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We obtain explicit formulas for the number of nonisomorphic
elliptic curves with a given group structure (considered as an ab-
stract abelian group) and the number of distinct group structures
of all elliptic curves over a finite field. We use these formulas
to derive some asymptotic estimates and tight upper and lower
bounds for various counting functions related to classification
of elliptic curves according to their group structure. Finally, we
present results of some numerical tests that exhibit several inter-
esting phenomena in the distribution of group structures.

1. INTRODUCTION

1.1. Background

Let [, be the finite field of characteristic p with ¢ = pF
elements. An elliptic curve E over a finite field [, is given
by the Weierstrass equation

v+ arzy + azy = 2 + asx’ + asx + ag, (1-1)

where the coefficients a;,as, a3, a4,as are in [ .

It is well known that elliptic curves are a versatile
cryptographic tool, and in particular, that their group
structure plays a crucial role in such applications; see
[Avanzi et al. 05].

Let E(F,) be the group of [ ,-rational points on el-
liptic curve E including the point at infinity, denoted
by O. We recall (see [Avanzi et al. 05, Silverman 95,
Washington 08]) that

#E(F,)—q—1/<2y/q and E(F,)~Z, xZ,,
where the unique integers m,n satisfy
m|n and m|q—1 (1-2)

Let G(g;m, n) be the number of distinct elliptic curves
E over F, (up to isomorphism over [F,) such that
E(F,) ~Z,, xZ,. Moreover, let F(q) be the number of
distinct group structures of all elliptic curves over the
finite field [ ,. In this paper, we give explicit formulas
for G(g;m,n) and F(q), for all prime powers ¢ and all
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possible values of m,n. We use these formulas to derive
tight upper and lower bounds on F'(¢) and also an asymp-
totic formula for the average value of F(gq) over prime
powers ¢ < Q as () — .

We also present some numerical results concerning the
frequency of the “most common” group structure over
[, that is, for

G(q) = max G(¢;m,n).

n,m

(1-3)

These results reveal several interesting phenomena in the
behavior of G(¢) and the parameters m, n, and t = p +
1 — mn at which this value is achieved.

Finally, we note that the distribution of group struc-
tures generated by all elliptic curves over all finite fields
F, has been studied in [Banks et al. 12].

1.2. Notation

Throughout the paper, p always denotes a prime, and ¢ =
p¥ always denotes a prime power. As usual, we use d(s)
and ¢(s) to denote the number of positive integer divisors
and the Euler function of s, respectively. We write E/F
if an elliptic curve E is defined over a field F .

Let t be an integer such that ged(¢,p) = 1 and t? < 4q.
Let A =t — 4¢ and let ¢; be the largest integer such that

¢ |A and A/c? =0or 1 (mod4).

Let s; be the largest integer such that s7 | ¢ + 1 —t and
st | ¢ — 1. We note that s; | ¢;.
For each positive divisor m of s;, let

Mi(m)={eeN:mle, e|c}
and

Si(m) =My(m)\ ) Mi(D).
leN,I>m
mll, s,
Moreover, for every negative integer D with D =0 or 1
(mod 4) we denote by h(D) the class number of some
quadratic order of discriminant D.

For p > 2, let x, be the quadratic character modulo
p. Moreover, for p =2, we define x,(z) as 0, 1, or —1
if =0 (mod 2), z = £1 (mod 8), or x = £3 (mod 8),
respectively. We also define

ay = 1 Xg( 1)7
The implied constants in the symbols O, <, and > are
absolute. We recall that the notations U = O(V), U <
V, and V > U are all equivalent to the assertion that
the inequality |U| < ¢V holds for some constant ¢ > 0.

By = xp(=3), 7 = xp(—4).

2. OUR RESULTS

2.1. Explicit Formulas

Here we give some explicit formulas for G(g;m,n)
and F(q).

Theorem 2.1. Let g = p* be a power of a prime p. Let m, n
be positive integers. Lett = ¢+ 1 —mn and A = > — 4q.
Then G(q;m,n) equals:

(1) Dies (m) b (l%) if ged(t,p) =1, t* < 4q, m | n, and

(2) h(—4p) if k is odd, m =1, and n = ¢+ 1;

(3) h(—p) if k is odd, p=3 (modd), m =2, and n =
(¢+1)/2;

4 1ifkisodd, p=2or3, m=1, and n=q+1+
VP4

(5) 1=, ifkis even, m=1, andn =q+1;

(6) 1 =0, if kis even, m =1 and n =q+ 1% ,/q;

(7) (p+6—48, —37v,)/12 if k is even, and m =n =
Vat1;

(8) 0 otherwise.

The following result gives explicit formulas for the
number F'(q) of distinct group structures of all elliptic
curves over [ .

Theorem 2.2. Let ¢ = p* be a power of a prime p. For the
number F(q) of distinct group structures of all elliptic
curves over [, we have

F(q) = Z d(st)
tez, t*<dq,
ged(t,p)=1
1+ oy, if k is odd, p > 3,
n 3+, if k is odd, p = 2,3,
3+, — By, ifkiseven, p>3,
5, if k is even, p = 2, 3.

2.2. Estimates and Average Values

We now present explicit upper and lower bounds on F'(g).

Theorem 2.3. Let ¢ = p* be a power of a prime p. For the
number F(q) of distinct group structures of all elliptic
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curves over [ ,, we have

2?\@<1_;>+d(q—1)+5>F(q>

. [2va+e ifp=2,
5/a(1-1/p) -2, ifp=3.

We also show that the bounds of Theorem 2.3 are
asymptotically tight.

Theorem 2.4. As g = p* — oo via the set of prime powers,

we have
F 272
limsup ——————— (@) = L, (2-1)
o= G(1=1/p) 3
F
lim inf % =5, (2-2)
o Val=1/p)
. F(2)
h}?ilololf 572 =2. (2-3)

Finally, we derive an asymptotic formula for the aver-
age value of F(q).

Theorem 2.5. For Q — oo, as q runs over the set of prime
powers, we have

5" Fla) = (04 o(1)) L

7<Q 08¢

where

8 1
=123 5 =3.682609....
SZm%(m) 3.682609

Our argument can also be used to obtain an explicit
bound on the error term in Theorem 2.5.

3. PRELIMINARIES

3.1. Endomorphism Rings

For an elliptic curve E/F , let N = #E(F,) and t = ¢ +
1 — N. Let 7 denote the Frobenius endomorphism on E,
given by

(x?,y").

We note that 7 is the root of the characteristic poly-

™ (z,y) =

nomial X2 —tX + ¢ in the ring of [ ,-endomorphisms
of E. This ring is denoted by Endr, (E). Moreover, by
End(E) = Endg, (E) we denote the full endomorphism

ring, that is, the ring of F,-endomorphisms of E. Let

A= ¢
polynomial of F.

—4q be the discriminant of the characteristic

Suppose ged(t,p) = 1. Then E is called an ordinary
elliptic curve. We have End(E) = Endy, (£). Moreover,
End(E) is isomorphic to some order O in the quadratic
imaginary field K = Q (v/A). In particular, if Ox denotes
the maximal order in K, that is, the ring of algebraic
integers of K, then

- End(E) C Og.

Let ¢, = [Ok : Z[x]] be the conductor of Z[r], that is,
the largest integer such that A/c? = 0,1 (mod 4). Then
Ax = AJc?, called the fundamental discriminant, is the
discriminant of the field K. Also, Ox =7 [%}
We note that O = Z + cOg, where the conductor ¢ =
[Ox : O] is a divisor of ¢;. Furthermore, ¢ Ag is the dis-
criminant of O, so the order O is uniquely determined by
its discriminant and denoted by O(A).

Now suppose p | t. Then E is called a supersingular
elliptic curve. Let Q o, denote the unique quaternion al-
gebra over @ that is ramified only at p and oo. Then
Endy, (E) is either a quadratic order in K = Q (VA)
or a maximal order in Q ,. Moreover, End(E) is a
maximal order in Q. ,; see [Schoof 87, Silverman 95,
Waterhouse 69].

3.2. Isogeny Classes

Two elliptic curves over [, are called isogenous over
[, if they have the same number of points over [ .
The number of [ ,-rational points of the elliptic curve
E/F ; satisfies the Hasse-Weil bound. On the other hand,
the Deuring—Waterhouse theorem, see [Washington 08,
Waterhouse 69], describes all possible values of N that
can be the cardinality of E(F
E/E,.

q) for some elliptic curve

Lemma 3.1. Let g = p* be a power of a prime p. Lett € Z
and let N = q+ 1 —t. The integer N is the cardinality of
E(F,) for some elliptic curve E/F , if and only if one of
the following conditions is satisfied:

(1) #? < 4q and ged(t,p) = 1;

(2) k is odd and t = 0;

(3) kis odd, t = +\/pq, p =2 or 3;
(4) k is even, t =0, p # 1 (mod 4);

(5) kis even, t = £,/q, p # 1 (mod 3);
(6) k is even, t = £2,/q.
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Let A be a negative integer with A =0 or 1 (mod
4) and let ¢ be the largest integer such that ¢® | A and
A/ =0or 1 (mod 4). Let H(A) denote the Kronecker
class number of A. We have

A
> +(7)
lle, 1>0
Let I(gq; N) be the number of distinct elliptic curves
E/F 4 (up to isomorphism over [ ;) such that #E(F ,) =
N. By [Schoof 87, Theorem 4.6] we have the following
result.

Lemma 3.2. Let g = p* be a power of a prime p. Lett € Z
and let N =q+ 1 —t. Then I(q; N) equals:

(1) H(t* —4q), if t* < 4q and ged(t,p) = 1;

(2) H(—4p), if k is odd and t = 0;

(3) 1, if k is odd, t = +,/pq, p =2 or 3;

(4) 1 —,, if k is even, t =0, p # 1 (mod 4);

(5) 1 =0y, if k is even, t = £,/q, p # 1 (mod 3);
(6) (p+6—48, —37v,)/12, if k is even, t = £2,/q;
(7) 0, otherwise.

3.3. Group Structures

The group of F ,-rational points on the elliptic curve
E/F , is isomorphic to the group Z,, x Z,,, with unique
integers m,n such that m |n and m|q¢—1. We note
that every group Z,, x Z, with integers m,n satisfy-
ing the above conditions can occur as the group E(F,)
for some elliptic curve E/F ,. The following theorem de-
scribes the possible group structures for elliptic curves
over finite fields; see [Riick 87, Tsfasman and V1&dut 91,
Voloch 88].

Lemma 3.3. Let ¢ = p* be a power of a prime p. Let m,
n be positive integers with m <n. Let t =q+ 1 — mn.
There is an elliptic curve E/F 4 such that E(F ;) ~ Z,, x
Z,, if and only if one of the following holds:

(1) ged(t,p) =1, t> <4q, m | n, andm | q—1;

(2) kis odd, t =0, p# 3 (mod 4), and m = 1;

(3) k is odd, t =0, p=3 (mod4), and m=1 or2;

(4) k is odd, t = +,/pq, p=2 or 3, and m = 1;

(5) k is even, t =0, p#Z 1 (mod 4), and m = 1;

(6) kis even, t = £,/q, p # 1 (mod 3), and m = 1;

(7) kis even, t = £2,/q, and m =n = \/q F 1.

We note that case (1) in Lemma 3.3 corresponds to
ordinary elliptic curves, and the other cases correspond
to supersingular elliptic curves.

As usual, we let EJl] be the set of I-torsion points of
the elliptic curve E/F ,, that is,

= {P:PcEF,), IP=0}.

Lemma 3.4. For an ordinary elliptic curve E/F ,, the fol-
lowing are equivalent:

(1) m=max{l:leN, ged(l,q) =1, E[l] CE(F,)},
<2>m= ax{l:leN, I|qg—1, B|#EF,), O(%)
(3) E([Fq) ~7Zn XZ,, where m |n and m | q— 1.

Proof. We recall that for all positive integers [ with
ged(l,q) =1, we have E[l] C E(F,) if and only if [ |
q— 1,1 | #EB(F,), and O (%) C End(E); see [Schoof 87,
Proposition 3.7]. Thus, the values of m in cases (1)
and (2) are the same.

Moreover, for all positive integers I with ged(l,q) =
1, we have E[l| ~ Z; x Z;. Suppose E(F,) ~2Z,, xZ,,
where m | n and m | ¢ — 1. Then for all I with ged(l,q) =
1, we have E[l] C E(F,) if and only if | m. Hence
cases (1) and (3) are also equivalent. O

We recall the definition of ¢; and s; and the sets S;(m),
given in Section 1.

Lemma 3.5. Let E be an ordinary elliptic curve over
F,. Assume that m,n are positive integers with m | n,
m|q—1, andmn=#E(F,) =q+1—t. Then we have
E(F,) ~Z,, xZ, if and only if for some l € S;(m), we

have
A

Proof. We note that

i) -0 (2),

where [ is some positive divisor of ¢;. By assumption, m is
a divisor of s,. From Lemma 3.4, we have E(F ;) ~ Z,, X
Z,, if and only if m is the largest divisor of s; satisfying
0 (%) CEnd(E)=0 (l%) The latter is equivalent to
I € §;(m), which completes the proof. O
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3.4. Primes in Arithmetic Progressions

For a real z > 2 and integers s > r > 0, we denote by
m(z;s,7) the number of primes p < z such that p=r
(mod s) and recall that by the Siegel-Walfisz theo-
rem, see [Crandall and Pomerance 05, Theorem 1.4.6],
we have the following.

Lemma 3.6. For every fized A > 0 there exists C' > 0 such
that for z > 2 and for all positive integers s < (log z)4,

liz
; — = —Cv/1
gcdrgi;)(ﬂ m(z;8,7) 205) O(zexp( C 0gz>),
where
/z du
liz =
5 logu
4. PROOFS

4.1. Proof of Theorem 2.1

We note that G(g;m,n) # 0 if and only if m,n satisfy
one of the cases given by Lemma 3.3, and we study these
cases separately.

For case (1), we assume that ged (¢, p) = 1 and t* < 4q.
From Lemma 3.3, we see that G(¢; m,n) # 0 if and only
if m|n and m|qg—1. So let m,n be positive integers
satisfying such conditions. From Lemma 3.5, for all ellip-
tic curves E/F ,, we have E(F,) ~ Z,, x Z,, if and only
if End(E) = O(A/I?) for some [ € S;(m). We also note
that all orders O(A/I?) with | € S;(m) will occur as the
endomorphism ring of some elliptic curves over [ ;; see
[Waterhouse 69, Theorem 4.2]. Moreover, the number of
[, isomorphism classes of elliptic curves with End(E) =
O(A/1?) is h(A/1%) (see, e.g., [Waterhouse 69, Theo-
rem 4.5], [Schoof 87]). Therefore, we have

G(g;m,n) = Z h <lA2> )

1S (m)

For case (2), we have t = 0. Moreover, G(¢; m, n) with
m = 1 is the number of cyclic supersingular elliptic curves
over F, with trace 0 (up to [ ,-isomorphism), that is,
h(—4p); see [Schoof 87, Lemma 4.8].

For case 3, we have t =0 and ¢ =3 (mod 4). Also,
G(g;m,n) with m =2 is the number of noncyclic su-
persingular elliptic curves over F, with trace 0 (up to
F ,-isomorphism). This is H(—4p) — h(—4p) = h(—p).

For cases (4)—(7), we have t* = q,2q, 3q,4q. Also, all
supersingular elliptic curves in the corresponding isogeny
class are cyclic. Then G(g;m,n) with m =1 is the
isogeny class number given by Lemma 3.2.

4.2. Proof of Theorem 2.2

The possible group structures of elliptic curves over [
are the groups isomorphic to Z,, x Z,,, for some values
m, n described by Lemma 3.3. For an integer ¢, let f(q;t)
be the number of distinct group structures of elliptic
curves over [, with trace ¢t. Let ¢ be a positive inte-
ger with [t| < 2,/g. From Lemma 3.3, we consider the
following cases for t:

Case 1. Suppose ged(t,p) = 1. Let N =q+1—t. Then
Ly X 2, for 1 < m < n, is the group structure of some
elliptic curve E/F, with trace t if and only if (1-2)
holds and mn = N. This is equivalent to having m? | N,
m | qg—1, and mn = N. As before, let s; be the greatest
integer such that s? | N and s; | ¢ — 1. Therefore, there
is a one-to-one correspondence between the group struc-
tures of ordinary elliptic curves over [, with trace ¢ and
positive integer divisors of s;. So

flg;t) = d(st). (4-1)

Case 2. Suppose t | p. Then we may have t>/q =0, 1, 2,
3, or 4. From Lemma 3.3, we see that

1+ oy, if kis odd, t =0,

1, if k is odd, p = 2 or 3, t* = pq.

oy, if kiseven, p#2,t=0,
flgt) = 1, ?f k ?s even, p = 2, t2: 0,

(1-25,)/2, ifkiseven, p#3,t* =g,

1, if k is even, p = 3, t = q,

1, if k is even, t? = 4q,

0, otherwise.

(4-2)
Now we sum up ¢(g;t) over all possible integer values

of t. We have
> flast).

tezZ, t2<4q

F(q) =

Using (4-1) and (4-2), we obtain the explicit formulas
for F(q).

4.3. Proof of Theorem 2.3
Let H, be the set of integers of the Hasse—Weil interval,
that is,

Hy={N:NeN, ¢—2/g+1<N<q+2/q+1}.

We recall from the proof of Theorem 2.2 that for ev-
ery N € H, with gcd(N — 1,p) = 1, there is a bijection
between the set of group structures of isogenous elliptic
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curves E/F , with order N and the set of positive divisors
m of ¢ — 1 with m? | N.

For a positive integer divisor m of ¢ — 1, let g(g;m)
be the number of distinct group structures Z,, x Z,, of
elliptic curves over [, for some n € N. In other words,
9(g;
n such that there exists some elliptic curve E/F, with
E(F,) ~Z,, xZ,. Clearly, we have

> glgm).

mlg—1

m) is the cardinality of the set of positive integers

F(q) = (4-3)

Here, we express ¢(g;
multiples of m? in H,. For a positive integer divisor m of
q—1, let

m) by counting the number of

Hy(m) = {N : N € H,, ged(N —1,p) =1, m* | N}.

From the proof of Theorem 2.2 and by Lemma 3.3, for

all positive divisors m of ¢ — 1, we have
9(g;m) = #Hy(m) + 64(m), (4-4)
where
1, if kisodd, p#2,3, m=1,
1+a, -0y, ifkiseven, p#2,3, m=1,
3, ifp=2or3 m=1,
bq(m) = AP
oy, if kis odd, m = 2,
1, if k is even, m = \/q £ 1,
0, otherwise.
Next, using (4-3) and (4-4), we obtain
= D #Hy(m) +3,(m). (4-5)

mlg—1
We note that #H, =2 [2\/6] + 1. Moreover, for all divi-

sors m of ¢ — 1, if m > /g + 1, then #H,(m) = 0, and if
m < ,/q+ 1, then

48] [ = o [34] - 2] o

m2 m2 m2 m2p
and so
4 1 4 1
oL 72<#Hq(m)<ﬁ 1—=)+2.
m?2 D m2 D

Therefore, to obtain an upper bound for F(q), we write

> #Hy(m)
mlg—1
Yo H#HH(m)+ Y #H,(m)
mlg—1, mlg—1,
m<{i/7 \/quggz<ﬁ+1
4
<> \[<11> doo2
m|g—1 mlg—1,
m<\/7
+ Z #Hq(m).
mlg—1,

Vi—1<m < /q+1

One can see that

Z #Hy(m) + Z d4(m) < 5.
mlg—1, mlg—1
Va—T1<m <, /q+1
Then from (4-5), we have

F(q)<4\/§(1;> Z%+d(qfl)+5

meN
272 1
:3\/Z1<1—p) +d(g—1)+5.

Now we provide the lower bound for F(q). If p = 2,
then using (4-5), we write

+ ) 5, (m

mlg—1

F(q) > #H,(1 > 2V +3>2/q+2.

For p > 3, using (4-5), we write

Flq) = #H, (1) + #H, (2

2 d(m

mlg—1

We now use (4-6) with m = 1,2. Also note that

1
Hq(2)>\/§<1—p> -1
if g=1 (mod 4). Since

1, for ¢ =1 (mod 4)

Y (m) > {27 for ¢ = 3 (mod 4):

m|g—1

we complete the proof.

4.4. Proof of Theorem 2.4

To prove (2-1), we choose a sufficiently large integer L,
and let M be the least common multiple of all positive
integers m < L.
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We now choose a prime p = 1 (mod M) and put ¢ = p.
Using (4-3) and (4-4), we derive

Flg)= Y glgm) =Y glg;m)

nz\qzl m<L
= > (#Hy(m) +0(1)).
m<L

Since by (4-6) for ¢ = p we have #H,(m) = 4,/q/m* +
O(1), we now derive

Flg)> > (47”@ + O(l))

=44 (”62 + O(l/L)) +O(L).

Since by the prime number theorem we have ¢ > M >
exp ((1 4 o(1))L), then taking L — oo, we obtain

= (5 <) = (5 ) ()

for the above sequence of ¢ = p.

For (2-2), we recall [Heath-Brown 86, Lemma 1],
which asserts that there are infinitely many primes p
such that either p = 2¢ + 1 for a prime £ or p = 24145 + 1
for primes ¢;,¢y > p” for some p > 1/4 (one can take
p=0.276...; see the proof of the cited lemma). Us-
ing (4-3) and (4-4), we see that for each such prime p
and ¢ = p, we have

Flg)= Y glggm)= ) (#H,(m)+0(1))

m|g—1

= #Hq(l) + #Hq(2) + O(l) = 5\/&"‘ O(l)
1
=5, (1 - p) +0(1).

Finally to prove (2-3), we recall that if ¢ = 2", where
r is prime, then all prime divisors ¢ of ¢ — 1 satisfy £ =1
(mod r) (since r is the multiplicative order of 2 mod-
ulo ¢, and thus r | £ — 1). In particular, for any m | g — 1
with m > 1, we have m > r. Hence as before, and also
recalling (4-6), for ¢ = 2" we obtain

F(g)=#H, (1) + Y (#H,(m) +0(1))
mlg—1

= #H, (1) + O( > (02w + 1))

mlg—1
m>r

= #H,(1) + 0 (¢ +d(g - 1))
= (2+0(1)) g%,

m|g—1

which concludes the proof.

4.5. Proof of Theorem 2.5
Since there are O(Q'/?) prime powers ¢ = p* < Q with
k > 2, using the upper bound of Theorem 2.3, we obtain
> Flg)=>_ F(p)+0(Q).
7<Q P<Q

We see from (4-5) and the well-known estimate on the
divisor function

d(s) = sV, s — o0, (4-7)
see [Hardy and Wright 79, Theorem 317], that
1
S rp =15 (V8 3 o+ 0t~ 1)
p<Q p<@Q mlp—1
— 1 1+0(1)
=4y = ¥ V0 (@),
m<Q p=Q
p=1 (mod m)

By Lemma 3.6 and partial summation, we see that for
m < log @), we have

2 O
> i (5w e
= 3 p(m)
p=1 (mod m)

~(5+0) e

Furthermore, for m > log @, we use the trivial estimate

2, VPsQ” 3 1=0@7m™).
P<Q 2<n<Q
p=1 (modm) n=1 (modm)

The result now follows.

5. DISTRIBUTION OF THE MOST FREQUENT
GROUP STRUCTURES

5.1. Preliminaries

In our study of G(g), given by (1-3), we concentrate only
on prime values ¢ = p. First of all, we note that for any
N, we have

Z G(p;m,n) = I(p; N),

m,n>1
mn=N

where as before, I(p; N) is the number of distinct isomor-
phism classes of elliptic curves E/F , (up to isomorphism
over [,) such that #E(F,) = N (see Lemma 3.2). In
particular,

max I(p; N)/d(N) < G(p) < maxI(p;N).  (5-1)

It is well known that the bounds on the Kronecker class
number imply that I(p; N) < p'/?logp(loglog p)?, and
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FIGURE 1. Distribution of G(p)/p'/?logp for primes
p < 500000 (color figure available online).

for all N €[p+1—p"/2,p+1+p'/?], except at most
two of them, we have I(p; N) > p'/?/logp; see, for ex-
ample, [Lenstra 87, Proposition 1.9]. Thus, from (4-7)
and (5-1), we derive that

G(p) = p"/*om). (5-2)

5.2. Numerical Data

We see from (5-2) that it is natural to study the val-
ues of G(p) scaled by p'/2. In fact, our experiments with
41 538 primes p < 500 000 show that scaling by p'/2log p
is more natural, and the ratio G(p)/p'/?logp stabilizes
in a reasonably narrow strip between roughly 0.1 and 0.2;
see Figure 1.

We also notice that for all primes checked, the value
of G(p) is always achieved for (m,n) with m =1 (that
is, for curves with cyclic group of points). Moreover, for
some primes, the same value is also achieved for some
pairs (m,n) with m = 2. In our experiments, the value of
G(p) has never been achieved with m > 3. In Figure 2,
we compare G(p) with I(p) = maxy I(p; N).

0.9r =

0.7F A
0.6F s U O : _

0.51 “

04 & L i 1 L 1 L 1 L

x10°

FIGURE 2. Distribution of G(p)/I(p) for primes p <
500000 (color figure available online).

0.9f 1

0.7 4

0.6 7

0.5 =

0.4 L I I I | L L I I
0

FIGURE 3. Distribution of G(p)/I(p) achieved for the
same value of ¢ for primes p < 500 000 (color figure avail-
able online).

For primes p < 500000 where we have
puted G(p)/I(p), the ratio 1 was achieved for p=
2,5,7,17,29, 41,101, 1009, 1109, 1879, 4289, where G(p)
and I(p) are achieved with the same value of ¢ with
st = 1. Also, only four times (for p = 37591, 187651,
246391, 397591) was the value of G(p)/I(p) below 0.5.
Unfortunately, these extreme values of both types are in-
visible in Figure 2. We do not know whether these primes
are just some sporadic exceptions or whether there are
infinitely many such primes. More generally, it would cer-

tainly be interesting to evaluate or at least obtain non-

com-

trivial theoretic estimates for

limsup G(p)/I(p) and

p—00

lim inf G(p) /1 (p)-

This may also help to explain the presence of several
horizontal lines in Figure 2 (slightly emphasized there to
improve their visibility).

Clearly, one expects the value of G(p) to be achieved
for (m,n) for which t =p+1— N, where N =mn, is
small, so that A =t> —4p has a large absolute value,
which leads to a large value of I(p; N). However, this

FIGURE 4. Distribution of 75/])1/27 where t € Ty, for
primes p < 500000 (color figure available online).
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s G(p) 1 2 3 4 6 5 8 3 12 17 16 45 28
Ratio 70X 3 3 5 7 it s i5 i1 2 36 3 & a7 1
Number of primes | o505 9300 1987 1236 329 202 268 258 71 45 39 28 15 11
p in Figure 2
Number of primes | o501 1960 g3 1012 220 1 161 139 32 1 19 1 1 11

p in Figure 3

TABLE 1. Ratios of G(p)/I(p) for primes p < 500 000.

is offset by the fact that for N having many divisors,
the value of I(p; N) is “split” between d(s;) values of
G(p; m,n). This effect is observed in the numerical results
presented below, which show that if G(p;m,n) = G(p),
then ¢t =p+ 1 — mn is small but not necessarily very
small. In particular, most of the time, G(p) and I(p) are
achieved for different values of ¢, namely in about 82.2%
of the cases within the above range of primes p (more pre-
cisely, for 34 158 primes out of the total number 41 538 of
primes p < 500000). Furthermore, it seems that the re-
maining 7380 cases in which G(p) and I(p) are achieved
at the same value of ¢ are those that are mainly (but not
entirely) responsible for the presence of horizontal lines
in Figure 2. Indeed, the same lines are clearly visible in
Figure 3, where the ratios G(p)/I(p) are plotted only if
they come from the same value of ¢.

We also summarize this result in Table 1, which gives
the number of points on horizontal lines in Figures 2
and 3 (ordered by the total number of points).

Let Thax(p) be the set of traces corresponding to the
most “popular” group structure, that is,

Tnax(p) = {t : t=p+1—mn, G(p;m,n) =G(p)}.
In Table 2, we give some data about the distribu-
tion of #Tnax(p) for primes p < 500000. In particular,
#Tnmax(p) = 1 in about 52% of the cases.

We also remark that the set Tp,.x(p) is symmetric
around 0 (that is, Trax (p) = —ZTmax (p)) for 20020 primes
out of the total number 41 538 of primes p < 500 000.

Figure 4 presents the scaled values t/p'/? for t ¢
Tmax(p) and p < 500 000.

As we have mentioned, we do not have any solid the-
oretical explanation for the observed facts.

#Tmax(p) | 1 2 3 4 5 6 7 10
Number of | 21638 19087 230 524 19 36 3 1
primes p

TABLE 2. Distribution of #7;,.(p) for primes p < 500 000.
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