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In this article, we present analogues of supercongruences of Ra-
manujan type observed by L. Van Hamme and W. Zudilin. Our
congruences are inspired by Ramanujan-type series that involve
quadratic algebraic numbers.

1. RAMANUJAN AND RAMANUJAN–SATO SERIES

Srinivasa Ramanujan’s work on elliptic integrals and
modular equations led him to the discovery of 17
surprising series for 1/π, which were published in
[Ramanujan 14]. These series are of the following form:
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where z, a, and b are algebraic numbers and
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The proofs of Ramanujan’s 17 series, as well as many
other series of the same type, are now available. For more
details see [Baruah et al. 09a]. Such series are now known
as Ramanujan-type series. In 2002, T. Sato surprised the
mathematical community by presenting a series like Ra-
manujan’s involving the Apéry numbers
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Inspired by this series, mathematicians discovered similar
series involving the Domb numbers [Chan et al. 04]
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the Almkvist–Zudilin numbers [Almkvist and Zudilin 06]
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and other types of numbers [Almkvist and Zudilin 06]
[Chan and Verril 09, Chan et al. 11], such as
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Series involving such types of numbers are now known as
Ramanujan–Sato-type series. We will refer to the num-
bers An as Ramanujan–Sato-type numbers.

2. MOSAIC SUPERCONGRUENCES

We generalize the patterns of supercongruences of Ra-
manujan type noted in [Van Hamme 97] and [Zudilin 09]
to series involving quadratic algebraic numbers. Let An

be of Ramanujan–Sato type. Let z, a, b be algebraic num-
bers such that

∞∑
n=0

An (a + bn)zn =
1
π

.

Suppose that
p−1∑
n=0

An (a + bn)zn = α1(p)
√
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where α1(p), . . . , αj (p) are rational, a = a1
√

d1 +
a2
√

d2 + · · · + aj

√
dj , and d1 , . . . , dj are square-free.

Then for primes p > p0 , where p0 is some fixed prime,
we have the supercongruences

αi(p) ≡ ai

(−di

p

)
p (mod p3), i = 1, 2, . . . , j.

We will refer to them as mosaic supercongruences be-
cause they are pieces of a single sum. We recall that for
some Ramanujan–Sato-type numbers, the supercongru-
ences hold only modulo p2 .

For the Ramanujan-like series for 1/π2 discovered
by the author, we conjecture analogous mosaic super-
congruences, again generalizing Zudilin’s observations
[Zudilin 09]. See our last two examples.

3. EXAMPLES

All congruences in the following examples are conjec-
tures.

Example 3.1. For the Ramanujan-type series
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we have checked that if we write
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then for primes p > 5, we have the following supercon-
gruences:
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that is,
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which is [Zudilin 09, equation 21].

Example 3.2. For the Ramanujan-type series
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then for primes p > 7, we have the following supercon-
gruences:

αp ≡ −10
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p

)
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(−7
p

)
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Example 3.3. Consider the Apéry numbers
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, n = 0, 1, 2, . . . .

One of Sato’s series is [Sato 02]
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If we write
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then for primes p > 5, we have the supercongruences
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Example 3.4. The Ramanujan-type series in
[Baruah and Berndt 09b, equation 6.1] is
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It can be derived from Ramanujan series
[Baruah and Berndt 09b, equation 6.4] by Zudilin’s
translation method. Writing
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we have for primes p > 3, the supercongruences
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Example 3.5. The “complex” Ramanujan series
[Guillera and Zudilin 12, equation 45] is
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we have for primes p > 7, the supercongruences
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Example 3.6. For the Ramanujan-like series [Guillera 10,
equation 10]
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then for primes p > 3, we have the supercongruences

αp ≡ 45p2 (mod p5),

that is, they follow Zudilin’s pattern [Zudilin 08].

Example 3.7. The only known (unproven) hypergeometric
Ramanujan-like series for 1/π2 [Guillera 10, equation 9]
with an irrational z is
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we have for primes p > 5, the supercongruences

αp ≡ 56p2 , βp ≡ −25
(

5
p

)
p2 (mod p5).

This generalizes Zudilin’s pattern.



68 Experimental Mathematics, Vol. 21 (2012), No. 1

Example 3.8. To provide more evidence to support our
observation, we have considered other series involving
only simple square roots in [Baruah and Berndt 09b,
Borwein and Borwein 88, Chan and Verril 09]. The ex-
pected mosaic supercongruences appear to hold in all
these cases.

4. CONCLUDING REMARKS

For an excellent survey on Ramanujan-type series and
a beautiful survey on recent advances in this topic, see
[Baruah et al. 09a] and [Zudilin 08] respectively. There
are many examples of convergent Ramanujan-type and
Ramanujan–Sato-type series in the literature. From the
modular theory of Ramanujan-type series we know that
there are functions z(q), b(q), and a(q), with q = eiπτ

and �(τ) > 0, that take algebraic values when τ is a
quadratic irrational. Obviously the series converges faster
when �(τ) increases. If �(τ) is small, then the series
may diverge. An example of a “divergent” Ramanujan-
type series is given in [Borwein and Borwein 88, p. 371],
which corresponds to �(τ) =

√
253/11. Convergent or di-

vergent series lead to supercongruences following exactly
the same patterns [Guillera and Zudilin 12].

Taking into account that the Jacobi symbols are the
quadratic residues, perhaps this work can provide some
clues for discovering similar congruences when the alge-
braic numbers involved are more complicated. Our future
project would be to carry this out.
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