-
ferred to as path jumping.

� Path swapping occurs when the sequences jump
from one path to the other, but there is no com-
mon path segment that they approximate.

While path jumping can in principle be detected a pos-
teriori and the continuation rerun with tighter tolerances
and smaller step sizes, path swapping cannot be deter-
mined easily.

Path swapping does not result in an incorrect set of
target solutions; however, for certain homotopy-based
algorithms such as numerical irreducible decomposition
[Sommese et al. 01] and applications relying on mon-
odromy computation such as [Leykin and Sottile 09], the
order of the target solutions is crucial. Therefore, one
needs not only to certify the endpoints of homotopy
paths, but also to show that the approximating sequences
follow the same path from start to finish. The certifica-
tion of the sequence produced in Section 3 provided by
Theorem 3.3 gives such a guarantee.

In certain cases, the target solutions obtained by
means of uncertified homotopy continuation can be rig-
orously certified after all of them have been obtained.
For instance, suppose a target system hT ∈ H(d) has
distinct regular solutions in P (C n+1). Then their num-
ber is equal to the total degree. Suppose some proce-
dure provides that many approximations to the solu-
tions. If a bound on max{µ(hT , ζ) | ζ ∈ h−1

T (0)} is known,
then using Proposition 2.4, these approximations may

be certified as distinct numerical zeros, thus certifying
that all solutions have been found. If no such bound is
known, one may still try to prove that the zeros are dif-
ferent by means of Smale’s α-theorem [Smale 86] (see
[Hauenstein and Sottile 10]). As discussed above, these
procedures cannot determine whether path swapping has
occurred.

7. EXPERIMENTAL RESULTS

The algorithm that we developed and implemented gave
us a chance to conduct experiments that illuminated sev-
eral aspects of the complexity analysis of solving polyno-
mial systems via homotopy continuation.

7.1. Certified versus Heuristic tracking

Our experiments in this section were designed to explore
how well the certified tracking provided by Algorithm 1
scales in comparison with heuristic approaches. Needless
to say, it was expected that running a certified nonheuris-
tic method like the one we propose would require more
computational time. As was already mentioned, the pro-
posed certified procedure makes sense only for a regular
homotopy. In nearly singular examples, the certified ho-
motopy (like any other method) is bound to show bad
performance due to steps being minuscule at the end of
paths, which is mandated by (3–6).

In Table 1 we give the data produced by the tracking
of total-degree homotopy that are optimal for the chosen
examples:

� Random(d1 ,...,dn ) : a random system in S ⊂ H(d)

with uniform distribution.
� Katsuran : a classical benchmark with one linear and

n− 1 quadratic equations in n variables.



80 Experimental Mathematics, Vol. 21 (2012), No. 1

n Egood Vargood Etotal Vartotal Erand Varrand B(n, d, N )
4 962.051 3.2 · 105 1263.72 4.3 · 105 1622.29 6.8 · 105 1.0 · 105

5 1524.6 6.9 · 105 2130.54 1.2 · 106 2728.3 1.7 · 106 2.3 · 105

6 2258.33 1.3 · 106 3129.56 2.2 · 106 4137.16 3.5 · 106 4.5 · 105

7 3130.83 2.3 · 106 4530.55 4.5 · 106 5743.32 5.5 · 106 7.8 · 105

8 4154.38 3.9 · 106 5967.57 6.7 · 106 8048.94 1.0 · 107 1.2 · 106

9 5488.93 7.0 · 106 8013.71 1.1 · 107 10482.1 1.6 · 107 1.9 · 106

10 6871.35 1.0 · 107 10071 1.4 · 107 13477.5 2.2 · 107 2.9 · 106

11 8622 1.2 · 107 12996.1 2.8 · 107 17193.3 3.5 · 107 4.2 · 106

12 10413.3 2.0 · 107 15115.4 2.8 · 107 20761.3 4.6 · 107 5.8 · 106

13 12447.1 2.6 · 107 18744.5 4.3 · 107 25646.5 6.3 · 107 7.9 · 106

14 14769.9 3.3 · 107 22317.1 6.1 · 107 29596.7 9.1 · 107 1.0 · 107

15 17255.7 4.4 · 107 26017.7 7.3 · 107 35582.6 1.2 · 108 1.4 · 107

16 20959.7 5.9 · 107 30063.9 1.0 · 108 42098.9 1.5 · 108 1.7 · 107

17 23589.4 7.5 · 107 35403.1 1.3 · 108 48024.5 1.7 · 108 2.2 · 107

18 27400.9 9.6 · 107 40242.5 1.5 · 108 54955.4 2.3 · 108 2.7 · 107

19 29930.3 1.0 · 108 46502.2 2.3 · 108 62855.2 2.9 · 108 3.4 · 107

20 34374.2 1.4 · 108 51730.2 2.3 · 108 71242.5 3.5 · 108 4.1 · 107

TABLE 2. The number of steps of the certified homotopy continuation algorithm for good, total degree, and random initial pairs
on average and its variance; B(n, d, n) is the bound in Theorem 5.1.

For every experiment, we provide the number of solu-
tions and the average number of steps per homotopy path
both for the certified algorithm (C) and for one of the
best heuristic procedures (H) implemented in Macaulay2.
Note that we used the default settings for the parameters
that control heuristics without tightening them for larger
(worse-conditioned) problems.

One step in a heuristic algorithm involves more basic
operations than in the certified tracker: there is a pre-
dictor and several corrector steps performed, and if un-
successful, a new step size is chosen and the procedure
is repeated. Even though the heuristic approach leads to
much smaller computational time for larger systems, this
means that one should expect heuristics to enjoy bet-
ter practical complexity for most examples (there is no
sense in talking about the theoretical complexity of such
methods).

7.2. A Conjecture of Shub and Smale

In [Shub and Smale 94], the pair described in (1–1) was
conjectured to be a good starting pair for the linear ho-
motopy. More precisely, let

Egood =E
(
�(steps) to solve h

with linear homotopy starting at (g, e0)
)
,

where the expectation is taken for random h ∈ S. Then
the conjecture in [Shub and Smale 94] can be written as

Egood ≤ a small quantity, polynomial in N. (7–1)

The experimental data displayed in Table 2 (see also
Figure 1) were obtained by running a linear homotopy
connecting the pair (g, e0) as in (1–1) to a random sys-
tem in S ⊂ H(d) with di = 2 for i = 1, . . . , n. We compare
the values to that of B(n, d,N) = 71πd3/2nN/

√
2, which

according to Theorem 5.1 is a bound on the average num-
ber of steps of random linear homotopy.

For each value of n, we have generated 1000 random
systems in S with a uniform probability distribution. The
values Egood and Vargood are estimated expected value
and variance of the number of steps taken by Algorithm 1
for the initial pair in (1–1); Erand and Varrand refer to
values for the random initial pair; Etotal and Vartotal refer
to those for the homogeneous version of the total-degree
homotopy system of Section 4.1 containing all the roots
of unity (the choice of the root is irrelevant for symmetry
reasons), namely, the pair

h0 =
(
Xd1

1 −Xd1
0 , . . . , Xdn

n −Xdn
0

)
, ζ0 = (1, . . . , 1).

(7–2)
Table 2 and Figure 1 suggest two conclusions for the

case of degree-two polynomials:

� The random homotopy seems to take approximately
double the number of steps as the homotopy with
initial pair (1–1). The total-degree homotopy lies
somewhere in between.

� The average number of steps in the three cases
appears to grow as C ·N/

√
n with C a constant,
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FIGURE 1. In the first figure, we have plotted the experimental values obtained for Egood , Erand , and Etotal for n =
4, . . . , 20. In the second one we plot Egoodn1/2/N , Etotaln

1/2/N , and Erandn1/2/N for n = 4, . . . , 20 (color figure available
online).

C ≈ 35, 50, 70, for Egood , Etotal , and Erand , respec-
tively.

This experiment thus confirms the conjecture of Shub
and Smale, and moreover, it suggests a more specific
form, suggesting that the same bound given for random
homotopy should hold for the conjectured pair:

Egood ≤ CnNd3/2 , (7–3)

with C a constant. We also extend this conjecture to the
case of the initial total-degree homotopy pair (h0 , ζ0) of
(7–2):

Etotal ≤ CnNd3/2 .

Moreover, as pointed out above, in the case of degree-2
systems, our experiments suggest the existence of a much
better bound, since Egood , Etotal , and Erand all appear to
behave as CN/

√
n, where C is a constant. The difference

between the experimentally observed value and the theo-
retical bound in the case of randomly chosen initial pairs,
respectively O(N/

√
n) and O(nN) for (d) = (2, . . . , 2),

can be explained as follows. The proof of the theoretical

bound starts by bounding

C0 =
∫ T

0
µ(ht, ζt)‖(ḣt , ζ̇t)‖ dt

≤
√

2
∫ T

0
µ(ht, ζt)2‖ḣt‖ dt,

which follows from the fact that ‖ζ̇t‖ ≤ µ(ht, ζt)‖ḣt‖ by
the geometric interpretation of the condition number.
This last inequality is not sharp in general, and hence
one may expect better behavior of the random linear ho-
motopy method than that given by the theoretical bound.

7.3. Equiprobable Roots via Random Homotopy

The algorithm constructing a random homotopy has been
implemented in two variants:

1. It is implemented as described in Section 5.

2. The initial pair for the linear homotopy is built
by taking (g, e0) in (1–1) and performing a
random unitary coordinate transformation (see
[Mezzadri 07] for a stable and efficient algorithm
that chooses such a random unitary matrix).

Then the following experiment was conjured to show
the equiprobability of the roots at the end of a random
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homotopy promised by Theorem 5.1: As the target sys-
tem we take h = g + εh̃, where g is as in (1–1), h̃ is cho-
sen randomly in S, and ε is small. Note that g has a
unique nonsingular solution, which is very well condi-
tioned, but it also has a whole subspace of degenerate
solutions. Hence h also has a rather well conditioned so-
lution, and then D − 1 isolated but poorly conditioned
ones. One might expect that the random homotopy (2)
we have just described (for such a fixed h) would be bi-
ased toward discovering the well-conditioned root. How-
ever, we obtained numerical evidence that this is not the
case: all the solutions seem to be equiprobable.

For h with the degrees d = (2, 2, 2) and ε = 0.1 and
several random choices of g, we have carried out experi-
ments with the certified tracking procedure making 8000
runs. We experimented with both variants (1) and (2)
of choosing the random initial pair. Each experiment re-
sulted in close to 1000 hits for each of eight roots, in both
variants (1) and (2). This appears to support the conclu-
sion of Theorem 5.1, valid for variant (1), and moreover
extend it to the case of variant (2).

We can state this experimental result in a more
precise way, using Shannon’s entropy as suggested in
[Beltrán and Pardo 11]. Assume that we have an algo-
rithm that involves some random choice in its input and
that can produce different outputs x1 , . . . , xl . Shannon’s
entropy is by definition the number

H = −
l∑

i=1

pi log2(pi),

where pi is the probability that the output is xi . It is easy
to see that Shannon’s entropy of an algorithm is maximal,
and equal to log2(l), if and only if every output is equally
probable. The experimental value of Shannon’s entropy
for the random algorithm in all experiments described
above is in the interval [2.99, 3]; the maximum, in this
case, is log2 8 = 3.

The exact reason for the modified algorithm (variant
(2)) to produce equiprobability of the roots is not under-
stood. This poses a very interesting mathematical ques-
tion, which together with proving (7–3) would yield great
progress in the understanding of homotopy methods for
solving systems of polynomial equations.
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Bézout’s Theorem. V. Polynomial Time.” Theoret. Com-
put. Sci. 133:1 (1994), Selected papers of the Workshop
on Continuous Algorithms and Complexity (Barcelona,
1993), 141–164.

[Smale 86] S. Smale. “Newton’s Method Estimates from Data
at One Point.” In The Merging of Disciplines: New Direc-
tions in Pure, Applied, and Computational Mathematics
(Laramie, Wyo., 1985), pp. 185–196. Springer, 1986.

[Sommese and Wampler 05] A. J. Sommese and C. W. Wam-
pler. The Numerical Solution of Systems of Polynomials.
World Scientific, 2005.

[Sommese et al. 01] A. J. Sommese, J. Verschelde, and C. W.
Wampler. “Numerical Decomposition of the Solution Sets
of Polynomial Systems into Irreducible Components.”
SIAM J. Numer. Anal. 38:6 (2001), 2022–2046.

[Verschelde 99] J. Verschelde. “Algorithm 795: PHCpack: A
General-Purpose Solver for Polynomial Systems by Ho-
motopy Continuation.” ACM Trans. Math. Softw. 25:2
(1999), 251–276.

[Zyczkowski and Kus 94] K. Zyczkowski and M. Kus. “Ran-
dom Unitary Matrices” (English summary). J. Phys. A
133:27 (1994), 4235–4245.
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