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Abstract: The quantum field measure for gauge fields over a compact surface with
boundary, with holonomy around the boundary components specified, is constructed.
Loop expectation values for general loop configurations are computed. For a compact
oriented surface with one boundary component, let M(O) be the moduli space of fiat
connectiwis with boundary holonomy lying in a conjugacy class 0 in the gauge group G.
We prove that a certain natural closed 2—form on M{&X introduced in an earlier work
by C. King and the author, is a symplectic structure on the generic stratum of M{0)
for generic O. We then prove that the quantum Yang-Mills measure, with the boundary
holonomy constrained to lie in @, converges in a natural sense to the corresponding
symplectic volume measure in the classical limit. We conclude with a detailed treatment
of tile case G = SU(2), and determine the symplectic volume of this moduli space.

1. Introduction and Overview of Results

This paper presents the construction of a quantum gauge field measure over compact
surfaces, with specified boundary holonomies, and a determination of the classical limit
of this measure when the surface is oriented and has one boundary component.

Results concerning the quantum Held measure. The construction of the measure and
determination and study of the loop expectation values are carried out in Sects. 1-5. In
these sections:

(i) We construct the Euclidean quantum field measure for gauge theory over a com-
pact surface with boundary, with boundary holonomv (or its conjugacy class)
specified (the gauge group is a compact connected l i e group).

(ii) Loop expectation values are computed explicitly, and it is shown that they are in-
variant under appropriate area-preserving surface homeomorphisms.
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The loop expectation value formulas we obtain are quite natural in view of the
free-boundary expectation value formulas available in [Fi, Se2,3, Wil]. Thus one could
take them simply as a starting point, rather than a conclusion, from the point of view
of lattice gauge theory. However, our objective in this paper has been to derive these
expectation value formulas from a continuum theory.

Results concerning the classical limit and symyectic volume. In Sects. 6-11, we focus
attention on a compact oriented surface U of positive genus with one boundary compo-
nent dU. Let M(0) denote the moduli space of flat connections over E with holonomy
around dU lying in a given conjugacy class 0 in the gauge group G. The gauge group
is now taken to be compact connected semisimple. In [KS2] a 2—form Q@ was de-
fined on the space A(0) of all connections whose holonomvjaround dU lie in 0. It
was shown that Q@ descends naturally to a closed 2—form Q@ on the moduli space
M{0) = A°(0)/G, where A°(0) is the set of flat connections in A{0) and Q is the
group of gauge transformations. In [KS2] it was proven that Q@ is non-degenerate
on the 'smooth part' of M(0) when the conjugacy class 0 passes through a certain
neighborhood of the identity in G; the proof of non-degeneracy in [KS2] was obtained
by 'perturbation' of the case 0 = {e}, the latter case being dealt with by means of an
earlier result in [KS1]. In the present paper we prove the following results:

(iii) Qe is non-degenerate on (the 'smooth part' of) M{0) for generic conjugacy
classes 0, i.e. for all 0 passing through a dense open subset of G - the proof rests
on a determinant identity (7.8.1) proven in Lemma 7.8.

(iv) The Yang-Mills quantum-field measure

converges, as T I 0, to the normalized symplectic volume measure on M(0). A
precise statement and the notation will be explained later; the determinant identity
(7.8.1) is again the key

(v) the symplectic volume of M(0), in the case G = SU{2\ is computed in Theorem
9.1:

i f g = l

ifg>2

wherein c is any element of 0, Xn(c) = sinnO/ sin0, with 0 specified by Trc =
2 cos 6. (The formula for g > 2 is also valid for g = 1)

Related recent works. Recent interest in 2—dimensional quantum gauge theory, attested
to by, for instance, the works [AIK, Be, Di, Fi, Fo, Je, KS1-3, RR, Sel-5, Wil-3],
stems in part from questions associated to a 'classical limit' of the quantum theory;
in particular, in determining the relationship of the classical limit of the quantum field
measure, over oriented surfaces, to a symplectic volume measure on the moduli space
of flat connections. The results of Sects. 6-11 of the present paper address the natural
extension of this question to the case where we consider connections over surfaces
with boundary with the holonomies around the boundary components known up to
conjugation. The investigation of the limiting quantum Yang-Mills measure arose in the
case of closed surfaces in [Sel] and in Witten's papers [Wil,2]; a description of some
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of the questions in this area is given in [Wi3]. The work [Fo] of Forman, and [Se4,5]
are also devoted to the case of closed oriented surfaces. The most influential early
works on the symplectic structure on the moduli space of flat connections on closed
oriented surfaces are by Atiyah and Bott [AB] and Goldman [Go]. It seems likely that
the symplectic structure that is the subject of the present work is the same as the one
obtained through group-cohomological techniques by Biswas and Guruprasad [BG].

In [Wil], Witten gives formulas for the symplectic volumes of moduli spaces of
flat connections over a surface with punctures, with holonomies around these punctures
lying in specified conjugacy classes. For a genus g Riemann surface with one puncture,
with the holonomy lying in a conjugacy class S, the volume given by Witten ((3.18) or
(4.116) in [Wil]) is

1 ^ sinn#

^ n=l U

where 0 is such that Tr a = 2 cos 0 for a E 0 . To compare this with our volume formula
given in (v) above (or Theorem 9.1) we need to note that: (i) the metric on SU(2)
used in [Wil] is given by (a, b) = -Tr (a6), and (ii) the symplectic form used in [Wil]
is ^T times ours (Eq. (2.29) in [Wil]). This inner-product on SU(2) corresponds to
taking SU{2) to be a 3-sphere of radius 21/2; its volume then is 27r2(21/2)3. Moreover,
since Witten's symplectic form is (47T2)""1 times ours, and since M(G) has dimension
6g — 4, we must multiply our volume formula by (4^2)~ (6g"4)/2. Putting all these pieces
together in the volume formula given in (v) above, we get

sin n01 sin 0

* x - sinn0

n=l

in pleasant agreement with the expression given by Witten.

2. Notation and Background for Construction of the Yang-Mills Measure

2.1 The surface E as a quotient of the disk D. We shall work with a compact
2-dimensional Riemannian manifold E. In Sects. 3 and 4, E is a torus with one
hole, i.e. with one boundary component. It will be convenient to view this E as a quo-
tient of the disk J) = { ( x , y ) 6 R 2 : x2 + y2 < 1} in the following way. Consider the

path t »->• xt = (cos2?rt, sin27rt) tracing out dD. If r < s then xrx$ will denote the
path t H-). xt with t E [r, s]. Divide 3D into arcs K\y K2,..., #7, where Kj is given
by xt with t e [ ^ , £ ] , j E {1, . . . , 7}. Identify Kx with 7C3 (the reverse of K3\ K2

with i^4, and K5 with Kj, linearly. This yields the quotient space E and the quotient
map q : D —> E. We shall equip E with the orientation which makes q orientation
preserving. The point o = q(O), where O = (0,0) is the center of D, will serve as a
basepoint on E. The loops
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C = q(xoO)q(K7K6K5)q(Ox0)

generate K\(E, o) subject to the relation

CB~ABA = I (2.1.1)

wherein/is the identity in 7ri(i7, 6). The presence of K5 andifv is not essential; however,
when E is a general compact surface with more than one boundary component (as will
be the case in section 5) then arcs like Ks and Kj must be included, and this is why we
choose to keep them in our framework.

2.2 The G-bundle w : P —>• E, space of connections A, holonomies /i(/c;u;), and
curvature fi"'. We shall work with a principal G—bundle TT : P —>- E, where G is a
compact connected Lie group with Lie algebra g having an Ad-invariant inner-product
(',-)g o n **• Tne set of all connections on P will be denoted A. The metrics on E
and on g induce a metric on A in a standard way. Fix once and for all a basepoint
u G n~l(p). If /c : [r, s] -> E is a path on 17 with /c(r) = o, and if a; G A, then
we denote by TW(K)U the parallel translate of u along /c with respect to w. Thus if
AC is a loop based at o then the holonomy of u; around K, with u as initial point, is
h(K\u) G G given by TW(K)U = u/i(/c;a;). The curvature of UJ G .4 will be denoted QP;

2.3 The gauge transformation groups G,Go, acting on A. We shall use the set Q of
automorphisms of P, i.e. diffeomorphisms <j> : P —>- P for which TT o <f> = n and
<̂ (p̂ ) = <̂ (p)̂  for all p G P, # G G. This is a group under composition, and the

subgroup Go = {<j> G G : <̂ (w) = «} will be of use. These groups act on .4 by

2.^ 7%̂  Yang-Mills action. If a; G A then the Yang-Mills action 5 Y M ( ^ ) is given by

da, (2.4.1)

where da is the Riemannian surface area measure on E9 and {Q^ |^ is the function on
E given by

where ar runs over E9 and ei, e2 G ̂ >P, for any p G TT"1^), are such that (7r*ei, 7r*e2)
is an orthonormal basis of TXE. Since Of* vanishes when to applied vertical vectors
and since it is a 2—form, it follows from the Ad-invariance of (•, -)9 that [f?*'!^ is a
well-defined function E. Furthermore, 5YM is invariant under the fir-action and therefore
defines a function on A/G and on A/Go-

2.5 The curvature function Fw , and the parallel-transport equation. Let u G A. We

shall use the map sw : D -> P given by sw(x) = r̂  (q(Ox)ju9 where Ox is the radial

path from O to x. A convenient way to express the curvature is by means of the map

F»:D->g:x^ F»(x) =f ^(eue2\ (2.5.1)



Yang-Mills on Surfaces with Boundary 665

where on the right e i, e2 G TPP, withp = s^ (#), are such that (Triei, 7r*e2) is a positively
oriented orthonormal basis of Tq(X)E. (If U were an unorientable surface the orientation
on Tq(X)U here would be the one which would make q orientation-preserving in a
neighborhood of x.) Then

J / 2dv (2.5.2)

with d<r here being the surface area measure for E pulled up to D by q.
We shall almost always work with admissible curves on £; by an admissible curve

we mean a curve of the form q o K, where /c : [0,1] —>• D : t •-* /ct is a path which
can be expressed (i.e. reparametrized) in polar coordinates V = r(0)' (thus AC cuts every
radius, excluding 0 , at most once). If K is such a path and if q o /c is piecewise smooth,
then for each t G [0,1] we have a loop q(KtO) • g o /c|[0, J] • g(0«o); these loops will be
very useful. The holonomy

M " ) =f A (<K**O) • 9 o /c|[O,t] • rfO*o);") (2.5.3)

satisfies the differential equation of parallel-transport:

dht(uj)ht(u;)-1 = ~d(f F" da\ , (2.5.4)

where DK
t is the subset of D whose positive boundary is KtO • K| [ (M] • O«o, i.e.

Df = {rxs : r G [0, K(S)], 8 G [0,*]}.

2.6 The map u •-» / F W , A(A;a;), h{B\uj), h(C;v)\ The map

(2.6.1)

induces a one-to-one map from the quotient space A/Go- However, the image is con-
strained by the condition (cf. (2.1.1))

h(C\u)h(B\uYlh(A\uYlh{B\u)h(A\uj) = h(w(L0 • dD • £0);u;), (2.6.2)

where Lois the radial path from O to xo = (1,0), and h(u(LodDLoy,u;)is computable,
by means of (2.5.4), in terms of only F".

2J Yang-Mills measures \LT, /iy, pf for the spaces A, Ac> Ae- Let T > 0. The
Yang-Mills measure for A is, informally, a probability measure ^T on A/Q given by
the heuristic formula

*«•(["]) = ^e-5YM(")/T [2>a; ] j (2.7.1)

where [Du>] is the formal Riemannian volume measure on A pushed down to A/G, and
ZT is a 'normalizing constant'. A rigorous construction of HT is given in [Se2].

Let c G G, and consider

.4c = {a; G ̂  : h{C\u) = c}, (2.7.2)

If © is a conjugacy class in G, we consider also
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As = {w € A : h(C;u) G 0}. (2.7.3)

Our goal is to construct a probability measure /ic on (an appropriate completion of)
Ac/Go, and a probability measure /i# on Ae/Qo which are given heuristically by

on A / ^ O , (2.7.4)

I = z^&jte {hiPiwtye-SwMlVw] on A/6, (2.7.5)

wherein ZT(C) and ZT(G) are "normalizing constants" and S@ is the 5—function speci-
fied by " / G f(x)Se (x) dx " = Je f(x) de (x) d= JG f(kdk ~l) dk for any 0 G <9 (and d*
is the unit-mass Haar measure on G).

Actually we will realize these measures on certain larger spaces Qe and Qe-

3. Construction of the Measures }ic
T and }if

3.1 The Strategy. Since 5Y M (w) = \ \FW l2
L2(D;gy the expression (2.7.5) for fif suggests

that it is reasonable to construct /if as a Gaussian measure on L2(D; g) times Haar mea-
sure on G3 (corresponding to the holonomies h{A\ u), h(B; u) and h(C\ u)) conditioned
to satisfy the constraint (2.6.2) as well as the constraint h(C\w) G S (recall that G is
a conjugacy class in G). Similarly, for /i^ we must use the constraint h(C\u) = c in
addition to (2.6.2).

3.2 Stochastic parallel transport and holonomy over the disk D. As is well known, the
standard Gaussian measure 'on' L2(D\g) actually lives on a Hilbert-Schmidt closure

L2(D;g). Henceforth we shall write /2di3k for the space L2(D;g)9 and /ii.disk for the
Gaussian measure, with covariance scaled by T > 0, on it. The~probability space for
quantum gauge theory over the disk D is:

\ g), /iT,disk

For u G #disk> Fw now corresponds to a g—valued white-noise; i.e. to each Borel set

E C R2 there is a Gaussian £-valued random variable w M- JEFW da = (F w , 1^);
a more detailed account is given in Sect. A3 of the Appendix. In order to impose the
constraint (2.6.2) the meaning of the holonomy h(Lo • 3D -Lo\u>) needs to be understood
fora; G ^disk- More generally we would like to (and will need) give appropriate meaning
to the differential equation for parallel-transport (2.5.4).

Thus let K : [0,1] -» D be an admissible path, and define parallel-transport along
K by reinterpreting (2.5.4) as a Stratonovich stochastic differential equation (this idea
is due to L. Gross). Thus in place of (2.5.4) we consider the Stratonovich stochastic
differential equation

dht(u) o ht(u>yl =-d I f F"da) , (3.2.1)
\JD7 )

with initial condition ho(w) = e,



Yang-Mills on Surfaces with Boundary 667

where D* is, as before, the region {rxs : 0 < r < K(S), 0 < s < t}.
The solution ht{u)) of (3.2.1) can be obtained as a (probabilistic) limit of products

of the form exp (fD* \DK FW da), where to = 0 < t\ < • • • < <JV = t and max \tj —

ti - i l -^O.
Now t H-> JDK Fw do- is, in law, a £—valued Browman motion with time clocked by

the quadratic variation which, given that F" is Gaussian as described before, is simply
T\D£ |, where \D%\ is the area of D%. Thus the solution of (3.2.1) is, in law, simply a
Brownian motion on G with time clocked by T|£>£ | instead of by t.

In particular, the density of /**(•)» with respect to unit-mass Haar measure on G, is
QT\DK\()> where Qt(x) is the heat kernel on G normalized to fG Qt(x) dx = 1 (here
dx is unit-mass Haar measure on G).

Furthermore, it is proven in [Se2,3] that if K\ and K2 are admissible loops in D
whose interiors do not overlap then h(K\\ •) and h{^2\ •) are independent G-valued
random variables on the Gaussian probability space (/?disk, ^Tfdiak).

Thus, if K\, ..., nn are non-overlapping admissible loops, based at 0 , in D then

the joint distribution measure, under /iT,disk» of f h(K\\u),..., A(/cn;u;)J, as a random
variable in u; running over J?disk, is

"dyni (3.2.2)

where Ai is the area enclosed by /c, and cfy, is unit-mass Haar measure on G.

33 Construction of the measures $ arui ^®t The construction of the conditional
probability, satisfying the constraint (2.6.2), requires the technical artifice of dividing D
into a 'lower-half' DL and an 'upper-half Du and working with h(Lo • dD • LQ;U) =
H{8DL ; w)h(dDu; a;). The full technical details of this construction in a general setting
are presented in [Se2,3] and so we shall give here only a conceptual account. In particular,
we shall not make explicit the technical role played by DL and Du- In the Appendix
we shall quote the relevant tools from [Se2,3] and explain how they apply in the present
context.

As explained in the Appendix (Sect. A3), for any c E G there is a probability
measure /if. on the space

nc
d=ndiskxG2 (3.3.1)

which satisifies (cf. the constraint (2.6.2))

h(L0 - dD • L0;u>) = cb-la-lba for /4-a.e. UJ = (wi, a, 6) E # c (3.3.2)

and is, in a natural and precise sense, the conditioning of the probability measure

^T,disk x (Haar on G2)

to satisfy the constraint (3.3.2).
Analogously, for any conjugacy class G in G, there is a probability measure /if on

(2e =f O,isk x G2 x G (3.3.3)

such that

h(L0 • dD • £,0;w) = c6~1cr^a for/if-a.e. w = (wi, a, 6, c) E tf<9 (3.3.4)
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and fif is the conditioning of the probability measure

A*T,disk x (Haar on G2) x (G—invariant measure on 0)

to satisfy the constraint (3.3.4).

3.4 Expectation values. Consider a measurable function <f> = (<j>\,..., <j>n) : f?disk —> Gn

which has a bounded density p^ on Gn, and consider a bounded measurable function /
onGn x G2. Suppose ^k-"<t>\ = KLodD- Lo\ •) for some k E {1, . . . , n}.Then under
simple conditions (detailed in Proposition A6 and the discussion following it) on <f> and

(wi), a, 6) d/i^(u;i, a,6) =
c

-J— [ dadb f dxf(x,a,b)p^(x)S(xk'^i(cb-la'lbarl)1 (3.4.1)

where da and c?6 are the unit-mass Haar measure on G, dx = dxi • • • darn, and

db (3.4.2)

with Qt being the heat kernel on G, as in Sect. 3.2, and |i7| the area of 27. The significance
of the 'delta function' S(xk • • x\ • • •) in (3.4.1) is simply that one of the variables Xj
should be replaced by the value which makes the product xk • • • x\ • • • equal to the
identity (and the integration dxj dropped).

The corresponding result for Q& is:

a,b,c)= ——- / dec

f dadb f dx f{x,a,b)pAx)&(xk • - x^cb^a-Hay1}, (3.4.3)
JG2 JG» V '

where dec is the unit-mass , G—invariant measure on the conjugacy class 0 specified
by the integration formula

f@ F(c) dec = fG F(kck- l)dkformyce0 (3.4.4)

and the normalizer NT(0) is given by:

NT(0)= f QT\s\(cb-la-lba)dadbdec (3.4.5)
JG2

Thus NT(0) = NT(c) if c € 0 .
These results are taken from Proposition 4.5 of [Se2]; for ease of reference, we

quote the exact result in the Appendix (Sect. A6).
The expectation value formulas (3.4.1) and (3.4.4) follow from Proposition A6

(quoted from [Se2,3]) in the manner explained in the discussion following A6 in the
Appendix.
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4. Loop Expectation Values

4.1 Triangulation of E. We shall always work with a certain type of triangulation
("admissible triangulation9) S of E obtained by means of the quotient map q : D -> E
from a triangulation T of D. The triangulation T of D will consist of radii and cross-
radial segments (i.e. those which can be parametrized in polar coordinates in the form
r = r (0)), and will include the origin as a vertex. We will also assume that the arcs on dD
corresponding to the loops A, B and C are made up of 1—simplices of the triangulation
(this can always be ensured by subdividing the original triangulation). These technical
restrictions are to ensure that the parallel-transport equation (3.2.1) is applicable and so
that then the relevant holonomies are meaningful.

4.2 G-fields and lassos. An assignment e ^ ye e G, with e running over the oriented
1—simplices of a triangulation, satisfying y$ = y~l will be called a G—field over the
triangulation. If K is a path consisting of oriented 1—simplices of the triangulation,
K = bj - • 6i, then we define

y(*) = Vbj -ybi-

Let T be a triangulation of D as described in Sect. 4.1, and A a positively oriented
2—simplex (triangle) in T. We can join an appropriate vertex of A to the origin O by a
radial path consisting of 1—simplexes of T and thus form a loop I A based at O. In this
way we form loops / ^ , , . . . , /^ m , one for each positively oriented 2—simplex Aj in T.
The loops Ai will be called the lassos of the triangulation. This can be done, with the
A{ ordered appropriately, in such a way that the following hold:

(*) For any G—field y over T:

yiUm) • • -iKW = y(x0O) • y&D). y(OxQ), (4.2.1)

where dD is taken to start from XQ = (1,0) € 9£>. A complete description of
the construction of the loops I A . is given in Theorem 3.1, and the discussion
preceding it, of [Se2].

(**) To each loop K in T, based at o, we can associate a sequence of the lassos
l&ix, f4i2 • • • such that y(K) = y(lAix )±lyQAi2)

±l * • • holds for any G-field y
overT.

These are simple graphical facts and are actually independent of considerations of
G-fields (Lemma A3 in [Se2]).

4.3 Stochastic holonomy over E, for /iy and \i%. We shall work with loops on E based
at 0 , which consist of oriented 1—simplices of some triangulation S of E of the type
described in Sect. 4.1. If/c is such a loop then there exists a sequence of loops K \,..., /cr

such that:

(a) each KJ is either the projection by q of a loop kj in D or is one of the basic loops
A,B,C and their reverses,

(b) for any G-field y over 5 , y(/cr) • • • y{n\) = y(«).
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The existence of such a decomposition is seen by breaking K into suitable segments and
lifting these up to D (a detailed account is given in Sect. 5 of [Se2]). Recall that for
the loops kj on D the stochastic holonomy h(kj\uj) E G is meaningful as a random
variable in w E ^disk-

Fora; = (a>i, a, b) E Qc, or for a; = (u\, a, fr, c) E fie* we define

•>) , (4.3.1)

where

h(kj ;uf\) if kj is the loop in D projecting to KJ
a±l if KJ is A or ~A
b±l if KJ is Borl[ ' ( 4 ' 3 2 )

c± 1 if/CjisCorC

Then h(K\ u>) is a well-defined G—valued random variable on Qc and f?@ (that h(K\ u)
is independent of the choice of the KJ is proven in Lemma A2 of [Se2]).

4.4.

Theorem 1, Let K\9 ..., /cn fe^ too/?^ on Ey all based at o, composed of oriented
l—simplices of a triangulation S of S of the type described in Sect. 4.1). Let f be
a bounded measurable function on Gn. Consider any c £G. Then

dxei • -dxeM1 (4.4.1)

i , . . . , Am are the positively oriented 2—simplexes ofS, \Aj \ is the area of'Aj,
c i , . . . , eM and their reverses are the distinct oriented l—simplices of S, Qt() is the
heat kernel on G normalized to fG Qt(z) dx = 1, dx being unit-mass Haar measure on
G,and

= f
JG
f \\ (4.4.2)
G2

The meaning of the 6—function in (4.4.1) is that for some arbitrary bondtj lying on d£
and appearing in the loop C, the variable xej should be replaced by the value which
makes x(C) = c and dxej should be dropped from the integration.

Proof In view of the observation (**) concerning the decomposition of a loop in D in
terms of the lassos /^., and in view of the definition of h(K\uj) in (4.3.1), we see that
each h(Ki\u) is a product of certain of the /K/^iuO^'s, h(A\w)±x, h(B;u>)±l, and
h(C; u)±l (the latter being c±l).

Thus to / we may associate a bounded measurable function F such that

(4.4.3)
and, more generally,

/ ( x f a ) , . . . , x(Kn)) = F (x(lAl),..., x(lAm), a, 6, c) (4.4.4)
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for any G—field x over the triangulation <S (of course, the c—term, being constant, could
be dropped from F but that would make the form of F dependent on c).

Recalling the /ic-expectation-value formula (3.4.1) and the //-distribution of the
random variables h(lA.; •) given in (3.2.2), we have:

/

= W7r\ / F(yAx,...,yArn,a,b,c)-
MT\C) JGnxG2/

GnxG2

m

' ' 1 ) J[ (4.4.5)

where NT(C) is as in (4.4.2) (which is the same as stated earlier in (3.4.2)).
A combinatorial argument (Lemma Al in [Se2]) shows that if we take the yAt 's and

a, 6, c such that yAm • • -yAl = cb~la~lba (as is required by the S() term in (4.4.5))
then it is possible to associate to this data a G—field x over S in such a way that

xQAt) = yAt fori e { 1 , . . . ,m} , (4.4.6a)

x(A) = a, x(B) = 6, x(C) = a (4.4.6b)

In (4.4.6a) we have tacitly raised a? to a G—field, also denoted x, on the triangulation
of D which projects by q : D —> 17 to the triangulation S of Z1.

The goal now is to change variables ({yA •}, a, 6) *->- {xei}. In order to do this it is
necessary to understand how Yl^i dyAidadb is transformed. It is shown in the proof of
Lemma Al in [Se2] that the G-field x can be chosen in the following way:

(i) for a certain collection of bonds e, the variables xe are chosen arbitrarily; for the
remaining bonds:

(ii) for one bond t \ lying on q(dD) and appearing in the loop A (i.e. e\ lies on the part
of A on q(dD)\ x(e\) is the product of a with some of the 'previously' assigned
values of x;

(iii) for one bond e*B lying on q(dD) and appearing in the loop B, x(e*B) is product of
b with some of the 'previously' assigned values of x\

(iv) for one bond e*c lying on dE and appearing in the loop C, x(e^) is product of c
with some of the 'previously' assigned values of x\

(v) there is one bond 6, corresponding to each A{ with x&. chosen to be yA% times
some of the 'previously' assigned values of x.

(A more precise formulation, along with a specification of what 'previously assigned'
means, is given in the proof of Lemma Al of [Se2].)

From (i)-(v), and the translation-invariance of Haar measure, it follows that in the
integral on the right side of (4.4.5), we can introduce the variables {xej} instead of
({VAi}, a, b), and then the right side of (4.4.5) equals:

F ( s ^ O , . . . , x{Am), x(A), x{B\ c) •

-s{x(C)c'1) flQnAA (xidAj)) dxex • • dxeM. (4.4.7)
ii
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This calls for some explanation: recall from (i) that certain xei can be chosen arbitrarily,
these are integrated over G in (4.4.7) without changing the value of the integral since

fGdx = 1; the terms(yAm • •t/^1(c6~1a"16a)~1J disappeared since (4.4.6a,6) and

(4.2.1) imply that yAn • •yii1(c6"1a"16a)"1 = e is satisfied automatically by our choice

of the xe.. Finally the new <£(•)—term S (x(C)c~~l j appears because, by condition (iii)

above, one of the bond variables xe, with e = e*c on dE and appearing in C, must be
chosen in such a way that x(C) = c; this says that this x€ is not really a 'variable' but is
determined by the other xei (and c). That the choice of e*c does not affect the value of
the integral (4.4.7) follows by a change-of-variables argument (if e'c is another bond on
dE appearing in C then, given all the other variables xe, a new variable x(e'c) may be
introduced in place of x(e*c)\>y requiring thatx(e^)be such that x(C) = c, a relationship
that expresses x(e'c) as a product of #(e£) with certain of the other bond-variables x€).

Now (4.4.4) and (4.4.66) imply that (4.4.7) is equal to

1 /* " *

j f (*(*i),..., x(Kn))S(x(C)c-l>j Y[ QnAA (x(dAj)) dxei • • • dxeM.

(4.4.8)
Thus, recalling that we started our algebraic manipulations with the loop expectation-
value formula (4.4.5), we see that / f(h(K\;w),.. .,A(/cn;u;)) d^(uj) is equal to
(4.4.8), thereby proving (4.4.1). •

4.5 Invariance of loop expectation values for fj%. Unlike in the case of the "free-
boundary" theory developed in [Se2], we cannot expect the loop expectation values

to be invariant under area-preserving transformations of E. This is because the loop C
has been selected out as a special loop and so we must consider only area-preserving
homeomorphisms of E which fix C.

Thus we wish to show that if <j> is an area-preserving homeomorphism of E and
<j)oC-C then

j f (*(KI), . . . , *(«„)) S (x(C)c-l

dxe[ • • • dxe,Mi, (4.5.1)

where on the left we are using a triangulation S while on the right we are using a
triangulation S'. The loops /c, and C are composed of simplices in S, and the loops
<t> o K{ and C are composed of simplices in 5'.
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First we observe that either side of (4.5.1) is invariant under subdivisions of the
triangulation. This is a consequence of the convolution property of the heat kernel
Qt():

f
JG

which we can use to 'collapse9 adjacent 2—simplices A\ and A\ of a subdivision
of S:

jQT\A*\ (x(dAl))QTlA^ (x(d£l)) dxb = QT,^| (x{dA*)) (4.5.2)

wherein A* is the region formed by collapsing A* and A\ along their common edge
6. Extra bond-variables which remain after collapsing such common edges can be
integrated away (or combined into bond variables for the undivided triangulation) using
fdxb=l.

Since the only way area appears in the right of(4.5.2)is through | ^ | = l^fl + lzijl'
it follows that the left side of (4.5.1) depends on areas only through the areas of the
connected components fc\,..., HN of 17 \ U^1

1Im(/ct) (here Im(/c,) is the image of the
def

path Ki as a subset of E, and we have set /cn+i = C, for convenience). A more detailed
argument is available in Fact 1 of the Appendix in [Se2].

By the 'Hauptvermutung of topology' (Theorem 4.6 in [Br]), S and S' have
subdivisions S and Sf and there is a simplicial isomorphism $ : S —t £f obtained by an
isotopy of <£, preserving the sets Im(/c,) and Im(C), such that $ o C = C, and <j> o m and
^ o «, are the same when taken as sequences of bonds in 5Mn view of the invariance
of the integrals in consideration under subdivisions we may and will assume that § = S
and S* =S'. Thus <̂  is a simplicial isomorphism between S and Sf.

By simple relabelling of xe as Xfay the left side of (4.5.1) equals:

dxe{ • • • dxe,M. (4.5.3)

Since <j> o m and <j> o K, are the same as sequences of bonds in S\ and since <f> o C = C,
relabelling the simplices makes (4.5.3) equal to:

m

n QT\t-HA>
i=i

(the number M' of edges in S1 equals the number M because in the present situation S
and S' are isomorphic). Now, as observed earlier (after (4.5.2)), (4.5.4) depends on the
areas l^-^Aj)! only through certain of their sums; specifically, through the areas of
the regions <j>~~l <f>(Hi), where, as before, the H\,..., HN are the connected components
of the complement of Im(fci) U • U Im(fcn) U Im(C) in E. Since ^ is an isotopy of </>
through maps taking the subset Im(Ari) U • • • U lm(kn) U Im(C) always into the same
subset, it follows that $~l$(Jli) = Hi. Therefore, (4.5.4) equals
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J
fyjdXe^-dXe^ (4.5.5)

and this being the right side of (4.5.1), we have proven (4.5.1).

4.5.1. Observations.

(1) The above arguments show that the restriction that <j> is the identity on C may be
removed if C were to be replaced by <j>(C) on the right side of (4.5.1).

(2) Since the left side of (4.5.1) involves a triangulation S and the right side involves
S', we may set <f> to be the identity and conclude that either side is independent of
the specific triangulation used.

(3) The observation (2) is not surprising in view of the fact that the integrals in (4.5.1)
are, up to the constant NT(C), the loop expectation-value as given in Theorem 4.4.
Nevertheless, the arguments above give an independent and direct proof (one which
also does not depend on the triangulations being of the type described in Sect. 4.1).

We turn now to the corresponding results for /if!. For this we use the notation dec
to denote the G—invariant unit-mass measure on a conjugacy class O in G; thus

fe F(c) dec = fG F(kck~l) dk for any c e 0 .

4.6.

Theorem 2. Let K\, . . . , Kn be loops on £, all based at o, composed of oriented
l—simplices of a good triangulation S of U (of the type described in Sect. 4.1). Let f
be a bounded measurable function on Gn. Consider any conjugacy class G in G. Then

I (w)

dxei • • dxeMd&c, (4.6.1)

where A\,..., Am are the positively oriented 2—simplexes ofS, t\,..., ê f and their
reverses are the distinct oriented l—simplices of S, Qt(-) is the heat kernel on G
normalized to fG Qt(x)dx = 1, dx being unit-massHaar measure on G, and

NT(G)= f QT\S\(cb-la-lba)dadbdec. (4.6.2)
JG2

The meaning of the S—function in (4.6.1) is that for some arbitrary bond ej lying on dE
and appearing in the loop C, the variable xej should be replaced by the value which
makes x(C) = c and dxej should be dropped from the integration.
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Proof. The proof is virtually identical to that of Theorem 4.4, except that we use the /if -
expectation-value formula (3.4.3) as starting point instead of the /i^-formula (3.4.1)
used for proving Theorem 4.4. D

4.7.

Theorem 3. The loop expectation values J f (h(K\; w) , . . . , A(/cn; u>)) dfif(uj) remain
invariant if each Ki is replaced by <£o/c,, where <)> is anyarea-preserving homeomorphism
ofE which preserves the orientation ofC.

/

Proof. Recall, from Observation (1) in Sect. 4.5, that the general form of (4.5.3) is:

m

QT\AJ\ \x(dAj)\ dxei - - -dxeM

(x{dA'S)dxe,-dxe,. (4.7.1)
the notation being as for (4.5.1), and c any element of G. We will show that either
integral depends not on the full curve C but only on the part of C which lies on dE.

In (4.7.1) we can take c £0 and integrate by the G—conjugation-invariant measure
dec; this yields a formula of the form:

j[[- • •]* (z(C)c-1) [• • •] dec = j l • .]'*(*(* o eye'1) I • r dec. (4.7.2)

Now the loop C can be expressed as

C = L'Cd'L, (4.7.3)

where CQ lies entirely on 517, and L is a path from o to a point on dE where C 'first
hits' dE. Then

x(C) = x(L)-lx(Cd)x(L). (4.7.4)

We substitute this into (4.7.2) and observe that the S(- • •) term on the left can be reordered
into the form

S (x(Cd)x(L)c'lx(Lyl) . (4.7.5a)

Now since dec is a G—conjugation-invariant measure on & it follows that in the
integrations in (4.7.2), the 8-term (4.7.5a) can be replaced by

S(x(Cd)c-1). (4.7.56)

Returning to (4.7.2), we then have

y[• • ]S(x(Cd)c-1) [• • ]dec = f[. • •]'<*(*# o Cd)c-1)I • • ] ' ^c . (4.7.6)

Now Cd and <j> oCd can differ only in their starting points and orientation. We have
assumed that <j> o C and C have the same orientation; thus the loops Ce and </> o Cd
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can only differ in their starting points. But then x{<f> o C$), as a product of the bond-
variables xe, is a cyclic permutations of X(CQ\ i.e. a conjugate of x(Cd). Since dec
is G-conjugation-invariant it follows that in the right side of (4.7.6) <f> o CQ can be
replaced by C&. Tracing our arguments back to (4.7.1) we conclude that:

= J f (x(<f> O * ! ) , . . . , X{<t> O K n ) ) ( )

are; • • • rf*e^, (4.7.7)

and this what we wished to prove. Note that, as in Sect 4.5, taking 0 t© be the identity
map in (4.7.7) shows that the loop-expectation-value formulas are actually independent
of the particular triangulation used. D

5. Other Surfaces

In this section we will sketch the construction of the boundary-holonomy-restricted
quantum gauge field measures for a general compact 2—dimensional Riemannian man-
ifold with boundary, and write down the loop expectation-value formulas.

5.7 Hypotheses on E, and generators of TTI(I7, O). In this section, E is a compact
2—dimensional Riemannian manifold with boundary.

Instead of the loops A, B, C of the earlier sections, we now have the following
generators of w\(E,o):

(El) If E is orientable, has genus g > 0* and has p boundary-components, then we
have loops

generating ni(E, o) subject to the relation that

CP" C\BgAsBgAg • • • ~BiA\B\A\ gives the identity in wi(E, o).

The loops Ci are of the form XiC^ij, where C[ traces a loop around boundary
component #i and L* is a simple path from o to a point of C- (the point whore C,
'first hits' dE)

(E2) If E is unorientable and has p boundary-components, then we have loops

generating n\(E, o) subject to the relation that

Cp - - • C\AgA% - - • A\A\ gives the identity in TTICE1, O).

The loops d are of the form L,C,-L,, as described for (El).
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5.2 The connection spaces A(G) and A(c). We are interested in connections u> with
specified values, or restrictions, on the values of the holonomies A(G,; u). For simplicity
we shall work with simultaneous restrictions on all of the C,; restrictions on only some
of the Ci can be handled similarly. Thus we consider the spaces of connections:

A(ch.. . ,cp)^{u; 6 A : A(Ci;w) = eu ...,h(Cp;u) = cp}, (5.2.1)

A{0)™ {u> E A : (A(C,;U/), . . . , h(Cp;u>)) e ©} , (5.2.2)

for any G-conjugation orbit S in Gp.

Here, by G-conjugation orbit we mean an orbit of the conjugation action of GonGp ,
i.e. a subset of the form {(xcix"1 , . . .jXCpX"1) : x 6 G}.

We shall use the notation
c™(cu...,cp). (5.2.3)

5.3 The measures /i|. and /if. Let T be a fixed positive real number. On A(6)jQo we
are interested in the measure

while on A(&)/Q we are interested in the measure

) ) u;], (5.3.2)

wherein S& is specified in the manner explained after (2.7.5).
As in the case of the torus, we start with the Gaussian probability space

, A<T,disk) for the disk D. (5.3.3)

Then we define

Q ctef f fidiak x G2g if 27 is orientable, i.e. satisfies (SI) ,* - *,
- I ^disk x G« if £ satisifi^ (i72) * l ^

Similarly,

o <fef / X?di8k x G2g x © if 27 satisfies (£1) r s ^ ,-.
I «disk xG&xS if 27 satisifies (i72) * P ^

We define the measure /i£ to be /iT,diSk x (Haar on Gag ) (the cr in the exponent being
2 if (271) applies and 1 if (172) applies) conditioned to satisfy the following constraint
(recall that £ 0 is the radial path from O to x0 = (1,0) e dD):

\ ^ ! ! i e S , (5.3.6)
cp - • • cidg • • • a\ if (i72) applies

where
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def / (wi, ai, 61 , . . . , ag, 6g) if (271)
" " \(u>ual,...,aj if (£2)

applies
applies*

Thus the constraint will hold /i§> -almost-everywhere.
To define /if we use the same constraint condition on the measure

A*T,disk x (Haar on Gag) x (G-invariant unit-mass on 0) (5.3.8)

wherein cr is as before. The space on which /if will sometimes be denoted A(0)/Q.
Expectation values with respect to /i§, and /if may be obtained in a way exactly

analogous to that explained in Sect. 3.4 for the one-holed torus.
Stochastic holonomies with respect to /if, and /if are also defined exactly analo-

gously to (4.3.1) in Sect. 4.3.
Carrying out essentially the same arguments as in Sect. 4 we obtain the following

generalized version of Theorems 4.4. and 4.6.

5.4.

Theorem 4. Let K 1 , . . . , Kn be loops on £, all based at the point ot composed of oriented
1—simplices of a good triangulation S of E ( of the type described in Sect. 4.1). Let f
be a bounded measurable function on Gn. Consider any c = (c\,..., cp) E Gp. Then

/
f (x(/ci)' • • •'x(Km)) n

» = 1

dxei'"dxeNf, (5.4.4a)

where Ai,..., Am are the positively oriented 2—simplices ofS, e i , . . . , tM and their
reverses are the distinct oriented l—simplices of S, Qt() is the heat kernel on G
normalized to fG Qt(x) dx = 1, dx being unit-mass Haar measure on G, and

NT(£)

def f fG2gQT\z\(Cp - -c\b~la~lbgag - - f[la~[lbiai)da\ "dbg if (Ul) applies
\ JQg QT\S\(CP ''' cial "' a\) da\ - • • dag if (E2) applies '

The meaning of the S functions in (5.4a) is that, for each C%yfor some arbitrary bond ej
lying on dU and appearing in the loop Ci, the variable xej should be replaced by the
value which makes x(d) = c, and dxej should be droppedfrom the integration.

For /if, we have:

J
J *i), . . . , *(*„))

77ie meaning of the delta-function 8& and the integrator d@ c are explained in Sect. 2.7.
The normalizer NT(O) is JGP iVr(c) d@c.
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The normalizer NT(C) has appeared in the appendix of [Se2] as a topologically-
invariant function associated to the system of loops C\,..., Cp on 27. The functions
NT(O) have appeared in [Wil].

As in Sect. 4, the loop expectation value formulas (5.4a, 6) are invariant under
area-preserving homeomorphisms of 27 which fix the loops C, pointwise. However, for
p > 1, the analog of Theorem 4.7 need not hold.

6. Spaces of Connections and 2—Forms on Them

In this section we describe the surface, spaces of connections, and 2—forms which we
shall be working with in Sects. 6-9. Some of the notation and definitions are lifted
directly from [KS2,3].

6.1 The surface 27, group G, the connection spaces A, A(9), M(9). Henceforth,
27 will denote a compact connected oriented 2—dimensional manifold of genus g > 1,
with a connected non-empty boundary 927. In Sects. 8 and 9, E will be taken to be also a
Riemannian manifold. We shall use a fixed basepoint o in 27, and piecewise smooth loops
A\, B\,..., Ag, Bg, C : [0,1] —>• 27, all based at a point o G 27, which generate the
fundamental group 7ri (27, o), subject to the relation thatCBgAgBgAg • • •.. .B\A\B\A\
is homotopic to the constant loop at o, wherein we denote by X the reverse of any path
X. The loop C is of the form LC*L, where C* is a simple loop around the boundary
dE and L is a £ath from o to the_initial point of C*; the loops Ai and Bi are also of
the form A, = LA*L and Bi = LB*L. A detailed description of these loops is given
in [KS3: Sect. 6.1] (and in a wider setting in [Se2]), but we shall not need such details
here.

We work with a principal G-bundle TT : P —>• 27, where the gauge group G is now
assumed to be compact, connected, and semisimple. The semisimplicity hypothesis is
not of essential significance but we impose it to focus on the more significant issues.

Since 27 has boundary, the bundle P is trivial and so there is a smooth section
s : E -+ P. Connections and other forms on P can be pulled down to 27 by using s. In
this way we can and will identify the space A of all connections on P with the space of
all smooth ^-valued 1-forms over 27; thus we take

A = space of all smooth g-valued 1-forms on 27 . (6.1.1)

The section s is used only for convenience and the constructions (such as symplectic
forms) and results we discuss are independent of the choice of s.

A connection LJ G A is flat if its curvature is zero, i.e. if du> + ^[u;, a>] = 0. We will
be interested in the set of all flat connections :

A0 =f {a; : w G A andu; is flat}. (6.1.2)

We work with a fixed basepoint u Ew~l (o), where o is the basepoint on 27. If /c is a
piecewise smooth loop on 27 based at o, then, as explained in Sect. 2.2, /i(/c; u>) denotes
the holonomy of a; around /c, with u as initial point.

We shall denote by O a conjugacy class in the group G\ we shall work with the
spaces

A{9) = {u G A : h(C\uj) G 9} mAA\9) = {u G A0 : h(C\u) G 9}. (6.1.3)
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The group Q (Sect. 23) of automorphisms of P can be identified, via the section s,
with the set of all smooth maps E —>• G; the group structure is now simply pointwise
multiplication. The subgroup Qo now consists of those <f> G E for which <f>(o) = e. The
action of Q on A is given by:

Axg ->A:(A,<j>)^A-<j>^ Ad(<f>~l)A + <j>-ld<f>. (6.1.4)

This action carries the sets A(0) and A°(0) into themselves, and we have the moduli
space

M(9) = A°(0)/G. (6.1.5)

62 The 2-forms Q and Q@. We are interested in a certain 2—form Q& on A(0) which
was introduced in [KS3]. The definition is:

n& =ff2 + / 2 e x + ^ . (6.2.1)

We shall explain now the definitions of the 2-forms 12, £?ex and ftu. The standard
2—form Q on A (as described in [AB]) is given by:

™ f (AAB). (6.2.2)
JE

where 4̂ and B are #—valued 1—forms on E and the product (A A 5 } is the 2—form
on E given by (A A B)(X, Y) = (A(X), £ (Y)} £ - <A(Y), 5(X)) £ .

Recall, from section 6.1, the loop C, part of which goes around dE. Let A be a
tangent vector to A (i.e. A is a g—valued 1—form on E\ and define

ft
a:[0,l]-¥g:t*-> a(t) = - / Ad(hJl)A(C'(s)) ds, (6.2.3)

JO

where s *-> hs describes parallel transport along C: h'(s)h(s)~l = -A (C'(s)) with
h(0) = e. It is known (and readily verifiable) that a(t) is the variation in ht corresponding
to the variation A in the connection u. Define /? : [0,1] —»- G similarly with respect to
a tangent vector B to A. The 2—form J2ex is defined by:

[ est(a'(s\f3'(t))dsdt, (6.2.4)
Jo

where
f l if«<^;

Next, the 2—form fi^ on A{O) is defined by:

± ) , (Ad(c)- 1)"V(D> + |</?(1), (Ad(c)- l r^d) ) , (6.2.5)ft,|w(j4,B) = <

where c = /i(C; w), C being the loop for dE as described in Sect. 6.1, and a, /? ar as in
(6.2.3). The terms involving (Ad(c) - l )~ are understood by setting (Ad(c) - I)"1

to be 0 on ker[Ad(e) - 1] = [(Ad(c) - lXg) ] 1 . Tlius all terms on the right of the
definition (6.2.1) of Q& have been specified.

6.3 The results o/[KS3]. For ease of reference, we shall record here certain facts relating
to M(O) and Q&, including most of the results of [KS3],
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(i) The 2-form Q@ is equivariant under the action ofQ. Let A,B E Tu)A(0) {an
element of T^A(0) is, by definition, of the form dujt/dt\t=Q where t*-+ut€ A(0)
is such that (t,p) *-t u>t(p) is smooth and wo = w) and suppose that A or B is
tangent to the Q—orbit through u>, in the sense that it is equal to d(w • <j>t)/dt \t=ofor
somepatht •-)• <j>t E 5wi '^ ( t ,p )4 <t>t(p) smooth and <j>o = id. Then ft@(A, B) = 0
(Proposition 5.1 in [KS3].)

(ii) The holonomy representation

n.u^ (A(i4i;w),A(5i;w),...,ft(i4g;w),A(5g;w),A(C;a;)) E G2g x 0 ,
(6.3.1)

induces a bijection A(0)/Go -> H l(e), where QO is the subgroup ofQ consisting
of all </> with <f>(o) = e, and

n : G2g x B -» G : (aubu .. . ,ag ,6g ,c) H* cbZla7lbgag • "b^a^b^.
(6.3.2)

The group G acts on the right ofll~l(e) by conjugation, and the holonomy mapping
% isQ — G equivariant with respect to the homomorphism Q -> G : <j> »-> <j>(p),
and induces a bijection of the full moduli spaces

M(9)^n-\e)/G. (6.3.3)

(iii) There is a dense open subset V of G such that for every conjugacy class G passing
through any point in V, the set II~l(e) is a smooth submanifold of G2g x 0.

(iv) There is a 2—form fio,e on G2g x 0 whose restriction to Ft ~l(e) pulls back to Q&
by the holonomy map %.

(v) If a € n~l(e)jind A,B E Tan~l(e) (this being taken, by definition, to be
kerd/7a) then f?o@(A, B) is 0 ifA or B is tangent to the G—orbit through a;
moreover, £lo,e is G-equivariant. In this sense Q0}@ descends to a 2-form, also
denotedUe, on n~l(e)/G. (Theorem 3.6 in [KS3])

(vi) The 2-form QQ is closed (i.e. Q0,e on II~l(e) is closed); it is non-degenerate on
the smooth part of II"1 (t)jGfor all 0 passing through a dense open subset of a
certain neighborhood of the identity in G (Theorem 4.1 in [KS3]). By the 'generic
(or smooth) part ofll"1 (e)/G' we mean the subset of points corresponding to the
points on II~l(e) where the derivative dll is surjective and where the isotropy
of the G—action is minimal within any component. (Sect. 7.4 below gives a more
detailed explanation of 'generic part' of M(0))

(vii) Formula specifying O@: Let ( a # ( 1 \ cC(1)), (<*#(2), cC(2)) E T(a,c) (G
2« x 0 ) ;

then

^ A d c 1 - I)"1 C(1), (Adc"1 - Adc) (Adc-1 - I)"1 C(2)>£, (6.3.4)

where
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(
<

1 ifi<k

-1 ifi>k
and we have used the convenient if unusual notation of setting

a = (ai, a2, a5, a 6 , . . . , c*4g-3, <*4g-2) (6.3.5)

and

ai+2 = a71foralliGJ= f{l,2,5J6,... )4g-3,4g-2}, (6.3.6)

and, analogously, H^ = (H[r\ H%\ H?\ H%\ . . . , ff£_3, H^_2\ and

Hj+2 = - A d (aj)Hj for all j G J . (6.3.7)

//i (6.3.4), the terms (AdeT1 - I ) " 1 are meaningful because cCil\ cC(2) E TC0
and, as is readily seen, c~xTc0 — (Adc"1 — 1 )(</).

Note that (6.3.4) specifies the 2-form J2O)e on all of G2g x 0 ; the 2-form Y2& is
obtained from its restriction to U~l(e).

6.4 The sense in which % induces Qe from Qe- We wish to make a technical remark
here concerning Sect. 6.3(iv). A precise statement of 6.3(iv) is as follows. Let (a,c) G
n~l(e) C G2g x 0 , and consider vectors v\, v2 G T(a>c) (G2g x ©) which are tangent
to smooth paths lying entirely on II~l(e). It has been shown in Sects. 4.1-4.4 of [KS2]
that:

(a) there are paths [0,1] -> A°(9): t •-> wj, with t = 1,2, such that (t, p) ̂  a;j(p) is
smooth and % (u;j) is initially tangent to v,-, for z = 1,2.

(b) /?6> (Vi, F2) = ̂ o,«(vi, v2). where V{ = ^ , 7 ^ | t = o , for i = 1,2.

In view of Sect. 6.3(i), it is then reasonable to say that Qo,e gives the 2—form on
n_~l(e) ~ A{0)/Qo (as in Sect. 6.3(ii)) induced by Qe, and hence that the 2-form
Qe for M(&) is induced by Qe- However, to make this a strictly logical conclusion
one should verify that if A, B G T^iS) are such that %'(u)A or W(u;)B (the
derivatives being pointwise partial derivatives, for instance W(LO)A = &H(wt)/dt\t=Q
if t K> wt G .4O(0) is such that (t,p) •-> u;t(p) is smooth and dut(p)/dt\t^Q = A) is 0
then Qe(A, B) = 0. For the case of closed surfaces this has been proven in Theorem
5.9.1(i) of [Se6] by showing that W(u)A is 0 if and only if A is tangent to the £o-orbit
through u. We expect that this result (and, with minor modifications, its proof) holds for
surfaces with boundary. A full treatment of this issue in the setting of compact surfaces
with any number of boundary components is postponed to a future investigation. For the
purposes of this paper it will suffice to take the relationship of Qe and Qe as specified
above by (a) and (b).

7. Properties of f2&9 a Determinant Identity, and Non-Degeneracy for ft@

The goal of this section is to prove that Qe is non-degenerate. For this we shall first
prove a determinant identity ((7.8.1)) which will be useful again in Sects. 8 and 9.
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7.1 Notation. We record here some notation some of which has already been used in
Sect. 6. We work with a conjugacy class 0 in G, and we use the map

0->G:(ai,61,...,ag,6g,c)^c6-1aJ16gag.6f laf161a1. (7.1.1)

The indexing set

J= f{l ,2,5,6, . . . ,4g-3,4g-2} (7.1.2)

is convenient to label a typical point in G2g x 0 as

Thus, comparing with the usual notation (ai,6i, ...,ag, 6g,c) we have set ai = a\9

<*i = bu—» <*4g-3 = <*g> «4g-2 = bg. As seen in the expression for Q0,e in (6.3.4), it is
also convenient to introduce

C*3 = aj" , «4 = <*2 ' • ' a 4g- l = aAg-V aH ~ a4g-2- (7.1.3)

Correspondingly, a vector in T(ac>(G2g x 0 ) has the form ({<*;#}}je./,cG), with
C € c~lTc0 C g (not to be confused with the loop C itself), and we set

Hj+2 = -(Adaj)Hj for jeJ. (7.1.4)

It may be convenient to view the above notation as an expression of the imbedding

G 2 g x 0 - > G 4 g x ©:(ai,6i,...,ag,6g,c)i-)'(ai,6i,af1,6J'1,...,ag,6g,a"1,6~1,c).
(7.1.5)

The derivative of 77 at a point (a, c) G G2g x 0 will be taken, by means of left translation,
as a map T(a)C) (G2g x 0) —> g\ it is given by

4g

, cC) =

wherein
. . . a i ) . (7.1.7)

Alternatively,

X ^ i - /^)J? i + /fg1 C. (7.1.8)

Here we have used the fact that for any j G J,

\ frHj. (7.1.9)

This form is useful for determining the adjoint dll*a c), which, again by left trans-
lations, we will take as a map g —>- Q/2g) 0 (c" !TC0); it is given by:

) Pr2 g + 1 /4 gx) , (7.1.10)

where pr2g+1 is the orthogonal projection g_ —>- c" ̂ c©. For the orbit map

7<«|C): G -> G2g x 0 : x ^ 7(a)C)(x) = ( { ^ i ^ 1 } i e J ) xcx~l) (7.1.11)
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the derivative is the map g -* #2g 0 (c~ ̂ c©) given by

7 (
/
a , c )(a^cC)= ({(AdaJ1 - l) Hj}jej, (Adc"1 - l) C) . (7.1.12)

Here C is of course an element of c~lTcG C #, and is not the loop C of Sect. 6.1.

7.2 Interpretation of maps of the form (Adc — I)""1. We record some simple facts,
conventions, and observations which will be useful later in computations. For c E G,
let

Zc =f {X E g : (Adc)X = X}. (7.2.1)

Since
(Adc - 1)* = Adc"1 - 1, (7.2.2)

it follows that
(Adc*1 - 1) <£) = Z^ = c-lTc0 (7.2.3)

and (Ad c±l — I) map Z^ into itself isomorphically; by (Ad c*J — l ) " we shall mean
the inverse of this map. We have encountered and shall encounter again the composite
(Adc-1 - AdcXAdc-1 - I ) " 1 . Observe that

Adc"1 - Adc = - ( A d c - 1)(1 + Adc"1) = (1 + AdcKAdc"1 - 1). (7.2.4)

Thus (Adc"1 - Adc) maps g into Z^9 and so (Adc"1 - AdcXAdc"1 - I)"1 maps
Z*- into itself. Splitting any X £ g into a component in Zc and one in Z^ shows that

(Adc""1 - AdcXAdc-1 - l r ^ A d c " 1 - \)X = (Adc~! - Adc)X. (7.2.5)

From (7.2.4) we have, for any C(1) E Z^ and X E g,

((Adc-1 - I )" 1 C(1), (Adc-1 - Adc) X)

= (C(1), (Adc - I)"1 (Adc-1 - Adc) X) , (7.2.6)

where in the second equality we used the hypothesis that C(1) E Z^ and the fact
(following from (7.2.4)) that

(Adc - I)"1 (Adc"1 - Adc) X = - (l + Adc"1) X +an element of Zc.

The following result (similar to a result discussed in [KSl] for closed surfaces) says
that the map i7, introduced in (6.3.2), plays a role somewhat analogous to that of a
moment map.

7.3.

Lemma7.1. Let (a,c) E n'\e) C G2g x 0, (a#(1),cC) E T(a,c)(G
2g x 0),

X E £.

( !

{13 A)
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Proof Recall that a = {otj}je j , and ctj+2 = ajl, for every j E J, and

/, ^ f Ad(a, • • • a\) for every i E {1,. . . , 4g}. Recall also the expression (7.1.12) for
7(a cy Then the expression for flo%@ in (6.3.4) gives:

(7.2.5) 1 8

» , ^ = 1

_ * ̂ (Adc"1 - I)"1 C(1), (Ado"1 - Adc) X)
4g

"\{a-/r-i)(76) £ ( / rW {(i /r\

where the last line is obtained from the hypothesis that (a, c) E n~~l(e) which implies
that(Adc)/4g = l. •

7.4 77*e generic stratum of M{0\ The moduli space M(G) is, in general, not a
manifold. For the purposes of this paper we shall define the tangent space T(a >C)i7""l (e)
to be kerrfi7(ac); this could contain vectors which are not tangent to any paths in
n~l(e). By a k—form on II~l(e) we mean the restriction of a Ar—form on G2g x 0
to (the tangent spaces of) II~l(e). A G—equivariant Ar—form ?7 on II~l(e) for which
77(^1,..., Vk) = 0 whenever any V{ is in the image of the derivative of the orbit map of
the conjugation action of G will be taken to be a k—form Jj over M(0). Such a form rj
is closed if it arises from a form rf on G2g x 0 for which the restriction of dy[ to the
tangent spaces of 77"J (e) is 0.

A simple argument based on the expressions for dll*ac) and 7('a c) given in (7.1.10)
and (7.1.12) shows that if (a, c) e II'l(e) then

kerd/7fa)C) = ker7('a)C). (7.4.1)

It has been shown by means of Sard's theorem in Sect. 3.2 of [KS4] that there is a
dense open subset of G such that if 0 includes a point in this set then 77 is a submersion
at every point on II~~l(e) and thus II~l(e) is a smooth submanifold of G2g x 0. We
shall focus on such 0, to be called generic 0.
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For generic 0, we see by (7.4.1) that the conjugation action of G on IT~l(e) is
locally free. Standard results of transformation group theory ([Bre]) imply that in each
connected component of II~l(e) there is a dense open subset such that the quotient of
this under the action of G is a smooth manifold and the quotient map is a submersion. It
follows that there is a dense open subset of A4(@)which is a manifold, to be called the
generic part (or stratum) of M{0\ of dimension (2g - 2) dimG+dim(0). The quotient
map I7~l(e) —>• M(0) over this generic part is a submersion.

It will be convenient to define the following 'tangent space':

TpM(0)d= {dn;(g) + ip{gj)L C Tpn~\e). (7.4.2)

The subspace in (7.4.2) is equivariant under the conjugation action of G.
If p projects to a point p in the generic part of M(0) then the derivative at p of the

quotient map sets up

a G-invariantisomorphismq* of TpM(0) onto TpM{0). (7.4.3)

Smooth G-equivariant Ar-forms on II~l(e) which vanish on the directions ~yp(g) corre-
spond one-to-one by q* to smooth k—forms on the generic part of M{0).

We equip Tj>M(0) with the inner-product which makes
the isomorphism q* in (7.4.2) an isometry. (7.4.4)

Some of the discussion and results below carry over to more general 0, and we expect
that suitable sharper versions of the results below exist _for all conjugacy classes 0.
Towards this, notejthat for general 0 we may define q*Q@ at p E U~ l(e) to mean
the restriction of Qo^@ to TpM(0), and define det QO& to be the determinant of the
restriction of Q0,e on TpM{0) with respect to any orthonormal basis in TpM{0)
(Sect. 7.6 contains more on such determinants).

The case where 0 consists of one point (this being any point lying necessarily in
the center of G) becomes essentially identical to the theory for closed surfaces, i.e. the
theory covered by [KS1].

7.5.

Lemma 7.2. Split T(a,C)(G2g x 0) as a direct sum of orthogonal pieces

T(a,c)(G2s x 0) = dn^jC)(g) 0 7('«,c)(£) e Ti<XyC)M(0). (7.5.1)

Then, with respect to this decomposition, Qo,e has the 'matrixform'

\-Ql 0 0_ , (7.5.2)
L * 0 q*Q@\

where Q is the bilinear map dn*ac)(g) x 7('O|C)(£) -»• R given by

Q (Y, i(a<c)X) = (dn(a<c)Y, i ± ^ £ * ^ (7.5.3)

and Ql is the bilinear map y{a c)(g) x dll{a c)(£) ->• R given on ( 7 ^ c)X, Y) by the
right side of (1.5.3).
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Proof. First we observe that (a, c) £ n~l(e) implies that 77 o 7(a,c)(ar) = e for every
x e G, and so dn*ac)(g) and 7(ajC)(g) are indeed orthogonal. From (7.3.1) it follows
that T2Oi& (y,7 ('ac )X) is 0 when Y E kerd77(a>c); since dlT^^ig)1 = kerdi7(a)C),this
explains the two zeros in the second column. The top block Q in the second column is,
by definition of the "matrix form",

and so the expression (7.5.3) for Q is simply a restatement of (7.3.1). The second block
in the first column now follows by skew-symmetry of fiOte- The bottom corner block
follows from the fact that Q@ is, by definition, the image of Qo & under the isomorphism
q* of (7.4.4). •

7.6 Determinants. Let A : V —> W be a linear map between finite-dimensional inner-
product spaces. If ker A j . {0}, or if V = {0}, then we define det(A) = 0. If A # 0) is
an isomorphism onto its image A(V), then by det A we shall mean the determinant of a
matrix of A relative to orthonormal bases in V and A(V). Thus det A is determined up
to sign, but is otherwise independent of the choice of bases. Consideration of matrices
shows that det (A|(ker A)L) = det (A* \A(V)). If A is an isomorphism onto W, and
if B : W —> Z is a linear map into a finite dimensional inner-product space Z, then
det(5^) = det(£)detG4).

If P : V x W —t Ris & bilinear form, where V and W are finite-dimensional
inner-product spaces of equal dimension, then by det P (determined up to sign) we shall
mean the determinant of the matrix [P(v,, Wj)], where {Vi} and {WJ } are orthonormal
bases in V and W, respectively; det P is taken to be 0 if V and W are 0-dimensional.
The determinant det Q@, which we shall use below, is to be understood in this sense.

7.7.

Lemma 73. Let (a,c) G n~l(e). Denote by (dn 0 dn) the bilinear form on
r(a,c)(G2g x 0 ) defined by

(dn 0 dn){x, Y) = (dn(a,c)x, ^77(a,c)y)£, (7.7. i)

and let (dn 0 (A*/c)pr2g+1) be the bilinear form on T(ac)(G2g x 0) given by

(dn 0 (Adc)pr2g+l)(X, Y) = (dn{aiC)X, (A</c)pr2g+1Y>, (7.7.2)

where pr2g+1 is the projection ofT(atC) (G2g x 0) on the last factor c~1Tc0. Then,
assuming that c is not in the center ofG, (i.e. 0 consists of more than one point)

(— 1 1 A
det \QO @ (dn 0 dn) + -(dn 0 (Adc)pr2 x) I

V ' 2 2 J
= det ( -\(Adc- \y\Adc-1 -Adc)(Adc~l - I)"1 ) , (7.7.3)

where (Adc~l — I ) " 1 and (Adc — l )^ 1 are taken as maps from (Adc~l — l)(g) into
itself "
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Proof. Let (a,c) e n~\e\ and consider vectors (aJJ(1), cC(l)), (aH(2\ cC(2)) e
T(aiC)(G2g x 0 ) . Recall the expression for f20)& in (6.3.4):

(Ad c"* - Ad c) (Ad c"l - l) " ! C ( 2 ) \ , (7.7.4a)

where

a = (ai, fri,..., ag, 6g) = {otj}jej,

J = { l ,2 ,5 ,6 , . . ,4g-3 ,4g-2} ,

^ = - (Ada,-) #j r ) for every j e J,

all as explained in Sect. 7.1. From these we have

(aH™, cC™)) =

(7.7.4b)
wherein (upon using the relationship (7.1.9) between Hj+2 and Hj in the expression for
HOte in (7.7.4a))

a [^ ( / T / " ) / ( / - _ ' j - ejfc/ri)] (7.7.5a)

and, using the second equality in (7.2.6),

^2g+i2g+i = -^(Adc - lr^Adc" 1 - AdcXAdc"1 - I)"1. (7.7.5b)

Recall that
7 = f { l , 2 , 5 , 6 , . . . , 4 g - 3 , 4 g - 2 } )

s o t h a t / U ( J + 2) = { l , 2 , .
So, from (7.7.5a), for j,ke J with j + 2 < k,

On the other hand, from the expression for d77(a>c) in (7.1.8) we have:

(a^ (1), cCm), (aH{2), cC™)) (7.7.7)
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and

(Adc)pr2g+1) ((aH«\ cC(2>)

Thus, setting

we can write

j € J

Q"¥~QOte-1-

(7.7.10)

.(AdC)pr2g+1), (7.7.9)

a ((aH«\cCw),(aH<2\cC™))

where

= -§(Adc-

and, from (7.7.6), (7.7.7) and (7.7.8),

- A d c X A d c " 1 - I)"1

(7.7.10)

(7.7.11)

forj,Jt € J wi thj+2 < k
(7.7.12)

and from (7.7.46), (7.7.7) and (7.7.8),

= 0 - ^ ( / j . , - / i+2)Ad c + ^(/j_i - / i + 2)Adc = 0 for j G 7 ((7.7.13)

and, similarly,
6 J. (7.7.14)

Thus the 'matrix' [i2jk]j,keJ f°r ^ has an upper triangular form:

A 0 0
* I>5 0
* *

0
0
0
0

* * * * I>4g_3 0

* * * * * #2g+12g+U

(7.7.15)

where the diagonal entry Dj, for j , j+1 € J, is given from (7.7.5a), (7.7.7) and (7.7.9),
by
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r /J+2//L1! - 1 /i+2/71 l „„
= / / - i J . / / - i / f-1 f f - i i (7.7.16)

L-fjfj-\ + / i+3 / j - i - /j+3/ i+2 /i+3/j - 1J

_ - A d aj + Ad {a j \ a j ^j+ioy) - Ad« i + \ Ad ( a ^ a - ^ i ) - 1J '

This factorizes (as observed in [KS1]) as

where a = Ada , and 6 = Adaj+i. This implies that det(Dj) = 1. Combining this
observation with the form for Q1 given in (7.7.15), we have:

= detfl£g+12g+1 I I d e t ^ = detl22g+i2g+i5 (7.7.18)

where J ' = {j E J : i + 1 G J } = {1,5, . . . , 4 g - 3}. Recalling the expression for
^2g+i 2g+i given in (7.7.11), the proof is complete. •

7.8.

Lemma 7.4. Let (a, c) G /Z""1^) C G2g x 0 , and suppose that U : G2g x 9 -> G is
a submersion at (a, c).

] , (7.8.1)

where det [(1 — Adc)~l] is the determinant of the map

with Z$- being the subspace (ksr(Adc — I ) ) 1 = (1 — Adc)(g).

In particular, Q@ is non-degenerate on the smooth part of II~l(e)/G.

Proof. Recall from Lemma 7.5 the splitting T<a ,c)(G
2g x ©) as a direct sum of orthogonal

pieces

T(a,c)(G2* x 9) = dll*ac)(g) 0 7('a)C)(£) 0 T(a,c)M(9) (7.8.2)

and the corresponding 'matrix form' of i2o,e given by

r * Q • I
\-Ql 0 0_ , (7.8.3)
L * 0 q*n&]

where

Q (Y, j'(a c)X) =
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for every Y e dn^ c)(g), and q* : T(ot}C)M(0) -^ Tj^M{0) is as explained in
Sect. 7.4.

Note that in the decomposition (7.8.2), the sum of the second and third summands
is ker rf77(ac). Using this we see that the 'matrix' for j(dll ® dll) at (a, c) has the form

r* o on
0 0 0 (7.8.5)

Lo o oj

and the matrix for \{dll <g» (Adc)pr2g+i) at (a, c) has the form

r* Qi *]
0 0 0 , (7.8.6)

Lo o oj
where Qi is the bilinear map dll*ac)(g) x 7('a|C)(£) -»• R given by

Qi (Y, -f[atC)X) = \(dII(atC)Y, (AdcXAdc-1 - \)X). (7.8.7)

Recall the bilinear form Q' on T(aiC)(G
2s x 0 ) given in (7.7.9):

Q' f 7? (Adc)pr2g+1).

From the preceding observations we see that, relative to the splitting of T(a>c)(G
2g x O)

as in (7.8.1), Q1 has the matrix form:

\ * Qi * I
-Q l 0 0_ , (7.8.8)

L 0 * q*.f?eJ
where Q2 = Q + Qi is the bilinear map dll*ac)(g) x 7('ac)(£) -»• R given by

Q2 (V, 7(a,c)^) = (d/7(a,c)Y, X) = (Y, dIl{aiC)X) (7.8.9)

and -Ql is the bilinear map 7(a>c)(£) x dll*ac)(g) -+ R given by

From (7.8.8) we have, as usual not worrying about signs,

det Q' = det Q2 det(-Q l) det ~Qe,

and the expressions for Q2 and — Ql then imply that

, fdetdiL* cx detd/7/* c> / 1 + Adc \ l —
detf?' = ̂  ^ • — — ^ d e t - ^ 1 } detfi©. (7.8.10)

\ **Tftt|C) det7('a,C) V 2 ; /

Now decomposing g as the orthogonal sum of Zc = ker (Ad c — 1) and Z^-, we have

J /1+Adc\ J /1+Adci . - \ ^oitx

det f — ^ — J = det f—2"—pc
X -> Zt J • (7.8.11)
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Combining the expression for detQ' given in (7.8.10) with that obtained earlier in
(7.7.3), and using (7.8.11), we obtain

1 - I)"1]

\d e t d 7 7(a,c)/ det((l+Adc)|zc
x)

thus proving the determinant identity (7.8.1). D

Recall from Sect. 6.3(iii) that there is a dense open subset V C G such that for
every conjugacy class 0 passing through any point of Vy U is a submersion at every
point of the Jevel set n^l(e) and thus II~l(e) is a smooth submanifold of G2g x 0. In
Sect. 7.4 we saw that Q& is a smooth 2—form on a subset (which we call the generic
part) of A4(0)_which is a smooth manifold; as noted in Sect. 6.3(vi), it has been proven
in [KS2] that Qe is a closed 2—form on this generic part of M(0). Combining this
with Lemma 7.8 we obtain the following result.

7.9.

Theorem 5. The 2-form Qe is a symplectic structure on the generic part ofM(0)
for every generic conjugacy class 0 in G.

8. Limiting Quantum Yang-Mills and Symplectic Volume

In this section E is equipped with a Riemannian metric; i.e. E is a compact connected
smooth Riemannian manifold with one connected boundary component d£. We will
prove that as T I 0 the measures fif (given heuristically by (2.7.5) and rigorously
in Sect. 5.3) converge, in a sense specified below, to a volume measure on M(0) =
A°(0)/G which corresponds locally to the symplectic structure Qe on M{0) (if A is
a symplectic 2—form on a 2d—dimensional space, then the corresponding volume form
VOIA is the exterior power AdA/d!).

Recall that the measure /if, as constructed in Sect. 5.3, is a probability measure on
a space A(0)/Go- For each well-behaved loop /c on E based at o there is a random
variable w •-> h(n; u) E G which corresponds to the the holonomy of w around K. For
our present purposes we shall not need any details of the definition of A(0)/Go> nor of
the stochastic random holonomies, nor of what 'well-behaved' loops mean. What we
shall need is summarized in the following special case of Theorem 5.4, which may be
taken as a specification of /if, thus providing a choice of a starting point for our present
discussions.

The triangulations of E that we use are assumed to be 'admissible' in the sense of
Sect. 4.1. Alternatively, for the purposes of the present section, we may work with any
arbitrary triangulation of E and consider /if as being a measure defined by means of
(8.1.1) below.
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8.1 Loop expectation values for /if.
Let Shea {well-behaved) triangulation ofE, with the basepoint oasa O-simplex. Then
for any loops K \,..., Kn based at o and consisting of oriented 1 -simplices ofS, and any
bounded measurable Junction f onGn,

I f(h(Ki;u),...Jh(Kn;u)) d^iu)

= NT{GTl j f (*(/ci), -,x(Kn))6 (x(C)c-1)

A (*@Aj)) d*et • • dxeMdec, (8.1.1)

where the notation is as explained in Theorem 5.4. The normalizer NT(O) is given by:

NT(O)= f QT\S\(cb-la-%as-b-[la-[1blai)dadbd9c. (8.1.2)
JG'2*

By appropriate subdivision of S and by joining o to a vertex of each Aj by an
appropriate curve lj, each loop K in S based at o can be expressed as a 'composite* of a
sequence of the loops of the form Ij-Ajlj and their reverses, and the loops Ai,Bi,C and
their reverses (by 'composite' here we include the operation of successively dropping
edges which are traversed in opposite directions consecutively in the usual composite
of curves). This has been described in more detail in Sect. 4.2. Each ar(/c,) in (8.1.1) is
then a product of the xQ^xidAj^xQf) and x(Ai)±l, x^B^K and x{C)±l. Thus

we can express / (x(*i ) , •••, x(Kn)) as F (yAi , . . . , y^m, {at, 6,}, c) (8.1.3)

for some function F, where

' , (8.1.4)

a,- =*C4,)A =xCB,),c = x(C). (8.1.5)

Conversely, given t/^ ,„., y^m, {^,6*}, c in G, satisfying

there is an assignm^it e ^ xe9 with xj = x~l for every oriented 1-simplex e of 5,
such that (8.1.4) and (8.1.5) hold.

With this change of variables it follows, as for (4.4.5),

J

i )dyAj, (8.1.6)
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where the 6() term means that any one of the y^ may be replaced in the integrand by
the value which makes the argument in <$(•) equal to e, and the corresponding integration
dy^ , along with the <5()—term, dropped from the integration.

Taking T \, 0 we obtain the following lemma which is very close to Lemma 2.14
in [Se4]; since the sketch proof presented in [Se4] is sloppy enough to be viewed as
incorrect we present a detailed argument here.

8.2.

Lemma 8.5. Let K\,.. .,Knbe loops based at o and composed of oriented 1 —simplices
of the triangulation S, let f be a continuous function on Gn, and let F be associated to
f as described above in (8.1.3). Then

Urn / /(h(Ki\w), . . . , h(Kn;u)) rf/if (CJ)

= UmJVT(e ) - 1 j > F ( c , . . . J c , { a < > 6 < } J c )

'QT\E\ {cbglaglbgag • • b~[la'[lb\ai) da\db\ • • >dagdbgd@c, (8.2.1)

provided that the limit on the right side exists and provided that the limit

No(0) = lim / QT\jj\(cb~xa~lbgag-"b^a^biaOdaidbi'dagdbgdsc
T-+0 JQ2%

(8.2.2)
exists and is positive.

Proof Let AT be the Borel measure on Gm x G2g x G specified by requiring that for
every continuous function h on Gm x G2g x 0 ,

/
J

(8.2.3)

(8.2.4)

h ..., 6g, c) = cb;la;lbgag • • • 6r1af16ia1 . (8.2.5)

By a change-of-variables argument, the role of yfm (and of Am) can be replaced by that
of ?4 (and of Aj) in the integration (8.2.3).

ihe loop expectation value formula (8.1.6) says that

cf/if (w)

j ^ J F(yu . . . , t/m, {a,, 6f-}, c)dXT(iyjh k , M, c). (8.2.6)

So we estimate

J
\j F(yu...ym, fabi}, c) d\T({yj}, {a,-, 6,}, c)
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- / F ( e , . . . , e, {a,-, 6,-}, c) d\T({yj}, {a,, &,}, c)|

F ( e , . . . , e, y i + i , . . . , ym, {a,-, 6t}, c) dAT({yj}5 {a,-, 6,}, c) (8.2.7)

wherein the j = m term is interpreted using F ( e , . . . , e, {a,, 6,}, c) as the second term
in the integrand.

Let e > 0. By (uniform) continuity of F, there is a neighborhood C/e of e such that,
for any j £ {1,..., m}, if yj £ 17C then the integrand on the right side in (8.2.7) is less
than 6. Thus, since the total mass of AT is

leftsideof (8.2.7) < me •ATT(0) + 2 lF | S U p^A T (5 7 > ) , (8.2.8)

where

5 i |C
 d= {(yi, . . .,2/m , {<*,-,&,}, c) G Gm+2* x 0 : Vj $ U€}. (8.2.9)

Using the convolution property f Qt(ab)Qs(b~lc)dadb = Qt+sfac), the conjugation
invariance of Qt, and JG Qt{x) dx= 1, we have

. ..dbgd@c

< sup Q T | ^ | ( 2 / ) . (8.2.10)

Since lim^̂ o suPy^c/ Qt(y) = 0 for any neighborhood £/ of e, we can divide (8.2.8) by
N(0\ let T I 5, and use the hypothesis that No(S) exists and is positive to conclude
that (8.2.1) holds. •

For the following, recall from section 8.3 that for any 0 which passes through a
certain dense open subset of G, the map U : G2g x 0 -> G is a submersion at every
point of 77" He).

8.3.

Theorem 6. Assume that

(i) 0 is such that II is a submersion at every point of II~l{e)

(ii) II~l(e) has a dense open subset U " l (e)° on which the isotropy of the conjugation
action of G is Zip)

(Hi) volne (M(0)°) < oo, where M(0)° is the projection of U'\tf onto M(0)

by the projection map n~l(e) -+ n~l(e)/G ~ M{0) (as in (6.3.3)), and vol-^&

is the volume with respect to the symplectic structure Q& on M(0)°.

(iv) K\y... ,/cn are loops on E based at o, as in section 8.1.
Then for any continuous function f on Gn which is invariant under the conjugation
action ofG,
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^u),..., h(Kn;w)) f

\ I (8.3.1)

/ In view of the limiting formulas given in Lemma 8.2, we shall focus on comput-
ing limt_>0 /G2gx<9 H(au . . . , 6g, c)Qt (ll(au..., 6g, c)) dai...rf6gc/@c, for continu-
ous functions H.

By the submersivity hypothesis, II~l(e) is a submanifold of G2g x 0 . Picking any
point x* G n~l(e) we have, again by submersivity of 77 at x*, a coordinate system x
on a neighborhood M̂  of x* in G2g x 0 and a coordinate system on a neighborhood
U of 77(x*) in G such that 77(WO = U and 77|V^ corresponds, in the coordinates, to
projection on the first dim(G) coordinates.

Let

v = (n\wyl(e) = n-\e) n w
Thus, taking the coordinate system \ such that x( VF) is a cube, there is a diffeomorphism

# : J 7 x V-> W

such that II o<p :U xV —> U isthe projection on the first factor. Therefore, writing

w = #(u, v),

the derivative d^(u,V) : g 0 TvII'l(e) -+ T*(UiV)W = dIJ^(g) + kerd77u/ can be
expressed as a matrix of the form

g TvII-\e)
dn*() f (832)

where D2^(«,v) • TvII~l(e) -> keTdII#(UiV) is the partial deriative of # in the second
variable, and 2?~l is the restriction of dUw to dll^(g) = (ker dnw)L.

It should be noted that the diagonal blocks listed in (8.3.2) are indeed 'square
blocks'. Moreover, det B~l = det dll^. Consequently,

-

Let # be a continuous function on G2g x 0 with compact support contained in W.
For the following computations it is necessary to bear in mind that we use the unit-
mass invariant measures on G and 0, and these differ by constant volume factors from
the respective Riemannian volume measures. Then, upon using (8.3.3), we have the
following change-of-variables formula

vol(G)2*vol(0) f H(au...,bg,c)Qt (ll(au . . . , 6g, c)) dax... dbgde
JG2*x0

= vol(G) / H (#(ti, v)) Qt(u)\fl^f^v)\ dud<r(v), (8.3.4)

where du is the (restriction to U of the) usual unit-mass Haar measure on G, da(v)
the Riemannian volume measure on V C U ~l(e), and vol denotes volume measured
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with respect to the Riemannian metrics on G and 0 induced by (•, -)g. Since H is
continuous and has compact support contained in W, we can apply the heat-kernel
property lim^o fG h(x)Qt(x) dx = h(e) valid for all continuous functions h on G, to
conclude that

lim / H ( a i , . . . , 6g, c) Qt (ll(au . . . , 6g, c)) dai...ctogd^c
no jG2sx&

H (#(e, v)) \fX^f^v)\ d<r(v). (8.3.5)

Since | det D2<P(€,v)\ is the Jacobian, at v, of the map F —>• F : x; •-> #(e, v), we have

lim / H(au..., 6g> c) Qt ( i7(a l 5 . . . , 6g) c))

Jn-
— d*(vl (8.3.6a)
*|

where in the last line we used again the fact that H is supported in W. By a standard
partition-of-unity argument, we conclude that

lim / H (au • •,&g>c) Qt
UOJG%0

^ (8.3.6b)

holds for every continuous function H on G2g x 0.
Applying this to the limiting formulas (8.2.1) and (8.2.2) we have

lim/
TlOj

j ^ F(e,...,e,a,c)|det(di7(a>c)r|-
Id(r(a,c) (8.3.7)

with

No(0) = voKG^-^voKer1 f | det(di7(a,c))* I"1 d<r(a, c) (8.3.8)

and da being the Riemannian volume-measure on II~l (e); the limiting formula (8.3.7),
and the existence of the right side of (8.3.7), is contingent upon No(0) being positive
and finite. Positivity of No(0) is clear from (8.3.8) since II~l(e) ^ 0; finiteness will be
shown below in (8.3.13).

Let i7 - 1(e)0 be the dense open subset of II~~l(e) on which the isotropy of the G-
action on the manifold is Z(G). Then by standard facts from the theory of transformation
groups(Sect. 16.4. l(i), Problem 16.10.1 and Problem 12.10.1 (a) in [Die]), the projection
n~\ef -> M(0f is a principal G/Z(G)-bundle over the manifold M(0)°. Since /
is G-invariant, it follows that so is F and hence the function F(e,..., e, {
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is constant on the fibers; we will sometimes view F ( e , . . . , e, (•)) as a function on the
quotient n~l(e)°/G. Writing F ( e , . . . , e, (•))|/7""1(e)° as a sum of functions supported
on subsets of n~l(e)° on which there are local-trivializations, it follows from (8.3.7)
(see [KS1] or Lemma 5.8 of [Se5] for details of this argument) that

m / /(h(Ki; w) , . . . , h(Kn;oj)

Jnfn-l(e)°/G

and

with dd being the volume-measure on n~l(e)°/G corresponding to the Riemannian
structure on II-l(e)0/G (this being as in (7.4.4)). Recall from Lemma 7.8 that

») | |det ( l -Adc)- 1 |" 1 / 2 , (8.3.11)

where the Pfaffian |Pf(72@)| is the square-root of | detf?o|. Furthermore, since
Pf(f2@)dcr = dvoljj , we see that the right side of (8.3.9) is given by

1 |det(l - Ad c)-1 f1/2 V ° ^ 8 v o l (G/ZWD)

f F(e,...,e,a,c) dwol^J^c) (8.3.12)
Jn-HeY>/G e

and, recalling the identifications n~l(e)/G ~ M{9) and n-l{ef/G ~ M(Gf,

= |det(l - Adc)-TI/2 voKeylTiGf01"* ̂ ^ ' ( 8 3 1 3 )

where c is any point in 0. The hypothesis that voljj (M(0)°) is finite now shows that
No(0) is finite and this justifies (8.3.7) and hence also (8.3.9) and (8.3.12).

Now returning to the relationship between / and F explained in (8.1.3), (8.1.5) and
in the remarks following (8.1.5), we have

/(A(/c1;u;)J...)M«n;a;)) = F (e , . . . , e , a 1 , . . . , 6 g ) c ) (8.3.14)

for any flat connection w with h{Ai\uj) = a,-, h(Bi\u) = 6, and h(C;v) - c.
Combining (8.3.9), (8.3.12) and (8.3.14), the proof is complete. •
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9. The Case of SU(2) Bundles

In this section we specialize the considerations of the preceding Sects, to the case
G = 5(7(2) and show that a sharp form of the semiclassical limit formula holds. We
also determine the symplectic volume of M(0) explicitly.

We shall exclude the case where 0 consists of one point (which must be one of the
matrices ±1). The excluded cases are essentially contained in the theory for 5(7(2) and
50(3) flat connections over closed surfaces, and this theory is treated fiilly in [Se5].

9.1.

Theorem 7. Let the group G be 5(7(2), and let 0 be a conjugacy class containing
more than one point ( i.e. 0 is not the conjugacy class of I or of —I). Then:
[i] M{0) is a smooth (6g — 4)— dimensional manifold which is connected.
[ii] the 2—form Q@ on M(0) is symplectic and the corresponding volume ofM{0) is

[]
(9.1.1)

where \n is the character function of 5(7(2) specified below in (9.1.7), c is any point
in the conjugacy class 0, 0C is the number in (0, TT) for which cos 6C = 7r(c)/2, and
vol(SU(2)) is the volume of 5(7(2) with respect to the fixed metric (•, •)# on ^s Lie
algebra.
[iii] if S be a triangulation of E, and K\ . , . . . , nn loops based at o made up of oriented
1— simplices of S as in Sect, then for any continuous conjugation-invariant function f
onGn,

lim f
I (9.1.2)I

J
Proof, (i) In SU(2) any element not in the center lies in a unique maximal torus, and two
elements commute if and only if both lie in the same maximal torus. This implies that the
isotropy of the G conjugation action at any (a\,..., 6g, c) G i7~ !CD C G2g x 0 (with /
being the identity matrix, and 0 being other than the one-point conjugacy class {/}) is
Z(G) = { ± / } . Consequently, from (7.4.1), 77 is a submersion at every point of II~l(I),
and so 77" ̂ T) is a smooth submanifold of G2g x 0, of dimension 3(2g)+2 — 3 = 6g — 1.
Since the isotropy group of the G action is {±1} everywhere it follows, by standard facts
from transformation group theory alluded to earlier ([Die]), that II~l(I)/G ~ M{0)
is a smooth manifold of dimension 6g - 4, and IT"1 (I) -+ IT~l(I)/G ~ M{0) is a
smooth principal SU(2)/{±I}-bundle. Let (a\, c\), (c*2, ci) € 77"'(7); in particular,
c\, C2 G 0- Since G = 5(7(2) is connected, there is a continuous path [0,1] —>• G : t •-»
xt such that x$ = 7 and x\c\x^1 = C2. Therefore t i-> (xjaix^1 , xtcixf1) is a path
in II~l(I) from (ai , ci) to a point (a^, C2) where a^ lies in 7f "^(cj1), where TiT is the
product commutator map
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In Proposition 3.10 of [Se5], it was proven that the set K~l(c~l) is connected for every
c G SU(2). Consequently, af

2 can be connected to a2 by a continuous path lying in
K~~l (C2 1). Combining all these observations we conclude that (a\, c\) can be connected
to (a2, ̂ 2) by a continuous path in 77" *(/).
(ii) Recall from (8.3.13) that, since now M(0)° = M{0\

lim / Q* (cb~la~lbgag • • -6f *af ^ a i ) rfai • • dbgd@c

= |det(l -

By definition of d@c, J@ h(c)d@c = JG h(xc\x~x) dx for any c\ G S. It follows then
by conjugation invariance of Qt that for any c G 0 ,

/ Qt (c^7 Q>7 bgag • • -6j~ aj~ &iai) da\ • • -dbgd@c

= 1 Qt(c6-1aJ16fag"-*rlarVi)rfaI-..d6,. (9.1.4)
«/G28

The heat kernel Qt has a standard expansion in terms of characters of the group G.
Using this, it is proven in Lemma 5.5 of [Se5] (see also [Wil]) that

lim / Qt (cbg
xag

lbgag • -b^a^biai) da\ -dbg

f% ^ ifg=l ) ( 9 L 5 )

where
6C G (0, TT) is defined by cos 6C = Tr(c)/2, (9.1.6)

n _iec ), and x n is the character of the n—dimensional

irreducible representation of SU(2):

Xn(c) = K-r—177-rF—-ii f ° r every c <

Combining this with (9.1.3) we have, with 0C as in (9.1.6),

2 |det(l - Ad c)~11 * v o l ( 0 ) ^ ^ if g = 1

2 |det(l - Ad c)~ ! | * vol(0)vol(G)2g~2 E^=i ^ ^ i f g > 2•{
(9.1.8)

Next we compute vol(@). Fix c G 0 . If we view SU(2) as a 3-sphere in R4 in the usual
way, the angle between c and I is 0C. So the surface area of the 2-sphere O is

,9.1.9)
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where of course the volume of SU{2) is with respect to the metric (•, -)g on the Lie
algebra of SU{2).

The mapping eie •-> Ad ( e~ __iB 1 is a homomorphism of the circle group onto

the group of rotations in a plane in g and has kernel {± 1}; therefore Ad c is rotation by
angle 20C in a plane orthogonal to the maximal torus of c, and so

- ^ 1 = = ^ (9.1.10)
l - c o s 2 0 J 2sin0

Substituting this into (9.1.8) yields the volume formula (9.1.1).

(iii) is a special case of Theorem 8.3, bearing in mind that now M(0)° = M(0), and
that, by (ii), this has finite volume. O

9.2 Remarks.

(i) As already noted,the cases 0 = {/} and 0 = {—/} are essentially contained in
the study of the moduli space of flat connections over the trivial Sf/(2)—bundle
and the non-trivial £0(3)—bundle over the closed surface of genus g dealt with in
[Se4,5]. The following observations are based on [Se4,5], The moduli space M(I)
consists of a number of strata whose structure and volumes have been determined
in [Se4,5]. The moduli space M(—I) consists of one point if g = 1; if g > 2 then
M(—I) is a smooth connected 3(2g — 2)—dimensional manifold. The 2—form Q@
is symplectic and the corresponding volume is obtained by considering

/
J G

lim
!G*

this leads to the value 2 • vol {SU{2))2g'2 ^ ~ = 1 ( - l ) n ~ Vn2*"2 (which is the same
as is obtained if we set vol(@) and the determinant factor equal to 1 in the formula
(9.1.8)).

(ii) If in the first formula in (9.1.1) (the case g = 1) we set 0C = 0, we obtain the value

27r2 VO ^ ( 2 ) ) which is exactly the volume computed in the closed-surface

theory of [Se5] (and in Lemma 3.11 in [Se4]). Such a comparison cannot be made
for g > 2 since in this case the dimension of M(0) collapses at 0 = {/}.

(iii) If we set g = 1 in the second formula (i.e. the one for g > 2) in (9.1.1) and use
the trigonometric sum formula ^ ^ ( s i n r a ^ / n = fa — 0)/2 for 0 G (0, TT), then
what results is the first formula in (9.1.1) (i.e. the one for g = 1); thus the second
formula actually covers all cases.

Appendix

We will quote some results from [Se2,3] and indicate briefly how they are applied in
Sects. 3 and 5 to the construction of \ic

T and /if.
The basic conditional proability result we need is (from [Se2]):

Al. Theorem. Let (X2,, Ti, P,), for i= 1,2 be probability spaces, where Q\ and Q2 are
complete separable metric spaces and the corresponding T{ are the Borel a—algebras.
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Let G be a compact Lie group. Consider random variables hi : Qi —> G, for i = 1,2,
each having positive density with respect to Haar measure on G. Then there is a unique
assignment

G 4 [0,1]: (£ , z) ̂  P{E\hxh2 = z)

such that the following hold:

(i) E •->• P(E\h\h2 = z) is a probability measure for every z EG.

(ii) z i-* P(E\h\h2 = z) w measurable for every E E ̂ i 0 ^2,

P(£|/ii/i2 = z)dpi2(2r) = (Pi 0 P2)(E H {/ii/i2 E V})
v

holds for every Borel V C G, where p\2 is the probability measure on G describing
the distribution ofh\h2

(iii) z i-)- P(A x J9 IA1/12 = >2:) is continuous for every AET\ and B E T2. Moreover,

Using the conditional measure described above, we can construct another conditional
measure, which is the one we use for the measures \i\ and /if.

A2. Definition. Let (Qi, Ti, P,), for i = 1,2,3, ft* probability spaces, with (Q\, ̂ , Pi)
anJ (i?2, ̂ "2, P2) fowtg «̂y in Theorem Al. Let G be a compact Lie group and consider
G—valued random variables hi on Qi, with h\ and h2 having positive densities with
respect to Haar measure on G. Consider the product space (Q^J7) = (f?i, T\) x

i) x (Q3, T3);for E efwe define

P(E\hxh2 = /13) d= I f dP^)p(E^\hxh2 = h3(u3))Pl2(h3(uj3)) (A2.1)

where p\2 is the density of h\h2 with respect to Haar measure on G, and E^3 =
2): (wi,W2,W3) G E}, and

Z= I Pnfaiu^dP^), 042.2)

Then P(\h\h2 = h3) makes sense, is a probability measure on (Q, T), and satisfies

Thus P(-\h\h2 = /13) really lives on the subset of Q where h\h2 = A3.

A3. Construction of / i j . Fix a positive real number T. We shall describe the details of
the construction of /i^, for any c E G, in terms of the conditional probability measure
described in Definition A2. For the sake of notational simplicity we shall only describe
the case considered in Sect. 3, i.e. of the torus with one hole. The general case is exactly
analogous and is discussed briefly in Sect. A5 below.

For the construction of //j>, divide the.disk D into an upper half DJJ and a lower
half DL. The boundaries 8DL and dDu> when considered as loops, will be taken to
start from the center O of the disk D. Thus, with LQ being the radial path from O to

we have

h(dDL;uj)h(dDu;uj) = h(L0 • dD . Lo;w) (A3.1)
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for any connection w over D.
Equip D with the measure which corresponds, via the quotient map q : D -+ S,

to the Riemannian area measure on E. For any subset A C D (such as A = Dy or
A - DL) let L2(A; g) be the corresponding Hilbert space of g-valued square-integrable
functions on D vanishing outside A. ~

Let Q\ be a Hilbert-Schmidt closure of L2(Du; g) and Pt
T, or simply P\, the standard

Gaussian measure, with variance scaled by T, on the Borel a—algebra T\ of Q\:

thus for each / £ L2(Du; g) there is a Gaussian random variable / on Q\, such that
for any / i , / 2 € L2(Du;g)y </i, / ^ ( P , ) = T{f\,

The ̂ —valued white-noise referred to in Sect. 3.2 (or at least the part of it over
is obtained, for instance, by choosing any orthonormal basis e\,..., e<* of g and setting

FWCE?) = J]f=i (l£?Ct)"e»- for every Borel EcDv.
Let (i?2, ̂ 2, -P2) t^ the corresponding space of DL (we are suppressing the super-

script T in P£).
We modify the definition of J2di3k given in Sect. 3.2 to:

Finally, let i?3 = G2, and let P3 be the unit-mass Haar measure on G2. The functions hi
are as follows:

(ASA)

In (^43.4) and (A3.5), the left sides are defined in terms of solutions of the stochastic
differential equation (3.2.1) and, as pointed out after (3.2.1), are G-valued random
variables with densities QT\DU\() and QT\DL\(\ respectively.

As in Sect. 3.3, we define
tic = tfdisk x G2, 043.6)

and we define the measure fi? by

= A3), (A3J)

where the right side is the probability measure specified above in Definition A2.
Although Qc does not depend on c, it follows from (^42.3) that the measure fic really

lives on the subspace of u for which the constraint

h(L0 ' dD • L0;w) = cb-la~lba

holds (the left side is defined to be the product h(dDL\^i)h{dDu\^\)y following

From the expression in 042.2) for the 'normalized Z = ZT(C), and from the
observations made above concering the densities of h\ and /12, we have:

ZT(c)= I QT\E\{cb-lax

JG2

which is the same as our earlier value (3.4.2).
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A4. Construction offif. The construction of p®, where 0 is any conjugacy class in G,
is similar to that for /x^. The only difference is that now we set

f?3 = G 2 x6>. 044.1)

take the measure P3 to be (unit-mass Haar on G2) x (the G—invariant unit-mass measure
on 0 ) , take F3 to be given by /i3(a, 6, c) = cb~la~lba9 and define

n@ = ndi3k x G2 x e. 044.2)
The spaces (#,-, J7*, P,), for i = 1,2, and the corresponding variables h\ and A2 are as
for //^. With this, we define

fc3). (A4.3)

The corresponding normalizer Z = NT(@) is then:

JVT(<9)= / QT | r | (c6-1a~16a)dad6d©c (A4.4)

which agrees with the value in (3.4.5).

A5. Other surfaces. For general compact surfaces (as described in Sect. 5), Q3 is taken
to be Gog x Gp (with notation as in Sect. 5; <r is 1 if E is unorientable, 2 otherwise),
and A3 is taken to be the appropriate function of the a,, &,-, c, given by the right side of
(5.3.6).

Finally, we quote from (Proposition 4.5 of) [Se2] the exact expectation-value formula
which was alluded to in Sect. 3.4.
A6. Proposition. With notation and hypotheses as in Sects. A2 and A3, let <f> =
(01, • • •, <t>m) ' &\ -» Gm and I/J = (V>i,..., VvO - Qi -t Gn be measurable func-
tions. Suppose that <j>k • • • <t>\ = ̂ i ond 1^1 • • • tj)\ = /12, where the hi are as in Sect. Al.
Suppose also that <j> has a bounded density p^ on Gm, and tjj has a bounded density p^
on Gn. Then for any bounded measurable function f on Gm x Gn x Q$, we have (with

dP(w|/li/l2 = /l3)

•Lf.
where S(-) means that we can drop any Xj (with 1 < j < k) or yj (with 1 < j <
I) from the integration and replace it in the integrand with the value which makes
Xk - • x\yi - - - y\ — /i3(u>3), and Z is the normalizing constant given in 042.2).

In applications, we work typically with random variables of the form A(/c; w), where
K is an admissible loop in D based at 0 ; breaking K into pieces in DL and pieces in
Du (and adjoining appropriate additional radial segments) we can express h(K;u;) as a
product of variables h(n'; w), where K' is a loop in DL or in Du. Thus Proposition A6
is applicable in situations, where fc and ipi are holonomy variables h(Kf; •).
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