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This paper numerically computes the topological and smooth
invariants of Eschenburg–Kruggel spaces with small fourth coho-
mology group, following Kruggel’s determination of the Kreck–
Stolz invariants of Eschenburg spaces satisfying condition C
[Eschenburg 82, Kruggel 05, Kreck and Stolz 91]. It is shown that
each topological Eschenburg–Kruggel space with small fourth
cohomology group has each of its 28 oriented smooth structures
represented by an Eschenburg–Kruggel space. Our investigations
also suggest that there is an action of Z12 on the set of homo-
topy classes of Eschenburg–Kruggel spaces, the nature of which
remains to be understood.

The calculations are done in C++with the Gnu Gmp arbitrary-
precision library and Jon Wilkening’s C++ wrapper.

1. INTRODUCTION

In [Aloff and Wallach 75], the authors introduced a fam-
ily of 7-manifolds that are homogeneous spaces of
SU3 as follows: let p, q be coprime integers and let
Up,q ⊂ SU3 be the subgroup of diagonal matrices of the
form diag(zp , zq , z−p−q ) for z ∈ S1 . The Aloff–Wallach 7-
manifold Mpq is equal to SU3/Up,q . Aloff and Wallach
showed that a bi-invariant metric on SU3 induces a pos-
itively curved submersion metric on the quotient Mp,q .
In [Kreck and Stolz 91, Kreck and Stolz 88], the authors
studied the topological and smooth classification of
Aloff–Wallach spaces. Among other things, they showed
that there are diffeomorphic Aloff–Wallach spaces that
are not SU3 equivariantly diffeomorphic: the “smallest”
example occurs with (p, q) equal to (−4 638 661, 582 656)
and (−2 594 149, 5 052 965) [Kreck and Stolz 88, p. 468].
Each of these spaces has a finite cyclic fourth integral
cohomology group; they showed, through a computer
search, that if the order of H4(Mp,q ; Z) is less than r =
2955 27 597, then the topological structure determines
the smooth structure. Additional computer searches, at-
tributed to Zagier and Odlyzko, revealed homeomor-
phic, but not diffeomorphic, Aloff–Wallach spaces with
rank H4(Mp,q ; Z) between the above number and roughly
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2 × 1020 [Kreck and Stolz 88, p. 467]. In all cases, there
were no reported examples of a topological Aloff–Wallach
space whose 28 distinct smooth structures are themselves
diffeomorphic to Aloff–Wallach spaces.

In [Eschenburg 82], the author introduced a fam-
ily of 7-manifolds that generalize Aloff–Wallach spaces
[Kruggel 05]. Let U ∼= U1 be a subgroup of U3 × U3 such
that the natural action of U on U3 defined by

∀u = (u1 , u2) ∈ U, g ∈ U3 : u · g = u1gu−1
2 (1–1)

stabilizes SU3 and is free. The group U is conjugate to a
diagonal subgroup characterized by two integer vectors k

and l ∈ Z3 such that k0 + k1 + k2 = l0 + l1 + l2 :

Ukl =
{
diag(zk0 , zk1 , zk2 ) ⊕ diag(zl0 , zl1 , zl2 ) : z ∈ S1} .

(1–2)

The freeness of the action (1–1) is equivalent to the prop-
erty that

∀ permutations σ : k − σ(l) is a primitive vector in Z3 .

(1–3)

Eschenburg defined k, l to be admissible if

gcd(k0 − l0 , k1 − l1), gcd(k0 − l0 , k1 − l2),
gcd(k0 − l1 , k1 − l0), gcd(k0 − l1 , k1 − l2),
gcd(k0 − l2 , k1 − l0), gcd(k0 − l2 , k1 − l1)

(1–4)

are all equal to 1.

Definition 1.1. Let k, l ∈ Z3 satisfy k0 + k1 + k2 = l0 +
l1 + l2 and the admissibility conditions (1–4) and define
Ukl as in (1–2). The 7-manifold Ekl := SU3/Ukl is called
an Eschenburg space.

Eschenburg computed the integral cohomology ring
of Ek,l = SU3/Uk,l and proved that these spaces are
strongly inhomogeneous in most cases. He also showed
that under certain conditions on k, l, a bi-invariant met-
ric on SU3 induces a positively curved submersion metric
on Ek,l .

In [Kruggel 05], the author computed the Kreck–Stolz
invariants of a broad number of Eschenburg spaces—
henceforth an Eschenburg–Kruggel space—and obtained
a classification of these Eschenburg–Kruggel spaces up
to homotopy, homeomorphism, and diffeomorphism. In
[Chinburg et al. 07], the authors implemented a com-
puter search for homeomorphic, but not diffeomorphic,
positively curved (respectively 3-Sasakian) Eschenburg–
Kruggel spaces. They found that for #H4(Ek,l ; Z) <

8000, there is a unique pair of homeomorphic, but
not diffeomorphic, positively curved Eschenburg–Kruggel

spaces. In [Butler 09], the present author proved that the
existence of a real-analytically completely integrable con-
vex Hamiltonian is a nontrivial smooth invariant of the
configuration space, and proved the complete integrabil-
ity of geodesic flows on all Eschenburg–Kruggel spaces.
That work motivated the following question.

Question 1.2. Let E be a topological Eschenburg space.
Is each smooth structure on E diffeomorphic to an Es-
chenburg space Ek,l?

One knows from the work of Kreck and Stolz that each
topological Eschenburg space admits 28 distinct oriented
smooth structures, but one does not know whether each
structure is represented by an Eschenburg space. From
the above-mentioned results, it is not clear whether each
distinct oriented smooth structure on a topological Es-
chenburg space is represented by an Eschenburg space
or whether such representatives are rather sparse, as for
Aloff–Wallach spaces. This note attempts to cast some
light on this question.

Theorem 1.3. Let I = [−850, 850] and J = [1, 101].
Among the Eschenburg–Kruggel spaces with (k, l) ∈ I3 ×
I3 , for each odd |r| = #H4(E; Z) in the interval J ,
columns 2 and 9 of Table 1 show a lower bound on the
number of oriented homeomorphism classes. For |r| ≤
9, each oriented homeomorphism class of Eschenburg–
Kruggel spaces has each of its 28 distinct oriented smooth
structures represented by an Eschenburg–Kruggel space
Ek,l with (k, l) ∈ I3 × I3 .

Remark 1.4. Columns 3–7 and 10–14 of Table 1 list the
numbers of topological Eschenburg–Kruggel spaces, for a
fixed |r|, that have the stated number of oriented smooth
structures represented by Eschenburg–Kruggel spaces.

The smooth structures on a topological Eschenburg–
Kruggel space are an orbit of the group of homotopy 7-
spheres (∼= Z28). The Kreck–Stolz invariant s1 is additive
under this action: if Σ is a homotopy 7-sphere and E is
an Eschenburg–Kruggel space, then s1(E#Σ) = s1(E) +
s1(Σ) and 28 · s1(Σ) ≡ 0 mod 1. This implies that each
topological Eschenburg–Kruggel space has 28 distinct
oriented smooth structures [Kruggel 05]. The difficulty
is that the surgery description of the smooth structure
E#Σ does not appear to contain information about the
structure of E#Σ as an Eschenburg–Kruggel space.

Tables 5–7 of [Butler 09] list representative
Eschenburg–Kruggel spaces for each smooth struc-
ture on each topological Eschenburg–Kruggel space with
|r| ≤ 5 that was found in constructing Table 1. It seems
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likely that all topological and smooth Eschenburg–
Kruggel spaces with |r| ≤ 5 are enumerated in those
tables.

This note is structured as follows: Section 2 reviews
Kruggel’s condition C; Section 3 reviews Kruggel’s com-
putation of the Kreck–Stolz invariants; Section 4 explains
how the Kreck–Stolz invariants were computed in soft-
ware; and Sections 5.1–5.3 discuss several tables.

2. ESCHENBURG–KRUGGEL SPACES

To compute the Kreck–Stolz invariants of Eschenburg
spaces, Kruggel observed that the projection of an x ∈
SU3 onto its first two columns in the Stiefel manifold
V2(C 3) is a diffeomorphism. From the embedding of
V2(C 3) ⊂ C 2·3 , Kruggel constructed an 8-manifold W ′

with boundary V2(C 3). The action of Ukl descends nat-
urally to C 2·3 and W ′, but the action on W ′ has three
singular orbits. One can cut away these three singular
orbits to construct a cobordism between Ekl and a union
of three lens spaces, provided that the matrix

A =

⎡
⎢⎣

k0 − l0 k0 − l1 k0 − l2

k1 − l0 k1 − l1 k1 − l2

k2 − l0 k2 − l1 k2 − l2

⎤
⎥⎦ (2–1)

has a column or row containing nonzero pairwise coprime
entries.

Definition 2.1. (Kruggel 2006.) The Eschenburg space
Ek,l satisfies condition C if the matrix A has a column
or row containing nonzero pairwise coprime entries. An
Eschenburg space that satisfies condition C is called an
Eschenburg–Kruggel space.

Remark 2.2. Note that the coprimality conditions (1–4)
do not imply that all entries of A are nonzero. The
Eschenburg space Ekl with k = (−1,−1, 2) and l =
(−2, 0, 2) has

A =

⎡
⎢⎣

1 −1 −3
1 −1 −3
4 2 0

⎤
⎥⎦ . (2–2)

This defines an Eschenburg–Kruggel space according to
Definition 2.1. Indeed, the coprimality conditions (1–4)
are satisfied, since they are

gcd(A00 , A11), gcd(A00 , A12),
gcd(A01 , A10), gcd(A01 , A12),
gcd(A02 , A10), gcd(A02 , A11)

that is,

gcd(1,−1), gcd(1,−3),
gcd(−1, 1), gcd(−1,−3),
gcd(−3, 1), gcd(−3,−1),

which are all unity; and condition C is satisfied by the
leftmost column of A. See Remark 3.1 for more.

3. INVARIANTS OF ESCHENBURG–KRUGGEL
SPACES

Let Ekl be an Eschenburg space. Let u be the Chern
class of the bundle S1 = Ukl ↪→ SU3 → Ekl . Eschenburg
proved that the nontrivial parts of the integral cohomol-
ogy ring of Ek,l have the following structure:

H2(Ekl ; Z)Z · u, H4(Ekl ; Z) = Zr · u2 . (3–1)

The integer r is equal to σ2(k) − σ2(l), where σj

is the jth elementary symmetric polynomial, σj (x) =∑
i1 < ···<ij

xi1 · · ·xij
. The linking form of Ek,l is plainly

determined by the linking number of u2 with itself.
Kruggel showed that this equals

Lk
(
u2 , u2) = −s−1

r
mod 1, (3–2)

where s = σ3(k) − σ3(l) and s−1 is the multiplicative in-
verse of s mod r. Kruggel also showed that the first Pon-
tryagin class of Ekl equals

p1(Ekl) = p1 · u2 mod r, (3–3)

where

p1 = 2σ1(k)2 − 6σ2(k).

Although this expression appears to be asymmetric in k

and l, the sum condition plus the definition of r ensures
that it is well defined.

In addition to the above invariants, Kruggel was able
to compute the Kreck–Stolz invariants for Eschenburg–
Kruggel spaces. To explain, let p �= 0 be coprime to the
nonzero integers p0 , . . . , p3 , and let

L = L(p; p0 , p1 , p2 , p3) = S7/C, (3–4)

where

C =
{

diag
(
e2πikp0 /p , e2πikp1 /p , e2πikp2 /p , e2πikp3 /p

)
:

k = 0, . . . , p − 1
}

,
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Counts Counts
—r— #Top. 28 27 14−26 2−13 1 —r— #Top. 28 27 14−26 2−13 1

1 12 12 3 8 8
5 48 48 7 120 120
9 24 24 11 360 354 4 2
13 576 542 22 12 15 32 32
17 1152 988 68 96 19 1512 1216 86 204 6
21 80 64 10 6 23 2640 1726 276 598 40
25 240 240 27 72 72
29 4704 1656 814 2212 22 31 5760 1506 794 3080 380
33 240 114 30 92 4 35 480 230 90 160
37 8634 904 918 5728 1072 12 39 384 118 58 176 32
41 11988 376 636 8778 2176 22 43 12600 272 500 9412 2414 2
45 96 60 20 16 47 17108 82 248 10950 5812 16
49 1848 1028 310 510 51 768 44 26 522 176
53 22456 46 122 11414 10836 38 55 1440 320 200 752 168
57 1008 28 36 666 278 59 29902 10 32 10662 19034 164
61 32874 22 76 9468 22764 544 63 240 60 10 164 6
65 2304 178 220 1332 574 67 39854 12 28 7890 31108 816
69 1756 864 878 14 71 47544 6596 39738 1210
73 48034 2 10 6090 40864 1068 75 160 50 42 68
77 3600 332 112 1914 1234 8 79 59046 4 4508 51962 2572
81 216 188 22 6 83 67340 3544 59816 3980
85 4602 28 82 2670 1800 22 87 3128 580 2522 26
89 78944 2068 70090 6786 91 5740 256 154 2502 2734 94
93 3788 468 3182 138 95 6016 18 22 2836 3054 86
97 91772 1484 79690 10598 99 720 12 40 474 194
101 100490 742 87290 12458

TABLE 1. |r| = rank H4 (E; Z) versus the number of homeomorphism classes (#Top.), and the number of homeomorphism classes
with the n smooth structures represented by Eschenburg–Kruggel spaces, for n = 28, 27, 14 ≤ n ≤ 26, 2 ≤ n ≤ 13, and n = 1.

be a lens space. Define the following functions:

s1(L) =
1

27 · 7 · p
|p |−1∑
k=1

3∏
j=0

cot
(

kπpj

p

)
(3–5)

+
1

24 · p
|p |−1∑
k=1

3∏
j=0

csc
(

kπpj

p

)
mod 1

s2(L) =
1

24 · p
|p |−1∑
k=1

(
e2πik/p − 1

) 3∏
j=0

csc
(

kπpj

p

)
mod 1.

These are the Kreck–Stolz invariants of the lens space L

in (3–4), and they take values in Q /Z.

Assume that the leftmost column of the matrix A has
pairwise coprime nonzero entries (the remaining cases
are described below). The above-described cobordism ex-
hibits Ekl as cobordant to the disjoint union of the three
lens spaces

L0 = L(A00 ;A10 , A20 , A11 , A21),
L1 = L(A10 ;A00 , A20 , A01 , A21), (3–6)
L2 = L(A20 ;A00 , A10 , A01 , A11).

Let us see that L0 is indeed a lens space. By condition C,
the integers Aj0 are pairwise coprime and nonzero. The
primitivity condition (1–3) implies that A00 is coprime
to A11 and A21 . For example, suppose that A00 and A11
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have a divisor d > 1, so one can write A00 + A11 = dc.
The condition that

∑
ki =

∑
li in Definition 1.1 is equiv-

alent to A00 + A11 + A22 = 0, so A22 = −dc. If c = 0,
then the vector k − l = (A00 , A11 , A22) is not primitive;
if c �= 0, then the same vector is also not primitive. (This
argument also shows that if A22 = 0, then A00 = −A11 =
±1.) The remaining verifications for L1 and L2 are simi-
lar.

Kruggel showed that the Kreck–Stolz invariants are
equal to

s1(Ekl) =
sign(w)
25 · 7 − q2

27 · 7 · w −
3∑

i=1

s1(Li) mod 1

(3–7)

s2(Ekl) =
q − 2

24 · 3 · w −
3∑

i=1

s2(Li) mod 1, (3–8)

where

q = A2
00 + A2

10 + A2
20 + A2

01 + A2
11 + A2

21 − (l0 − l1)2 ,

(3–9)

w = r · A00A10A20 . (3–10)

These invariants are transcendental functions of the vari-
ables k, l. This fact, plus the fact that the sums can
have a rather large number of terms, means that showing
that two Eschenburg–Kruggel spaces are homeomorphic
or diffeomorphic is rather difficult. However, since si is
a rational integer, one can use a few numerical tricks to
prove equality of these invariants.

Remark 3.1. The well-definedness of Kruggel’s formulas
(3–7)–(3–8) amounts to the statement that if Ek,l satis-
fies condition C, then w (3–10) does not vanish. Indeed,
from the remark above, the lens-space invariants sj (Li)
(3–5)–(3–6) are well defined if w �= 0. Since condition C
is assumed to hold for the leftmost column of A, it fol-
lows that A00A10A20 �= 0. In addition, Kruggel proved
that r must be odd [Kruggel 05, p. 572] (in fact, since
H3(Ek,l ; Z) vanishes, Poincaré duality implies r �= 0).
Therefore, w �= 0. Compare Remark 2.2.

The results of this note rely on the following theorem

Theorem 3.2. (Kruggel 2005.) Two Eschenburg–Kruggel
spaces, Ek,l and Ek ′,l ′ are orientation-preserving homeo-
morphic if |r|, s, p1 , and s2 coincide. If, in addition, s1

coincides with these, then they are orientation-preserving
diffeomorphic.

3.1. Automorphisms and Invariants

To compute the Kreck–Stolz invariants of Eschenburg–
Kruggel spaces in general, one uses the extension of the
natural action of the Weyl group of SU3 × SU3 by the
automorphism that interchanges factors. Concretely, let
S3 be the symmetric group acting naturally on Z3 by
permutations, let τ be the involutive automorphism of
Z3 ⊕ Z3 that acts by (k, l) �→ (l, k), and let η : (k, l) �→
(−k,−l).

The group generated by S3 × S3 , τ (respectively S3 ×
S3 , τ , and η) is denoted by G+ (respectively G). The
group G is of order 144, and G+ is an index-2 subgroup.

Proposition 3.3. [Eschenburg 82] For each σ ∈ G, the Es-
chenburg spaces Ek,l and Eσ (k,l) are diffeomorphic. If
σ ∈ G+ , they are orientation-preserving diffeomorphic.

Remark 3.4. With the above proposition, the formu-
las for the Kreck–Stolz invariants can be extended to
all Eschenburg–Kruggel spaces as follows. The Eschen-
burg space Ekl is orientation-preserving diffeomorphic
to Eα(k),β (l) for any permutations α, β ∈ S3 . In addi-
tion, Ek,l is orientation-preserving diffeomorphic to El,k .
The permutation α permutes the rows (respectively β
permutes the columns) of A, while the diffeomorphism
Ekl → Elk induces A �→ −A′.

It follows that if the column j (respectively row j) of
A has nonzero pairwise coprime entries, then the left-
most column of Ak,β (l) (respectively Al,β (k)) has nonzero
pairwise coprime entries and Ekl is orientation-preserving
diffeomorphic to Ek,β (l) (respectively El,β (k)) where β =
(0 j). By this observation, one can compute the Kreck–
Stolz invariants of any Eschenburg–Kruggel space by
means of the formulas (3–7), (3–8).

The proposition also implies that each Eschenburg
space Ek,l has a representative, up to orientation, where
k0 ≤ k1 ≤ k2 , l0 ≤ l1 ≤ l2 , and k0 ≤ l0 .

4. METHODOLOGY

The search for homeomorphic smooth Eschenburg–
Kruggel spaces neatly divides into three separate
searches:

1. search over a domain of parameters (k, l) ∈ Z3 ×
Z3 for Eschenburg–Kruggel spaces;

2. computation of the invariants r, s, p1 and s1 , s2

in terms of the parameters (k, l);
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3. search the data generated for matching invari-
ants.

Due to the size of the sample space considered, it was
decided to do the first two steps in compiled code. The
structure of the problem led to C++ as the language of
choice.

The computations to generate all of the tables in this
note and [Butler 09] took approximately six weeks of con-
tinuous CPU time on a single core of a 2-core 3.0-GHz
Intel Core Duo E6850 CPU with 4 MB cache and 3.3-GB
DDRAM 4.0-GB swap. The operating system was RHEL
with the 2.6.8 Linux kernel.

4.1. The Search over Parameter Space

Let us define the parameter space and explain how the
search is conducted.

4.1.1. The Parameter Space

Let 1 ∈ Z3 be the vector all of whose elements are unity.
If Ek,l is an Eschenburg space, then Ek+n1,l+n1 is the
same Eschenburg space for any n ∈ Z. There is, there-
fore, a unique representative of (k, l) + Z(1,1) such that∑

ki =
∑

li ∈ [0, 2]. All searches were conducted with
this constraint.1

4.1.2. The Search

The speed of the arithmetic in the native signed long

int class of integers in C++ argued in favor of testing the
admissibility condition (1–4) and condition C (Definition
2.1) in signed long int.

The coprimality tests are conducted by a two-part pro-
cess. First, an N × N lookup table is created. The (i, j)
entry of the lookup table is 1 if i and j are coprime and
ij �= 0; otherwise, it is 0. If |i| or |j| exceeds N , the Eu-
clidean algorithm is first employed to reduce both i and
j until the lookup table can be used. The parameter N is
chosen at compile time; in our tests, N = 2000 was cho-
sen, so that all coprimality tests required only a lookup.

4.2. Computation of the Invariants

The computation of the invariants is broken into two
parts.

1 In [Butler 09, Tables 5–7], one finds that the sums reported lie in
[−2, 2]. Those spaces with sum reported in [−2,−1] are obtained
by reversing the orientation of a space whose sum lies in [1, 2].

4.2.1. Integer Invariants

If (k, l), define an Eschenburg–Kruggel space. Then the
rank of H4(E; Z), |r|, and the first Pontryagin class p1

were computed using signed long int arithmetic. Since
the set of signed long ints equals [−231 , 231 − 1] ∩ Z,
and both r and p1 are quadratic forms in (k, l), signed
long int arithmetic does not run into under/overflow
errors for |ki | < 10922. For the purposes of this note, all
computations of r and p1 were done in signed long int

arithmetic.
Since s is cubic in (k, l), under/overflow does not af-

fect computation for |ki |, |li | < 1023. This relatively small
bound led us to use Gmp arbitrary-precision floats2 to
compute s (see below).

4.2.2. Rational Invariants

From the definition of the Kreck–Stolz invariants (3–5),
one can see that individual terms in each summand can
be O(1/p3).

The Gnu Gmp package, along with its Gmpfrxx

front end3 for C++, permits one to do arbitrary-precision
arithmetic from within C++. Since Gnu Gmp can com-
pute the trigonometric functions to arbitrary precision,
we elected to use this package to compute the Kreck–
Stolz invariants of an Eschenburg–Kruggel space.

The relative slowness of software-implemented arith-
metic also indicated a need to permit computation with
machine-native floating-point arithmetic. The template
facility of C++ made it possible to use the same code for
both machine-native and software-implemented floating-
point arithmetic and allow the user to choose the preci-
sion at run time rather than compile time.

4.3. Matching Invariants

The final step was to match the topological and smooth
invariants that are computed for different Eschenburg–
Kruggel spaces. This was accomplished, in essence, by
multiple sorts. In the first step, a C++ program com-
puted and sorted approximately 2 GB of the poly-
nomial Eschenburg–Kruggel space invariants (r, s, p1).
These data were stored in text files, and these were sorted
and split according to the value of |r|. The Kreck–Stolz
invariants of these spaces were computed with 130 bits
of precision and stored in a second database. The re-
sulting data were imported into a second C++ program,
where homeomorphism and diffeomorphism classes were

2 Available at http://gmplib.org/.
3 At http://math.berkeley.edu/∼wilken/code/gmpfrxx/.
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FIGURE 1. [Log-log scale]. The number of Eschenburg–Kruggel spaces, N = N (k), and the marginal number, ∆N =
∆N (k), in the cube [−k, k]6 . Left column, descending: the marginal number for k in the intervals [25, 550], [200, 550],
and [25, 200]; Right column, descending: the total number for the same intervals. A least-squares regression line is also
displayed on each graph.

computed. The data for Table 1 and [Butler 09, Tables 2–
7] were generated in this way.

4.3.1. Testing

To ensure the accuracy of the computations, several tests
were designed, including the following:

1. Replication of each of the published computa-
tions in [Astey et al. 97, Section 4], [Kruggel 05,
Table 1], [Chinburg et al. 07, Tables 1–6],4 and
[Kruggel 05, Table 1].

2. Replication, up to a numerical ε ≈ 2−130 , of
closed-form answers for the invariants of some
Eschenburg–Kruggel space.

3. Replication, up to a numerical ε ≈ 2−130 , of
the C++ computed results in Maple, Maxima,
and BC.

4 In replicating these results, differing conventions for the projection
map x �→ x̄ ∈ (− 1

2 , 1
2 ] became apparent. The Chinburg–Escher–

Ziller code uses the convention that x is reduced modulo 1, and
then [0, 1

2 ] is mapped to itself by the identity and ( 1
2 , 1] is mapped

to (− 1
2 , 0] by a constant shift. In our C++ code, x is reduced modulo

1, then shifted by − 1
2 .

5. APPENDICES

5.1. Appendix A

The graph in Figure 1 shows the number N of
Eschenburg–Kruggel spaces in the cube [−k, k]6 , as a
function of k, with the constraint that

∑
ki =

∑
li ∈

[0, 2]. A rough heuristic indicates that N = O(k4) for
large k and ∆N = O(k3), which is nicely captured here.
It is also apparent that ∆N(k) grows like c±k3 , where c±
depends only on the parity of k.

5.2. Appendix B

We observed several unexplained phenomena. For fixed
invariants r, s, and p1 , the Kreck–Stolz invariant s2 ap-
pears to lie in the orbit of Zn acting by x �→ x + 1

n mod 1,
where n = 4 or 12. We also observed that the values taken
on by s1 appear to depend only on |r|, s, and p1 .

The first columns of [Butler 09, Tables 2 and 3] show
these group actions on the Kreck–Stolz invariants when
|r| = 1, 3. Table 4 in that same reference abstracts the
picture from Tables 2 and 3, and shows the group actions
on s2 and s1 . It appears that Z12 acts effectively except
when r ≡ 0 mod 3, r �≡ 0 mod 32, in which case Z4 acts
effectively.
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5.3. Appendix C

[Butler 09, Tables 5–7] list homeomorphism classes of
Eschenburg–Kruggel spaces with the rank of the fourth
integral cohomology group equal to |r| = 1, 3, 5 respec-
tively. Each smooth structure in each such homeomor-
phism class is represented by an Eschenburg–Kruggel
space; these tables list the “smallest” representatives.
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