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We address the problem of computing bounds for the self-
intersection number (the minimum number of generic self-
intersection points) of members of a free homotopy class of
curves in the doubly punctured plane as a function of their
combinatorial length L ; this is the number of letters required
for a minimal description of the class in terms of a set of stan-
dard generators of the fundamental group and their inverses.
We prove that the self-intersection number is bounded above
by L 2/4 + L /2 − 1, and that when L is even, this bound is
sharp; in that case, there are exactly four distinct classes attain-
ing that bound. For odd L we conjecture a smaller upper bound,
(L 2 − 1)/4, and establish it in certain cases in which we show
that it is sharp. Furthermore, for the doubly punctured plane,
these self-intersection numbers are bounded below, by L /2 − 1
if L is even, and by (L − 1)/2 if L is odd. These bounds are sharp.

1. INTRODUCTION

By the doubly punctured plane we refer to the compact
surface with boundary (familiarly known as the “pair
of pants”) obtained by removing, from a closed two-
dimensional disk, two disjoint open disks. This work ex-
tends, to the doubly punctured plane, the research re-
ported in [Chas and Phillips 10] for the punctured torus.
In particular, it addresses the relation between the length
and the self-intersection number (precise definitions be-
low) of a free homotopy class of curves on that surface.

Like our previous work, this research was mo-
tivated by the results of experiments that used a
JAVA program1 based on the Cohen–Lustig algorithm
[Cohen and Lustig 87] to tabulate self-intersection num-
bers for curves. Tables 1 through 4 display for each length
L ≤ 19 and for each possible self-intersection number s

the number N(L, s) of distinct free homotopy classes with
those properties. The entries in that table show some pat-
terns of potential mathematical interest:

1 Available at http://www.math.sunysb.edu/∼moira/applets/
intersectionApplet.html.
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L

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 8 10 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 12 20 12 4 2 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 20 34 24 12 4 2 0 0 0 0 0 0 0 0 0
5 0 0 0 2 4 36 56 40 24 12 4 2 0 0 0 0 0 0 0
6 0 0 0 0 4 26 72 92 64 40 24 12 4 2 0 0 0 0 0
7 0 0 0 0 0 16 76 156 168 104 64 40 24 12 4 2 0 0 0
8 0 0 0 0 0 0 44 158 284 292 184 104 64 40 24 12 4 2 0
9 0 0 0 0 0 4 16 110 292 460 464 312 184 104 64 40 24 12 4

10 0 0 0 0 0 0 16 104 280 528 712 690 488 312 184 104 64 40 24
11 0 0 0 0 0 2 4 80 320 660 960 1104 1012 720 488 312 184 104 64
12 0 0 0 0 0 0 4 40 268 742 1276 1636 1708 1474 1048 720 488 312 184
13 0 0 0 0 0 0 0 32 196 736 1564 2244 2596 2572 2152 1516 1048 720 488
14 0 0 0 0 0 0 0 4 132 678 1732 3004 3776 3978 3744 3096 2200 1516 1048
15 0 0 0 0 0 0 0 4 80 548 1756 3636 5340 6112 6020 5376 4368 3152 2200
16 0 0 0 0 0 0 0 0 48 412 1712 3996 6748 8886 9476 8898 7684 6100 4432
17 0 0 0 0 0 0 0 0 12 256 1388 4194 8084 11696 14004 14196 12852 10844 8512
18 0 0 0 0 0 0 0 0 12 182 1076 3888 8916 14738 19204 21328 20656 18232 15104
19 0 0 0 0 0 0 0 2 4 144 1044 3780 9432 17500 25084 30064 31596 29508 25448
20 0 0 0 0 0 0 0 0 8 66 776 3582 10156 20108 31572 40740 45332 45522 41436
21 0 0 0 0 0 0 0 0 0 48 528 2992 9932 22472 38264 53228 63312 66620 64220
22 0 0 0 0 0 0 0 0 0 12 376 2628 9536 24110 44796 66900 85076 94902 95548
23 0 0 0 0 0 0 0 0 0 8 200 2064 9240 25488 51860 82956 110832 130488 138248

TABLE 1. The number N (L, s) of distinct free homotopy classes of curves on the doubly punctured plane with length L and
self-intersection number s. Numbers satisfying N (L, s) = N (L + 2, s + 1) appear in boldface.

L

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
24 0 0 0 0 0 0 0 0 0 0 124 1432 7948 25644 57908 100112 142864 175704 194004
25 0 0 0 0 0 0 0 0 0 4 60 998 6356 24060 61128 115844 177808 231756 267224
26 0 0 0 0 0 0 0 0 0 0 44 714 5204 21896 61796 129328 213188 295870 359372
27 0 0 0 0 0 0 0 0 0 0 16 500 4308 20172 61920 140264 249536 367576 469716
28 0 0 0 0 0 0 0 0 0 0 16 336 3428 18062 60872 149232 285052 446248 599744
29 0 0 0 0 0 0 0 0 0 2 4 264 2740 15984 58588 154748 316472 527832 749448
30 0 0 0 0 0 0 0 0 0 0 4 108 1940 13620 55784 159048 345100 609806 911888
31 0 0 0 0 0 0 0 0 0 0 0 68 1332 11004 51164 160308 373028 696272 1091224
32 0 0 0 0 0 0 0 0 0 0 0 16 868 8688 46436 157696 394600 781908 1288952
33 0 0 0 0 0 0 0 0 0 0 0 12 460 6288 39616 151902 411128 862816 1495100
34 0 0 0 0 0 0 0 0 0 0 0 4 336 4822 32564 139528 415504 937274 1708340
35 0 0 0 0 0 0 0 0 0 0 0 8 196 3608 27712 127146 408748 992356 1920436
36 0 0 0 0 0 0 0 0 0 0 0 0 140 2482 22324 113778 397760 1028324 2118060
37 0 0 0 0 0 0 0 0 0 0 0 0 64 1844 18012 100648 378404 1048104 2289572
38 0 0 0 0 0 0 0 0 0 0 0 0 44 1232 14512 90036 358704 1056046 2434016
39 0 0 0 0 0 0 0 0 0 0 0 0 16 824 11168 77804 338312 1055532 2564276
40 0 0 0 0 0 0 0 0 0 0 0 0 16 522 8316 64984 310916 1039780 2672276
41 0 0 0 0 0 0 0 0 0 0 0 2 4 368 6060 53208 278732 1009028 2745164
42 0 0 0 0 0 0 0 0 0 0 0 0 4 162 4284 42652 245600 962960 2784956
43 0 0 0 0 0 0 0 0 0 0 0 0 0 108 3008 34100 215452 903024 2784508
44 0 0 0 0 0 0 0 0 0 0 0 0 0 32 2056 26964 187964 842192 2745352
45 0 0 0 0 0 0 0 0 0 0 0 0 0 32 1264 20116 157760 773248 2680744
46 0 0 0 0 0 0 0 0 0 0 0 0 0 12 888 15208 131076 694326 2578432

TABLE 2. Continuation of Table 1.
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L

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
47 0 0 0 0 0 0 0 0 0 0 0 0 0 8 468 11008 107940 621280 2460680
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 324 7770 85224 541228 2316356
49 0 0 0 0 0 0 0 0 0 0 0 0 0 4 176 5812 68696 466592 2137036
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 136 4036 54412 403350 1962436
51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 2976 42644 343676 1786544
52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 1944 33132 289832 1612560
53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 1268 24740 240696 1437828
54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 752 18280 198072 1268644
55 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 540 13472 159848 1110444
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 248 9528 126938 958972
57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 176 6332 98240 814476
58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 4472 75678 683412
59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 2860 57732 570396
60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1948 42804 467020
61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1196 31704 378124
62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 852 23636 306116
63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 496 17344 245664
64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 376 12562 194208
65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 9360 154000
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 124 6130 119244
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 4252 91404
68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 2704 68980
69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1868 50952

TABLE 3. Continuation of Table 2.

L

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1154 37836
71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 840 27392
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 418 19780
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 264 13272
74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 108 9244
75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 84 6212
76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 4432
77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 2844
78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 2036
79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1240
80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 840
81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 448
82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 344
83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 192
84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 140
85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64
86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44
87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16
88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16
89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4
90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

TABLE 4. Continuation of Table 3.
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1. For each length L ≤ 19, the minimum and max-
imum self-intersection numbers vary as L/2 − 1
and L2/4 + L/2 − 1 when L is even, and as
(L − 1)/2 and (L2 − 1)/4 when L is odd.

2. For each L ≤ 19, the function N(L, s) appears
to follow a normal distribution.

3. N(L, s) = N(L + 2, s + 1) for s ≤ L − 3 and
L ≤ 19. The relevant numbers are shown in bold-
face.

The goal of the present paper is to make item 1 into
a theorem valid for all L. This goal is achieved for L

even, and for many cases in which L is odd. See Theo-
rems 1.3, 1.6, 1.7, and Conjecture 1.4 below. (Item 2 has
been treated in the paper [Chas and Lalley 12]; item 3 is
currently under study.)

Definition 1.1. The doubly punctured plane has funda-
mental group free on two generators; given a basis, say
(a, b), a free homotopy class of curves on the surface can
be uniquely represented as a reduced cyclic word in the
symbols a, b, A,B (where A stands for a−1 , and B for
b−1). A cyclic word w is an equivalence class of words
related by a cyclic permutation of their letters; we will
write w = 〈r1r2 . . . rn 〉, where the ri are the letters of
the word, and 〈r1r2 . . . rn 〉 = 〈r2 . . . rnr1〉, etc. Reduced
means that the cyclic word contains no juxtapositions of
a with A, or b with B. The length (with respect to the ba-
sis (a, b)) of a free homotopy class of curves is the number
of letters occurring in the corresponding reduced cyclic
word.

The self-intersection number of a free homotopy class
of curves is the smallest number of self-intersections
among all general-position curves in the class. (Gen-
eral position in this context means as usual that there
are no tangencies or multiple intersections.) The self-
intersection number is a property of the free homotopy
class and hence of the corresponding reduced cyclic word
w; we denote it by SI(w). Note that a word and its inverse
have the same self-intersection number.

Remark 1.2. There are three natural generators a, b, c for
the fundamental group of the (oriented) doubly punc-
tured plane, corresponding to the three boundary com-
ponents with their induced orientations; they satisfy the
relation abc = 1; any two of them form a basis. The length
of a free homotopy class of curves will depend to a cer-
tain extent on which basis is used for the computation,
but the number N(L, s) will not. See Figure 1.

FIGURE 1. The curve γ corresponding to a word w in
the (a, b) basis can be rotated (about a vertical axis in
this image) to a curve γ ′ corresponding to the word w′

in the (a, c) basis: each b (respectively B) has been sub-
stituted by c (respectively C). This defines a bijection
w ↔ w′ between words of length L and self-intersection
number s in the two bases. An analogous rotation re-
lates calculations in the (a, c) and (b, c) bases. Note
that in this example, γ itself (aaab = aaC) has different
lengths in the two bases.

Theorem 1.3.

(1) The self-intersection number for a reduced cyclic
word of length L on the doubly punctured plane is
bounded above by L2/4 + L/2 − 1.

(2) If L is even, this bound is sharp: for L ≥ 4 and
even, the cyclic words realizing the maximal self-
intersection number are (see Figure 2) (aB)L/2 and
(Ab)L/2 . For L = 2, they are aa, AA, bb, BB, aB,
and Ab.

(3) If L is odd, the maximal self-intersection number of
words of length L is at least (L2 − 1)/4.

Conjecture 1.4. The maximal self-intersection number for
a reduced cyclic word of odd length L = 2k + 1 in the
doubly punctured plane is (L2 − 1)/4; the words realiz-
ing the maximum have one of the four forms

〈
(aB)kB

〉
,〈

a(aB)k
〉
,
〈
(Ab)k b

〉
,
〈
A(Ab)k

〉
.

Definition 1.5. Any reduced cyclic word is either a pure
power or may be written in the form

〈
αa1

1 βb1
1 . . . αan

n βbn
n

〉
,

where αi ∈ {a,A}, βi ∈ {b,B}, all ai and bi are positive,
and

∑n
1 (ai + bi) = L, the length of the word. We will

refer to each αai
i βbi

i as an αβ-block, and to n as the word’s
number of αβ-blocks.

Theorem 1.6. In the doubly punctured plane, consider a
reduced cyclic word w of odd length L with n αβ-blocks. If
L > 3n, if n is prime, or if n is a power of 2, then the self-
intersection number of w satisfies SI(w) ≤ (

L2 − 1
)
/4.

This bound is sharp.
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FIGURE 2. Left: curves of the form 〈aBaBaB〉 have maximum self-intersection number L2/4 + L/2 − 1 for their length
(Theorem 1.3). Right: curves of the form 〈aaBaBaB〉 have self-intersection number (L2 − 1)/4; we conjecture (Conjec-
ture 1.4) that this is maximal, and prove this conjecture in certain cases (Theorem 1.6).

It is elementary to show that the only simple closed
curves on the doubly punctured plane correspond to the
empty word and the words a, b, ab and their inverses.
This generalizes to the statement that in the doubly
punctured plane, self-intersection numbers of words are
bounded below.

Theorem 1.7. In the doubly punctured plane, curves in
the free homotopy class represented by a reduced cyclic
word of length L have at least L/2 − 1 self-intersections
if L is even and (L − 1)/2 self-intersections if L is odd.
These bounds are achieved by (ab)L/2 and (AB)L/2 if L

is even and by the four words a(ab)L−1/2 , etc. when L is
odd.

Corollary 1.8. For any positive integer k, there are only
finitely many free homotopy classes of curves on the dou-
bly punctured torus with minimal self-intersection num-
ber k (since a curve with minimal self-intersection num-
ber k has combinatorial length at most 2k + 2).

Remark 1.9. A surface of negative Euler characteris-
tic that is not the doubly punctured plane has in-
finitely many homotopy classes of simple closed curves
[Mirzakhani 08]. Since the (k + 1)st power of a simple
closed curve has self-intersection number k, it follows
that for every k there are infinitely many distinct homo-
topy classes of curves with self-intersection number k. (A
more elaborate argument using the mapping class group
constructs, for each k, infinitely many distinct primitive
classes (not a proper power of another class) with self-
intersection number k.) So the doubly punctured plane
is the unique surface of negative Euler characteristic sat-
isfying Corollary 1.8.

1.1. Questions and Related Results

A free homotopy class of combinatorial length L in a
surface with boundary can be represented by L chords
in a fundamental polygon. Hence the maximal self-
intersection number of a cyclic reduced word of length
L is bounded above by L(L − 1)/2. One may ask how
closely the maximum can approach that bound.

We prove in [Chas and Phillips 10] that for the
punctured torus, the maximal self-intersection number
SImax(L) of a free homotopy class of combinatorial
length L is equal to (L2 − 1)/4 if L is even and to
(L − 1)(L − 3)/4 if L is odd. This implies that the limit
of SImax(L)/L2 is 1/4 as L approaches infinity. Compare
[Lalley 96]. The same limit holds for the doubly punc-
tured plane (Theorem 1.3).

Our (limited) experiments do not suggest analogous
polynomials for more general surfaces; but they do lead
us to the following conjecture.

Conjecture 1.10. Consider closed curves on a surface S
with boundary, of Euler characteristic χ. Let SImax(L) be
the maximum self-intersection number for all curves on
S of combinatorial length L. Then

lim
L→∞

SImax(L)
L2 =

χ

2χ − 1
.

In particular, this limit approaches 1/2 as the Euler char-
acteristic of the surface approaches infinity.

The doubly punctured plane admits a hyperbolic met-
ric making its boundary geodesic. An elementary argu-
ment shows that for curves on that surface, hyperbolic
and combinatorial lengths are quasi-isometric. Some of
our combinatorial results can be related in this way to
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FIGURE 3. The skeleton curve AbabAb.

statements about intersection numbers and hyperbolic
length.

It is proved in [Basmajian 93] that for a closed hy-
perbolic surface S, there exists a sequence Mk (for k =
1, 2, 3, . . . ) going to infinity such that if γ is a closed
geodesic with self-intersection number k, then its geo-
metric length is larger than Mk . For the doubly punc-
tured plane, in terms of the combinatorial length, Theo-
rem 1.3 (1) yields Mk =

√
5 + 4k − 1.

Question 1.11. Consider closed curves on a hyperbolic
surface S (possibly closed). Let SImax(�) be the maximum
self-intersection number for any curve of hyperbolic length
at most �. Does SImax(�)/�2 converge? And if so, to what
limit?

2. A LINEAR MODEL

In this section we will need to distinguish between a
cyclically reduced linear word w in the generators and
their inverses, and the associated reduced cyclic word
w. We introduce an algorithm for constructing from w

a representative curve for w. An upper bound for the
self-intersection numbers of these representatives may be
easily estimated; taking the minimum of this bound over

cyclic permutations of αβ-blocks will yield a useful upper
bound for SI(w).

2.1. Skeleton Words

Given a cyclically reduced word

w =
〈
αa1

1 βb1
1 . . . αan

n βbn
n

〉
,

where αi = a or A, βi = b or B, all ai, bi are greater
than 0, and the corresponding skeleton word is wS =
〈α1β1 . . . αnβn 〉, a word of length 2n, we now describe a
systematic way of drawing a representative curve for wS

starting from one of its linear forms wS , and for thicken-
ing this curve to a representative for w.

The skeleton-construction algorithm. (see Figures
3 and 4) Start by marking off n points along each of the
edges of the fundamental domain; corresponding points
on the a,A sides are numbered 1, 3, 5, . . . , 2n − 1 starting
from their common corner; and similarly, corresponding
points on the b,B sides are numbered 2n, . . . , 6, 4, 2, the
numbers decreasing away from the common corner.

If the first letter in wS is a, draw a curve segment
entering the a-side at 1, and one exiting the A-side at 1
(vice versa if the first letter is A). That segment is then
extended to enter the b-side at 2 and exit the B-side at 2
if the next letter in wS is b; vice versa if it is B. Continue
in this way until the curve segment exiting the b (or B)
side at 2n joins the initial curve segment drawn.

We will refer to a segment of type ab, ba,AB,BA as
a corner segment, and one of type aB,Ab, bA,Ba as a
transversal. Note that (as above) a skeleton word has
even length 2n and therefore has 2n segments (count-
ing the bridging segment consisting of the last letter and
the first). The number of transversals must also be even,
since if they are counted consecutively they go from low-
ercase to uppercase or vice versa, and the sequence (up-
per, lower, . . . ) must end where it starts. It follows that
the number of corners is also even.

FIGURE 4. The skeleton curves ababab and AbAbAb.
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Proposition 2.1. The self-intersection number of the
representative of (Ab)n or (aB)n given by the curve-
construction algorithm equals n2 + n − 1.

Proof. Consider (Ab)n ; see the right-hand picture of Fig-
ure 4. This curve has only transversals. There are n par-
allel segments of type Ab; they join 1, 3, . . . , (2n − 1) on
the a-side to 2, 4, . . . , 2n on the b-side. There are n − 1
parallel segments of type bA, which join 2, 4, . . . , 2n − 2
on the B-side to 3, 5, . . . , 2n − 1 on the A-side. Each of
these intersects all n of the Ab segments. Finally, the
bridging bA segment joins 2n on the B-side to 1 on
the A-side. This segment begins to the left of all the
other segments and ends up on their right: it intersects
all 2n − 1 of them. The total number of intersections is
n(n − 1) + 2n − 1 = n2 + n − 1. A symmetric argument
handles (aB)n .

Proposition 2.2. The self-intersection number of the rep-
resentative of (ab)n given by the curve-construction algo-
rithm equals (n − 1)2 .

Proof. See the left-hand picture in Figure 4. This curve
has only corners. There are n segments of type ab, join-
ing 1, 3, . . . , 2n − 1 on the A-side to 2, 4, . . . , 2n on the
b-side. Since their endpoints interleave, each of these
curves intersects all the others. There are n − 1 seg-
ments of type ba, joining 2, 4, . . . , 2n − 2 on the B-side to
3, 5, . . . , 2n − 1 on the a-side. Again, each of these curves
intersects all the others. Finally, the bridging ba segment
joining 2n to 1 spans both endpoints of all the others and
so intersects none of them. The total number of intersec-
tions is

1
2
n(n − 1) +

1
2
(n − 1)(n − 2) = (n − 1)2 .

Proposition 2.3. Let w be a skeleton word of length 2n.
The number of corner segments in w is even, as remarked
above; write it as 2c. Then the self-intersection number
of w is bounded above by n2 + n − 1 − 2c.

Proof. Using Propositions 2.1 and 2.2, we can assume
that w has both corner segments and transversals. We
may then choose a linear representative w with the
property that the bridging segment between the end
of the word and the beginning is a transversal. Of the
2c corners; c will be on top for those of type AB or
ba, and and c will be on the bottom for types ab and

BA. An ab or AB corner segment joins a point num-
bered 2j − 1 to a point numbered 2j on the same side,
top or bottom, as 2j − 1. It encloses segment endpoints
2j + 1, 2j + 3, . . . , 2n − 1, 2, 4, . . . , 2j − 2, a total of n − 1
endpoints; similarly, a ba or BA segment encloses n − 2
endpoints. So there are at most 2c(n − 1) − c(c − 1) in-
tersections involving corners, correcting for same-side
corners having been counted twice. The 2n − 2c transver-
sals intersect each other just as in the pure-transversal
case, producing (n − c)2 + (n − c) − 1 intersections. The
total number of intersections is therefore bounded by
n2 + n − 1 − 2c. Figure 3 shows the curve AbabAb (here
n = 3, c = 1) with eight self-intersections.

2.2. Thickening a Skeleton; Proof of Theorem 1.3
(1), (2)

Once the skeleton curve corresponding to wS is con-
structed, it may be thickened to produce a representative
curve for w. The algorithm runs as follows.

The skeleton-thickening algorithm. (see Figure 5)
Suppose for explicitness that w starts with Aa1 . The ex-
tra a1 − 1 copies of A, inserted after the first one, cor-
respond to segments entering the a-side (the first one
at 1) and exiting the A-side (the last one at a point
opposite the displaced entrance point of the first skele-
ton segment); the new segments are parallel. Similarly,
the extra b1 − 1 segments appear as parallel segments
originating and ending near the two marks on the b

and B sides; so there are no intersections between these
segments and those in the first band. Proceeding in
this manner, we introduce n nonintersecting bands of
a1 − 1, b1 − 1, a2 − 1, . . . , bn − 1 parallel segments. New
intersections occur between these bands and segments
of the skeleton curve. The two outermost bands (corre-
sponding to a1 and bn ) are each intersected by one of the
skeleton segments; the next inner bands (a2 and bn−1)
each intersect three of the skeleton segments; . . . ; the
two innermost bands (an and b1) each intersect (2n − 1)
of the skeleton segments.

Adding these intersections to the bound on the self-
intersections of the skeleton curve itself yields

SI(w) ≤ (a1 + bn − 2) + 3(a2 + bn−1 − 2) + · · ·
+ (2n − 1)(an + b1 − 2) + n2 + n − 1.

Since 1 + 3 + · · · + (2n − 1) = n2 , we may repackage this
expression as

SI(w) ≤ f(a1 , . . . , an , b1 , . . . , bn ) − n2 + n − 1,
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FIGURE 5. The skeleton curve AbabAb thickened to represent the linear word Aa 1 bb1 aa 2 bb2 Aa 3 bb3 . The gray bands rep-
resent the curve segments corresponding to the extra letters: a1 − 1 copies of A, etc. Notice that the segments from the
skeleton curve intersect the a1 and b3 bands once, the a2 and b2 bands three times, and the a3 and b1 bands five times.

where we define f by

f(a1 , . . . , an , b1 , . . . , bn ) = (a1 + bn ) + 3(a2 + bn−1) + · · ·
+ (2n − 1)(an + b1).

Applying the skeleton-thickening algorithm to the
cyclic permutation

αa1
1 βb1

1 . . . αan
n βbn

n → αa2
2 βb2

2 . . . αan
n βbn

n αa1
1 βb1

1

yields another curve representing the same word. There
are n such permutations, leading to

SI(w) ≤
[

min
i=0,...,n−1

f ◦ ri(a1 , . . . , an , b1 , . . . , bn )
]

− n2 + n − 1, (2–1)

where r is the coordinate permutation

(a1 , . . . , an , b1 , . . . , bn ) → (a2 , . . . , an , a1 , b2 , . . . , bn , b1).

Proposition 2.4. Set L = a1 + · · · + an + b1 + · · · + bn .
Then mini=0,...,n−1 f ◦ ri(a1 , . . . , an , b1 , . . . , bn ) ≤ nL.

Proof. We write

f(a1 , . . . , bn ) = (a1 + bn ) + 3(a2 + bn−1) + · · ·
+ (2n − 1)(an + b1),

f ◦ r(a1 , . . . , bn ) = (a2 + b1) + 3(a3 + bn ) + · · ·
+ (2n − 1)(a1 + b2),

· · ·
f ◦ rn−1(a1 , . . . , bn ) = (an + bn−1) + 3(a1 + bn−2) + · · ·

+ (2n − 1)(an−1 + bn ).

The average of these n functions is

1
n

(L + 3L + · · · + (2n − 1)L) = nL.

Since the minimum of n functions must be less than their
average, the proposition follows.

Proof of Theorem 1.3 (1) (2). We work with
w =

〈
αa1

1 βb1
1 . . . αan

n βbn
n

〉
. We have established that

SI(w) ≤ min
i=0,...,n−1

f ◦ ri(a1 , . . . , an , b1 , . . . , bn )−n2 +n−1.

Using Proposition 2.4, we obtain

SI(w) ≤ nL − n2 + n − 1 = −n2 + n(L + 1) − 1.

For a given L, this function has its real maximum at
n = (L + 1)/2. Since each αβ-block contains at least two
letters, n must be less than or equal to L/2. So a bound on
SI(w) is the value at n = L/2 (L even) or n = (L − 1)/2
(L odd):

SI(w) ≤
{

L2/4 + L/2 − 1 if L is even,

L2/4 + L/2 − 7/4 if L is odd.

For L even, note (Proposition 2.1) that the skele-
ton words w = (aB)n and w = (Ab)n satisfy SI(w) =
n2 + n − 1 = L2/4 + L/2 − 1; so the bound for this case
is sharp; furthermore, since words with n = L/2 must be
skeleton words, it follows from Proposition 2.3 that these
are the only words attaining the bound.

Remark 2.5. For L odd, our numerical experiments
(which go up to L = 20) and the special cases we prove
below have SI(w) ≤ (L2 − 1)/4, so the function con-
structed here does not give a sharp bound.

3. ODD-LENGTH WORDS

3.1. A Lower Bound for the Maximal Self-Intersection
Number: Proof of Theorem 1.3 (3)

In this subsection we prove Theorem 1.3 (3), namely that
the maximum self-intersection number for words of odd
length L is at least (L2 − 1)/4.
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FIGURE 6. The curve a(aB)n represented in the funda-
mental domain for the doubly punctured disk.

We will show that the words of the form a(aB)(L−1)/2

have self-intersection equal to (L2 − 1)/4. Consider a rep-
resentative of w as in Figure 6, where n = (L − 1)/2.
There is an n × n grid of intersection points in the
center, plus the n additional intersections p2 , . . . , p2n ,
a total of n2 + n = (L2 − 1)/4. We need to check that
none of these intersections spans a bigon (we know from
[Hass and Scott 85] that this is the only way in which an
intersection can be deformed away).

With notation from Figure 6, the only vertices that
could be part of a bigon are those from which two seg-
ments exit along the same edge, i.e., p2 , p4 , . . . , p2n . If we
follow the segments from p2 through edge A, they lead
to 1 on edge A and 2n + 1 on edge b, so there is no bigon
there; the segments from p4 through edge A lead to 3,
2n + 1 on edge b, to 2, 2n on edge A, and then to 1 on
edge A and 2n − 1 on edge b, so there is no bigon; etc.
Finally, the segments from p2n through edge A lead to
2n − 1, 2n + 1 on edge b and eventually to 1 on edge A

and 3 on edge b: no bigon.

3.2. Preliminaries for Upper-Bound Calculation

In the analysis of self-intersections of odd-length words,
the exact relation between L (the length of a word) and
n (its number of αβ-blocks) becomes more important.

Proposition 3.1. If a word w has length L and n αβ-
blocks, with L ≥ 3n, then SI(w) ≤ (L2 − 1)/4. Note that
by Theorem 1.3 (3), this estimate is sharp.

Proof. As established in the previous section, (2–1),
SI(w) ≤ nL − n2 + n − 1.

The inequality nL − n2 + n − 1 ≤ (L2 − 1)/4 is equiv-
alent to L2 − 4nL + 4n2 − 4n + 3 ≥ 0. As a function of
L, this expression has two roots: 2n ±√

4n − 3. As soon
as L is past the positive root, the inequality is satisfied.

If n ≥ 3, then L ≥ 3n implies L ≥ 2n +
√

4n − 3.
If n = 2, our inequality SI(w) ≤ nL − n2 + n − 1

translates to SI(w) ≤ 2L − 3, which is always less than
(L2 − 1)/4.

If n = 1, our inequality becomes SI(w) ≤ L − 1, which
is less than (L2 − 1)/4 as soon as L ≥ 3. The only other
possibility is L = 2, an even length.

3.3. The Cases n prime or n a power of 2; Proof of
Theorem 1.6

Other results for odd-length words require a more de-
tailed analysis of the functions

f ◦ ri(a1 , . . . , an , b1 , . . . , bn ),

where we keep the notation of the previous section.
The proof of the following results is straightforward.

Lemma 3.2. For a fixed (a1 , . . . , an , b1 , . . . , bn ), set

sa = a1 + · · · + an , sb = b1 + · · · + bn ,

ti = f ◦ ri(a1 , . . . , an , b1 , . . . , bn ).

Then

(i) ti+1 − ti = 2n(ai − bi) − 2(sa − sb).

(ii) t0 − tn−1 = 2n(an − bn ) − 2(sa − sb).

(iii) ti+j − ti = 2n(ai + · · · + ai+j−1 − bi − · · · −
bi+j−1) − 2j(sa − sb).

In particular, if ti = ti+r for some r > 0, then

n(a1 − b1 + a2 − b2 + · · · + ai+r−1 − bi+r−1) = r(sa − sb).

Lemma 3.3. If n is prime and L < 3n, then all the num-
bers t0 , . . . , tn−1 are distinct.

Proof. By Lemma 3.2, if ti = ti+r for some r > 0, then
n must divide r or sa − sb . We will show that each is
impossible. The first cannot happen because r < n. As
for the second, observe that sa ≥ n and sb ≥ n, and that
their sum is L < 3n; so sa − sb = sa + sb − 2sb < 3n −
2n = n. So n cannot divide sa − sb either.

Lemma 3.4. If n is a power of 2 and L is odd, then all
the numbers t0 , . . . , tn−1 are distinct.
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Proof. We argue as in Lemma 3.3. In this case, since
r < n, it cannot be a multiple of n, so sa − sb must be
even. But sa − sb is congruent modulo 2 to sa + sb = L,
which is odd.

Proposition 3.5. If a word w of odd length L has a num-
ber of αβ-blocks that is prime or a power of two, then
SI(w) ≤ (L2 − 2)/4.

Proof. Let n be the number of αβ-blocks in w. By Lem-
mas 3.3 and 3.4, the numbers t0 , . . . , tn−1 are all distinct;
in fact (Lemma 3.2), their differences are all even, so any
two of them must be at least two units apart. It follows
that

n−1∑
i=0

ti ≥ min ti + (min ti + 2) + · · · + (min ti + 2n − 2)

= nmin ti + n(n − 1),

so their average, which we calculated in the proof of
Proposition 2.4 to be nL, is greater than or equal to
min ti + n − 1, and so (using (2–1))

SI(w) ≤ min ti − n2 + n − 1 ≤ nL − n2 = n(L − n) ≤ L2

4
.

Since L is odd and SI(w) is an integer, this means that

SI(w) ≤ L2 − 1
4

.

Propositions 3.1 and 3.5 prove Theorem 1.6.

4. LOWER BOUNDS: PROOF OF THEOREM 1.7

Definition 4.1. A word in the generators of a surface
group and their inverses is positive if no generator oc-
curs along with its inverse. Note that a positive word is
automatically cyclically reduced.

Notation 4.2. If w is a word in the alphabet {a,A, b,B},
we denote by α(w) (respectively β(w)) the total number
of occurrences of a and A (respectively b and B).

Proposition 4.3. For any reduced cyclic word w in the
alphabet {a,A, b,B}, there is a positive cyclic word w′ of
the same length with α(w′) = α(w), β(w′) = β(w), and
SI(w′) ≤ SI(w).

Proof. We show how to change w into a word written
with only a and b while controlling the self-intersection

number. If all the letters in w are uppercase, take w′ =
w−1 . Otherwise, look in w for a maximal (cyclically) con-
nected string of (one or more) uppercase letters. The
letters at the ends of this string must be one of the
pairs (A,A), (A,B), (B,A), (B,B). In the case (B,B)
(the other three cases admit a similar analysis), focus
on that string and write

w =
〈
xaa1 Bb1 Aa2 Bb2 . . . Aai Bbi aai + 1

〉
,

where x stands for the rest of the word.
Consider a representative of w with minimal self-

intersection. In this representative consider the arcs cor-
responding to the segments aB (joining the last a of the
aa1 -block to the first B of Bb1 ) and Ba (joining the last
B in Bbi to the first a in aai + 1 ). These two arcs intersect
at a point p. Perform surgery around p in the follow-
ing way: remove these two segments, and replace them
with an ab and a ba respectively, using the same end-
points. This surgery links the arc aai + 1 xaa1 to the arc
Bb1 Aa2 Bb2 . . . Aai Bbi traversed in the opposite direction,
i.e., gives a curve corresponding to the word

w′ =
〈
aai + 1 xaa1 (Bb1 Aa2 Bb2 . . . Aai Bbi )−1〉 .

This word has the same α and β values as w, has lost at
least one self-intersection, and has strictly fewer upper-
case letters than w. The process may be repeated until
all uppercase letters have been eliminated.

Proposition 4.4. In any surface S with boundary, let w

be a cyclically reduced word in the generators of π1S that
does not admit a simple representative curve. Then a lin-
ear word w representing w (notation from Section 2) can
be written as the concatenation w = u · v of two linear
words in such a way that the associated cyclic words sat-
isfy SI(u) + SI(v) + 1 ≤ SI(w). (Note that u and v are
not necessarily cyclically reduced.)

Proof. Consider a minimal representative of w drawn in
the fundamental domain. It must have self-intersections;
let p be one of them. Let w = x1x2 . . . xL (where xi ∈
{a,A, b,B}) be a linear representative for w, and sup-
pose that xixi+1 and xjxj+1, with i < j, are the two seg-
ments intersecting at p (see Figure 7, where xixi+1 = Ba

and xjxj+1 = ba). Set u = xj+1 . . . xLx1x2 . . . xi and v =
xi+1 . . . xj . (In case i + 1 = j, v is a single-letter word.)
The cyclic words u and v together contain all the seg-
ments of w, except that xixi+1 and xjxj+1 have been
replaced by xixj+1 and xjxi+1.

Furthermore, there is a one-to-one correspondence be-
tween the intersection points on xixj+1 ∪ xjxi+1 and
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FIGURE 7. Splitting w as u · v does not add any new intersections, while the intersection corresponding to p is lost. This
figure shows w = Babba (I) yielding u = aB and v = bba (II).

some subset of the intersection points on xixi+1 ∪
xjxj+1. In fact, labeling the endpoints of the segment
corresponding to xixi+1 (respectively xjxj+1) as Qi and
qi+1 (respectively Qj and qj+1), as in Figure 7, observe
that the segment corresponding to xixj+1 and the bro-
ken arc Qipqj+1 have the same endpoints, so any seg-
ment intersecting the first must intersect the second and
therefore intersect part of xixi+1 ∪ xjxj+1; similarly for
xjxi+1 and Qjpqi+1 (compare Figure 7). Therefore, the
change from w to u ∪ v does not add any new intersec-
tions, while the intersection corresponding to p is lost.
Hence SI(u) + SI(v) + 1 ≤ SI(w).

The next lemma is needed in the proof of Proposi-
tion 4.6.

Lemma 4.5. In the doubly punctured plane P , if a re-
duced nonempty word has a simple representative curve,
then that curve is parallel to a boundary component. Thus
with the notation of Figure 2, the only such words are
a, b, ab,A,B,AB.

Proof. Let γ be a simple essential curve in P . Since P

is planar, P \ γ has two connected components, P1 and
P2 . Since γ is essential, neither P1 nor P2 is contractible;
hence their Euler characteristics satisfy χ(P1) ≤ 0 and
χ(P2) ≤ 0. Since χ(P ) = −1 and χ(P ) = χ(P1) + χ(P2),
it follows that either χ(P1) = 0 or χ(P2) = 0. Hence, one
of the two connected components is an annulus, which
implies that γ is parallel to a boundary component, as
desired.

Proposition 4.6. If w is a positive cyclic word representing
a free homotopy class in the doubly punctured plane, then
SI(w) ≥ α(w) − 1 and SI(w) ≥ β(w) − 1.

Proof. By Lemma 4.5, the only words corresponding to
simple curves are a, b, ab and their inverses; for these,
the statement holds. In particular, it holds for all words
of length one. Suppose w is any other positive word. It
has length L strictly greater than 1. We may suppose
by induction that the statement holds for all words of
length less than L. By Proposition 4.4, since the curve
associated with w is nonsimple, the word w has a linear
representative w that can be split as u · v, so that the
associated cyclic words satisfy SI(w) ≥ SI(u) + SI(v) +
1. Note that u and v have length strictly less than L;
furthermore, since w is positive, so are u and v. Therefore
by the induction hypothesis,

SI(u) + SI(v) + 1 ≥ α(u) − 1 + α(v) − 1 + 1,

and so

SI(w) ≥ α(u) + α(v) − 1 = α(w) − 1.

The β inequality is proved in the same way.

Proof of Theorem 1.7. By Proposition 4.3, there is a pos-
itive word w′ of length L such that α(w′) = α(w), β(w′) =
β(w), and SI(w) ≥ SI(w′). Then Proposition 4.6 yields
SI(w′) ≥ max{α(w), β(w)} − 1. Since α(w) + β(w) = L,
it follows that SI(w) ≥ L/2 − 1 if L is even and SI(w) ≥
(L + 1)/2 − 1 = (L − 1)/2 if L is odd.
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