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References 1. RAMANUJAN AND RAMANUJAN-SATO SERIES

1. Ramanujan and Ramanujan-Sato Series

Srinivasa Ramanujan’s work on elliptic integrals and
modular equations led him to the discovery of 17
surprising series for 1/m, which were published in
[Ramanujan 14]. These series are of the following form:
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where z, a, and b are algebraic numbers and
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The proofs of Ramanujan’s 17 series, as well as many
other series of the same type, are now available. For more
details see [Baruah et al. 09a]. Such series are now known
as Ramanujan-type series. In 2002, T. Sato surprised the
mathematical community by presenting a series like Ra-
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manujan’s involving the Apéry numbers
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Inspired by this series, mathematicians discovered similar
series involving the Domb numbers [Chan et al. 04]
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and other types of numbers [Almkvist and Zudilin 06]
[Chan and Verril 09, Chan et al. 11], such as
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Series involving such types of numbers are now known as
Ramanujan—Sato-type series. We will refer to the num-
bers A, as Ramanujan—Sato-type numbers.

2. MOSAIC SUPERCONGRUENCES

We generalize the patterns of supercongruences of Ra-
manujan type noted in [Van Hamme 97] and [Zudilin 09]
to series involving quadratic algebraic numbers. Let A,
be of Ramanujan—Sato type. Let z, a, b be algebraic num-
bers such that
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Suppose that
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where aq(p),...,a;(p) are rational, a=a1vdi +
azv/dy + -+ +aj\/d;, and di,...,d; are square-free.
Then for primes p > pg, where py is some fixed prime,
we have the supercongruences
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We will refer to them as mosaic supercongruences be-
cause they are pieces of a single sum. We recall that for
some Ramanujan—Sato-type numbers, the supercongru-
ences hold only modulo p?.

For the Ramanujan-like series for 1/7% discovered
by the author, we conjecture analogous mosaic super-
congruences, again generalizing Zudilin’s observations
[Zudilin 09]. See our last two examples.

3. EXAMPLES

All congruences in the following examples are conjec-
tures.

Example 3.1. For the Ramanujan-type series
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we have checked that if we write
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then for primes p > 5, we have the following supercon-
gruences:
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that is,
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which is [Zudilin 09, equation 21].
Example 3.2. For the Ramanujan-type series

i (3),(3), (), <7\ﬁ10 .\ 13ﬁ7n>

3
e 27 9
L(1vT-sa\" 1
54 o

we have checked that if we write
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then for primes p > 7, we have the following supercon-
gruences:

:—10<p1>p, sz7<_77>p (mod p?).

Example 3.3. Consider the Apéry numbers
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One of Sato’s series is [Sato 02]
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If we write
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then for primes p > 5, we have the supercongruences

041,:—134<pg>p7 ﬂp560<_715>p (mod p*).

Example 3.4. The Ramanujan-type series in

[Baruah and Berndt 09b, equation 6.1] is
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It can be derived from Ramanujan series

[Baruah and Berndt 09b, equation 6.4] by Zudilin’s
translation method. Writing
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we have for primes p > 3, the supercongruences
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Example 3.5. The “complex” Ramanujan
[Guillera and Zudilin 12, equation 45] is

series
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Writing
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we have for primes p > 7, the supercongruences

= —13p, 6p7<_77>p (mod p*).

Example 3.6. For the Ramanujan-like series [Guillera 10,
equation 10]
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then for primes p > 3, we have the supercongruences
ap = 45p°  (mod p°),

that is, they follow Zudilin’s pattern [Zudilin 08].

Example 3.7. The only known (unproven) hypergeometric

Ramanujan-like series for 1/72 [Guillera 10, equation 9]
with an irrational z is
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we have for primes p > 5, the supercongruences
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This generalizes Zudilin’s pattern.
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Example 3.8. To provide more evidence to support our
observation, we have considered other series involving
only simple square roots in [Baruah and Berndt 09b,
Borwein and Borwein 88, Chan and Verril 09]. The ex-
pected mosaic supercongruences appear to hold in all
these cases.

4. CONCLUDING REMARKS

For an excellent survey on Ramanujan-type series and
a beautiful survey on recent advances in this topic, see
[Baruah et al. 09a] and [Zudilin 08] respectively. There
are many examples of convergent Ramanujan-type and
Ramanujan—Sato-type series in the literature. From the
modular theory of Ramanujan-type series we know that
there are functions z(q), b(q), and a(q), with q = /"
and (1) > 0, that take algebraic values when 7 is a
quadratic irrational. Obviously the series converges faster
when §(7) increases. If (1) is small, then the series
may diverge. An example of a “divergent” Ramanujan-
type series is given in [Borwein and Borwein 88, p. 371],
which corresponds to ¥(7) = v/253/11. Convergent or di-
vergent series lead to supercongruences following exactly
the same patterns [Guillera and Zudilin 12].

Taking into account that the Jacobi symbols are the
quadratic residues, perhaps this work can provide some
clues for discovering similar congruences when the alge-
braic numbers involved are more complicated. Our future
project would be to carry this out.
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