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Abstract: The quantum field measure for gauge fields over a compact surface with
boundary, with holonomy around the boundary components specified, is constructed.
Loop expectation values for general loop configurations are computed. For a compact
oriented surface with one boundary component, let M () be the moduli space of flat
connections with boundary holonomy lying in a conjugacy class © in the gauge group G.
We prove that a certain natural closed 2—form on M(6), introduced in an earlier work
by C. King and the author, is a symplectic structure on the generic stratum of M(©)
for generic 6. We then prove that the quantum Yang-Mills measure, with the boundary
holonomy constrained to lie in &, converges in a natural sense to the corresponding
symplectic volume measure in the classical limit. We conclude with a detailed treatment
of the case G = SU(2), and determine the symplectic volume of this moduli space.

1. Introduction and Overview of Results

This paper presents the construction of a quantum gauge field measure over compact
surfaces, with specified boundary holonomies, and a determination of the classical limit
of this measure when the surface is oriented and has one boundary component.

Results concemning the quantum field measure. The construction of the measure and
determination and study of the loop expectation values are carried out in Sects. 1-5. In

these sections:

(i) We construct the Euclidean gquantum field measure for gauge theory over a com-
pact surface with boundary, with boundary holonomy (or its conjugacy class)
specified (the gauge group is a compact connected Lie group). A

(ii) Loop expectation values are computed explicitly, and it is shown that they are in-
variant under appropriate area-preserving surface homeomorphisms.
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The loop expectation value formulas we obtain are quite natural in view of the
free-boundary expectation value formulas available in [Fi, Se2,3, Wil]. Thus one could
take them simply as a starting point, rather than a conclusion, from the point of view
of lattice gauge theory. However, our objective in this paper has been to derive these
expectation value formulas from a continuum theory.

Results concerning the classical limit and sympectic volume. In Sects. 6-11, we focus
attention on a compact oriented surface 3 of positive genus with one boundary compo-
nent 3.X. Let M(O) denote the moduli space of flat connections over X with holonomy
around 90X lying in a given conjugacy class © in the gauge group GG. The gauge group
is now taken to be compact connected semisimple. In [KS2] a 2—form £2¢ was de-
fined on the space A(O) of all connections whose holonomy around 40X lie in 6. It
was shown that £2¢ descends naturally to a closed 2—form §2¢ on the moduli space
M(O) = A%©)/G, where A°(O) is the set of flat connections in A(©) and G is the
group of gauge transformations. In [KS2] it was proven that 2¢ is non-degenerate
on the ‘smooth part’ of AM(©) when the conjugacy class © passes through a certain
neighborhood of the identity in G'; the proof of non-degeneracy in [KS2] was obtained
by ‘perturbation’ of the case © = {e}, the latter case being dealt with by means of an
earlier result in [KS1]. In the present paper we prove the following results:

(iii) ¢ is non-degenerate on (the ‘smooth part’ of) M(O) for generic conjugacy
classes 6, i.e. for all @ passing through a dense open subset of G - the proof rests
on a determinant identity (7.8.1) proven in Lemma 7.8.

(iv) The Yang-Mills quantum-field measure
dus W) = Zr(©)~ e~ SYMWIT §g (h(C;w)) [Dw]

converges, as T | 0, to the normalized symplectic volume measure on M(O). A
precise statement and the notation will be explained later; the determinant identity
(7.8.1) is again the key

(v) the symplectic volume of M(©), in the case G = SU(2), is computed in Theorem
9.1:

2
2n(r — 9) [Ylgy@]? ifg=1

2
4msing [YISTD] vol (SUQ@YE? T2, 49 if g > 2

wherein c is any element of @, x,(c) = sinnf/ sinf, with 6 specified by Trc =
2cosd. (The formula for g > 2 is also valid forg = 1)

volﬁ(9 M@@)) =

Related recent works. Recent interest in 2—dimensional quantum gauge theory, attested
to by, for instance, the works [AIK, Be, Di, F, Fo, Je, KS1-3, RR, Sel-5, Wil-3],
stems in part from questions associated to a ‘classical limit’ of the quantum theory;
in particular, in determining the relationship of the classical limit of the quantum field
measure, over oriented surfaces, to a symplectic volume measure on the moduli space
of flat connections. The results of Sects. 6-11 of the present paper address the natural
extension of this question to the case where we consider connections over surfaces
with boundary with the holonomies around the boundary components known up to
conjugation. The investigation of the limiting quantum Yang-Mills measure arose in the
case of closed surfaces in [Sel] and in Witten’s papers [Wil,2]; a description of some
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of the questions in this area is given in [Wi3]. The work [Fo] of Forman, and [Se4,5]
are also devoted to the case of closed oriented surfaces. The most influential early
works on the symplectic structure on the moduli space of flat connections on closed
oriented surfaces are by Atiyah and Bott [AB] and Goldman [Go]. It seems likely that
the symplectic structure that is the subject of the present work is the same as the one
obtained through group-cohomological techniques by Biswas and Guruprasad [BG].
In [Wil], Witten gives formulas for the symplectic volumes of moduli spaces of
flat connections over a surface with punctures, with holonomies around these punctures
lying in specified conjugacy classes. For a genus g Riemann surface with one puncture,
with the holonomy lying in a conjugacy class ©, the volume given by Witten ((3.18) or

(4.116) in [Wil]) is
sin nd
28— l7r2g—l Z n2e—1

where 6 is such that Tra = 2 cos 4 for a € 8. To compare this with our volume formula
given in (v) above (or Theorem 9.1) we need to note that: (i) the metric on SU(2)
used in [Wil] is given by (a, b) = —Tr(ab), and (ii) the symplectic form used in [Wil]
is G’ times ours (Eq. (2.29) in [Wil]). This inner-product on SU(2) corresponds to
taking SU(2) to be a 3-sphere of radius 21/2; jts volume then is 272(2/2)3. Moreover,
since Witten’s symplectic form is (47?)~! times ours, and since M(@) has dimension
6g — 4, we must multiply our volume formula by (41r2)‘(63“ 412, Putting all these pieces
together in the volume formula given in (v) above, we get

sinnd/ sin

o
4rsinf -2 - (2n223/2%)%-2 Z n2e-1

n=1
Z sinnf
2g— 7l-2g—l n2g-1

in pleasant agreement with the expression given by Witten.

(472)62-9/2

2. Notation and Background for Construction of the Yang-Mills Measure

2.1 The surface ¥ as a quotient of the disk D. We shall work with a compact
2—dimensional Riemannian manifold X'. In Sects. 3 and 4, X is a torus with one
hole, i.e. with one boundary component It will be convenient to view this X as a quo-
tient of the dlSk D = {(z,y) € R? : 2% + y? < 1} in the following way. Consider the

patht — a:t = (cos 2xt, sin2nt) tracing out 3D. If r < s then z,z, will denote the
patht — z; witht € [r,s]. Divide 0D into arcs Ky, K3, ..., K7, where K; is given
by 2; with ¢ €[5, L1, j € {1,...,7}. Identify K, with K3 (the reverse of K3), K>
with K4, and K5 with K, linearly. This yields the quotient space X and the quotient
map ¢ : D — 3. We shall equip X' with the orientation which makes ¢ orientation
preserving. The point 0 = ¢(QO), where O = (0, 0) is the center of D, will serve as a
basepoint on . The loops

= ¢(200)q(K1)q(Oxy),
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B = ¢(z00)q(K2)q(Oxo),
C = q(z00)q(K1K¢Ks)q(Oxo)
generate 71(X, o) subject to the relation

CBABA=1] 2.1.1)

wherein ] is the identity in m1(X, 0). The presence of K's and K7 is not essential; however,
when X is a general compact surface with more than one boundary component (as will
be the case in section 5) then arcs like K5 and K7 must be included, and this is why we
choose to keep them in our framework.

2.2 The G-bundle # : P — X, space of connections A, holonomies h(x;w), and
curvature 2. We shall work with a principal G—bundle = : P — X, where G is a
compact connected Lie group with Lie algebra g having an Ad-invariant inner-product
(-,-)g on it. The set of all connections on P will be denoted .A. The metrics on X
and on g induce a metric on A in a standard way. Fix once and for all a basepoint
u € 7 10). If k : [r,s] = X is a path on X with k(r) = o, and if w € A, then
we denote by 7, (x)u the parallel translate of u along x with respect to w. Thus if
K is a loop based at o then the holonomy of w around «, with u as initial point, is
h(k;w) € G given by 7, (k)u = uh(x;w). The curvature of w € A will be denoted 2¢;
thus 2* =dw + %[w,w].

2.3 The gauge transformation groups G,Go, acting on A. We shall use the set G of
automorphisms of P, i.e. diffeomorphisms ¢ : P — P for which 7 o ¢ = 7 and
¢(pg) = ¢(p)g for all p € P, g € G. This is a group under composition, and the

subgroup G, < {¢ € G : é(u) = u} will be of use. These groups act on A by
(@,w) = ¢*w.

2.4 The Yang-Mills action. If w € A then the Yang-Mills action Sy (w) is given by
1
Sym(w) =5 /E H.Q“’I;do, (2.4.1)

where do is the Riemannian surface area measure on X, and |£2* ﬂg is the function on
X given by -
12°15(2) = 192 (ex, e,

where x runs over X, and e;,e; € T, P, forany p € 7~ 1(z), are such that (meey, mue2)
is an orthonormal basis of 7 ~. Since 2 vanishes when to applied vertical vectors
and since it is a 2—form, it follows from the Ad-invariance of (-, )4 that |22 is a
well-defined function X. Furthermore, Syy is invariant under the G-action and therefore
defines a function on A/G and on A/G,.

2.5 The curvature function F“, and the parallel-transport equation. Let w € A. We
shall use the map s, : D — P givenby s,(z) =T, (q(Oa;)) u, where Oz is the radial
path from O to z. A convenient way to express the curvature is by means of the map

F:Doyg:zm F@) Y 2%, e), 2.5.1)
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where on therighte;, e; € T, P, withp = s,,(z), are such that (e, m.e2) is a positively
oriented orthonormal basis of T ;) X. (If £ were an unorientable surface the orientation
on T4)X here would be the one which would make ¢ orientation-preserving in a
neighborhood of z.) Then

1
SymW) = 3 /D IFw!;dﬁ' 2.5.2)

with do here being the surface area measure for 3 pulled up to D by gq.

We shall almost always work with admissible curves on X'; by an admissible curve
we mean a curve of the form ¢ o x, where « : [0,1] = D : t — &k, is a path which
can be expressed (i.e. reparametrized) in polar coordinates ‘r = ()’ (thus « cuts every
radius, excluding O, at most once). If « is such a path and if ¢ o « is piecewise smooth,
then for each ¢ € [0, 1] we have a loop ¢(«:0) - ¢ o «|[0, ] - ¢(O«xy); these loops will be
very useful. The holonomy

he@) = h (9(5:0) - g 0 ][0, 1] - g(OKo); w) 2.53)
satisfies the differential equation of parallel-transport:
dhy(W)h(w) ! = —d ( F* da) , 2.5.4)
D"g

where D*, is the subset of D whose positive boundary is «:0 - £|[0,] - Oxy, i.e.
Df = {rz, : r € [0,k(s)], s € [0,1]}.

2.6 The map w (F“’, h(A;w), h(B;w), h(C:; w)). The map

w (F“’,h(A;w),h(B;w), h(C;w)) (26.1)

induces a one-to-one map from the quotient space .A/G,. However, the image is con-
strained by the condition (cf. (2.1.1))

h(C;w)h(B;w) ™ 'h(A; w)~1h(B;w)h(A;w) = h(w(Ly - 8D - Lo);w), (2.6.2)

where L is the radial path from O to xg = (1, 0),and h(w(Lo-0D- Lo); w)is computable,
by means of (2.5.4), in terms of only F“.

2.7 Yang-Mills measures pr, pS, pu$ for the spaces A, A., Ae. Let T > 0. The
Yang-Mills measure for A is, informally, a probability measure pur on A/G given by
the heuristic formula

dpr([w]) = El;e’SYM(“’)/T[’Dw], (2.7.1)

where [Dw] is the formal Riemannian volume measure on .4 pushed down to .4/G, and
Zr is a ‘normalizing constant’. A rigorous construction of 7 is given in [Se2].
Let c € G, and consider

A.={w € A: h(C;w)=c}, 2.7.2)

If © is a conjugacy class in G, we consider also
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Ao ={w € A: h(C;w) € 8}. 2.7.3)

Our goal is to construct a probability measure p. on (an appropriate completion of)
A./G,, and a probability measure ug on .Ae /G, which are given heuristically by

45 @) = 7258 (H(C3w)e™) e=SYM@IT[Du] on A /G, @2.7.4)

dpf W) = Fl(e_)ag (h(C;w))e-SYM(W)[’Dw] on A/G, 2.7.5)

wherein Z7(c) and Z7(©) are "normalizing constants and dg is the §—function speci-
fied by “ [; f(z)0e(@)dz" = [ f(z)de(x) S [, f(kOk=')dk forany € © (and dk
is the unit-mass Haar measure on ).

Actually we will realize these measures on certain larger spaces {2, and {2¢.

3. Construction of the Measures p5 and p$

3.1 The Strategy. Since Sym(w) = 3| F¥ “3,2( D.gy the expression (2.7.5) for pS suggests

that it is reasonable to construct p? as a Gaussian measure on L2(D; g) times Haar mea-
sure on G* (corresponding to the holonomies h(A; w), h(B;w) and h(C’; w)) conditioned
to satisfy the constraint (2.6.2) as well as the constraint ~(C;w) € © (recall that © is
a conjugacy class in G). Similarly, for 4% we must use the constraint h(C;w) = c in
addition to (2.6.2).

3.2 Stochastic parallel transport and holonomy over the disk D. As is well known, the
standard Gaussian measure ‘on’ L%(D; g) actually lives on a Hilbert-Schmidt closure

L2(D 9)- Henceforth we shall write 24, for the space L2(D g9), and pir giex for the
Gaussian measure, with covariance scaled by 7' > 0, on it. The probability space for
quantum gauge theory over the disk D is:

(P4isx, BT, disk) = (LZ(D§ g), I‘T,disk)

For w € £24;5x, F“ now corresponds to a g—valued white-noise; i.e. to each Borel set

E C R? there is a Gaussian g—valued random variable w +— f Fede (F¥,1g);

a more detailed account is given in Sect. A3 of the Appendix. In order to impose the
constraint (2.6.2) the meaning of the holonomy h(Lo-8D- Lo; w) needs to be understood
forw € 24, . More generally we would like to (and will need) give appropriate meaning
to the differential equation for parallel-transport (2.5.4).

Thus let « : [0, 1] — D be an admissible path, and define parallel-transport along
Kk by reinterpreting (2.5.4) as a Stratonovich stochastic differential equation (this idea
is due to L. Gross). Thus in place of (2.5.4) we consider the Stratonovich stochastic
differential equation

dhy(w) o he(w)™ ' =—d ( / F¥ da) , 3.2.1)

with initial condition ho(w) = ¢,
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where Dy is, as before, the region {rz, : 0 < r < k(s),0 < s < t}.

The solution h;(w) of (3.2.1) can be obtained as a (probabilistic) limit of products
of the fonnexp(fD:j\D:j 1 Fv do-), wheretg =0 < t; < --- < ty =t and max Itj -
- || — 0.

Nowt + [, ps F* do is, inlaw, a g—valued Brownian motion with time clocked by
the quadratic variation which, given that F' is Gaussian as described before, is simply
T|D¥|, where |Df| is the area of Df. Thus the solution of (3.2.1) is, in law, simply a
Brownian motion on G with time clocked by T'| D7’ | instead of by ¢.

In particular, the density of h.(-), with respect to unit-mass Haar measure on G, is
Qr) py|(-), where Q:(z) is the heat kernel on G normalized to f ¢ Qi(z)dz = 1 (here
dz is unit-mass Haar measure on G).

Furthermore, it is proven in [Se2,3] that if «; and x, are admissible loops in D
whose interiors do not overlap then h(x;;-) and h(k;-) are independent G-valued
random variables on the Gaussian probability space (24isx , 4T qisk )-

Thus, if ki, ..., k, are non-overlapping admissible loops, based at O, in D then

the joint distribution measure, under pr qgis, of | A(k1;w), ..., h(n,.;w)), as a random
variable in w running over §2;;,;, is

Qra, (1) -Qra,(Yn)dy: - - - dyn, (3.2.2)

where A; is the area enclosed by «; and dy; is unit-mass Haar measure on G.

3.3 Construction of the measures pT and p$. The construction of the conditional
probability, satisfying the constraint (2.6.2), requires the technical artifice of dividing D
into a ‘lower-half’ D;, and an ‘upper-half’ Dy and working with h(Lg - 0D - Lo;w) =
h(0DL; w)h(8 Dy ;w). The full technical details of this construction in a general setting
are presented in [Se2,3] and so we shall give here only a conceptual account. In particular,
we shall not make explicit the technical role played by Dy, and Dy . In the Appendix
we shall quote the relevant tools from [Se2,3] and explain how they apply in the present
context. )

As explained in the Appendix (Sect. A3), for any ¢ € G there is a probability
measure u7. on the space

2 Dy x G? 3.3.1)
which satisifies (cf. the constraint (2.6.2))

h(Lo-8D - Lo;w) =cb~'a~'ba for pu$-ae. w = (w1,a,b) € 12, (3.3.2)
and is, in a natural and precise sense, the conditioning of the probability measure
Kt gise X (Haar on Gz)

to satisfy the constraint (3.3.2).
Analogously, for any conjugacy class © in G, there is a probability measure u$ on

26 E Dy xG*x O (3.3.3)
such that
h(Lo - 8D - Lo;w) = cb~'a~'ba for p-ae. w = (w1,a,b,¢) € 2o 3.3.4)
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and p$ is the conditioning of the probability measure

pr gis X (Haar on G?) x (G—invariant measure on ©)

to satisfy the constraint (3.3.4).

3.4 Expectation values. Consider a measurable function ¢ = (¢4, ..., ¢5) : Qgix = G
which has a bounded density p4 on G™, and consider a bounded measurable function f
on G™ x G2. Suppose ¢...¢1 = h(Lo- D - L; - ) for some k € {1, ...,n}. Then under
simple conditions (detailed in Proposition A6 and the discussion following it) on ¢ and
P

f (¢(wl); a, b) dl‘%’(“)l; a, b) =

c

1 .. -1_-13 -1
o Jodet [ dz f(z,a, 004 2k -~ 21(cba" b)), (B4D)

where da and db are the unit-mass Haar measure on G, dz = dz; - - - dz,,, and
Nr(c) = / Qr|z|(cb~'a"'ba)da db (34.2)
G?.

with Q; being the heat kernel on G, as in Sect. 3.2, and | X| the area of X. The significance
of the ‘delta function’ §(zx - - - - - -) in (3.4.1) is simply that one of the variables z;
should be replaced by the value which makes the product zx - - - z; - - - equal to the
identity (and the integration dx; dropped).

The corresponding result for 2 is:

1
. f (¢w1),a,b) dpg(wl,a,b, o= —NT(Q)/edec

/ dadb dz f(z,a,b)py(x)d (zk .- -zl(cb"la'lba)"l), (34.3)
G? G

where dgc is the unit-mass , G—invariant measure on the conjugacy class © specified
by the integration formula

Jo F(c)dec = [; F(kck™")dk forany c € © (34.4)

and the normalizer N1 (©) is given by:
Nr(©) = / Qr|z|(cb~'a" ba)da dbdec (3.4.5)
G2

Thus N7(©) = Nrp(c)ifc € ©.

These results are taken from Proposition 4.5 of [Se2]; for ease of reference, we
quote the exact result in the Appendix (Sect. A6).

The expectation value formulas (3.4.1) and (3.4.4) follow from Proposition A6
(quoted from [Se2,3]) in the manner explained in the discussion following A6 in the
Appendix.
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4. Loop Expectation Values

4.1 Triangulation of . We shall always work with a certain type of triangulation
(‘admissible triangulation’) S of X' obtained by means of the quotient map ¢ : D — X
from a triangulation 7 of D. The triangulation 7" of D will consist of radii and cross-
radial segments (i.e. those which can be parametrized in polar coordinates in the form
r = r(6)), and will include the origin as a vertex. We will also assume that the arcs on D
corresponding to the loops A, B and C are made up of 1—simplices of the triangulation
(this can always be ensured by subdividing the original triangulation). These technical
restrictions are to ensure that the parallel-transport equation (3.2.1) is applicable and so
that then the relevant holonomies are meaningful.

4.2 G—fields and lassos. An assignment e — y. € G, with e running over the oriented
1—simplices of a triangulation, satisfying yz = y_! will be called a G—field over the
triangulation. If « is a path consisting of oriented 1—simplices of the triangulation,
K =bj - - by, then we define

def
Y(K) = o, - - Yoy

Let 7 be a triangulation of D as described in Sect. 4.1, and A a positively oriented
2—simplex (triangle) in 7. We can join an appropriate vertex of A to the origin O by a
radial path consisting of 1—simplexes of 7" and thus form a loop /5 based at O. In this
way we form loops l4,, .. .,la,,, one for each positively oriented 2—simplex 4A; in 7.
The loops A; will be called the lassos of the triangulation. This can be done, with the
A; ordered appropriately, in such a way that the following hold :

(x) For any G—field y over 7:

yla,) - -yla,) = y(xo0) - y(8D) - y(Oxo), “4.2.1)

where JD is taken to start from z¢ = (1,0) € 8D. A complete description of
the construction of the loops l4, is given in Theorem 3.1, and the discussion
preceding it, of [Se2].

(xx)  To each loop « in 7, based at o, we can associate a sequence of the lassos
la,,la,, - - . such that y(k) = y(la, )¥'y(a,)*" - - - holds for any G—field y
over 7.

These are simple graphical facts and are actually independent of considerations of
G-—fields (Lemma A3 in [Se2}).

4.3 Stochastic holonomy over X, for u% and p? . We shall work with loops on X' based
at O, which consist of oriented 1—simplices of some triangulation S of X of the type
described in Sect. 4.1. If « is such a loop then there exists a sequence of loops k1, . . ., K-
such that:

(a) each «; is either the projection by ¢ of a loop &; in D or is one of the basic loops
A, B, C and their reverses,

(b) for any G—field y over S, y(x,) - - - y(k1) = y(k).
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The existence of such a decomposition is seen by breaking « into suitable segments and
lifting these up to D (a detailed account is given in Sect. 5 of [Se2]). Recall that for
the loops #; on D the stochastic holonomy h(%;;w) € G is meaningful as a random
variable inw € 245k

For w = (wy, a,b) € 2., or forw = (w1, a, b, c) € 2g, we define

h(k;w) € h(kr;w) - - bk w), 43.1)
where
hﬁj;wl) %f R; is the lo_gp in D projecting to «;
TR e
ct! ifk;isCorC

Then h(x;w) is a well-defined G—valued random variable on §2. and 2¢ (that h(x;w)
is independent of the choice of the «; is proven in Lemma A2 of [Se2]).
44.

Theorem 1. Let ki, ...,k, be loops on X, all based at o, composed of oriented
1—simplices of a triangulation S of X of the type described in Sect. 4.1). Let f be
a bounded measurable function on G*. Consider any c € G. Then

F(h(kw), ..., h(kn;w)) dut (W)
/f(z(m), oo 2(Kn))

" Nr(o)
m
¥ (z:(C)c"l) T @ria, (z(aAj )) dze, - - -dze,,, “44.1)
j=1
where Ay, ..., A, are the positively oriented 2—simplexes of S, | A;| is the area of Aj,
e1,...,epn and their reverses are the distinct oriented 1—simplices of S, Q:(-) is the

heat kernel on G normalized to |, ¢ @t(z) dz = 1, dz being unit-mass Haar measure on
G, and

Nr(c) = / Qr)z|(cb~'a"'ba) da db. (4.4.2)
G?

The meaning of the 6 —function in (4.4.1) is that for some arbitrary bond e; lying on 0%
and appearing in the loop C, the variable x.; should be replaced by the value which
makes z(C) = ¢ and dz.; should be dropped from the integration.

Proof. In view of the observation (x*) concerning the decomposition of a loop in D in
terms of the lassos [4;, and in view of the definition of h(x;w) in (4.3.1), we see that
each h(k;;w) is a product of certain of the h(l4,;w)*!’s, h(A;w)*!, h(B;w)*!, and
h(C;w)*! (the latter being c*!).

Thus to f we may associate a bounded measurable function F' such that

f((k1;w), ... h(knsw)) = F (ha,3w), - . ., k(4,3 w), B(A;w), A(B;w), k(C;w))
4.4.3)

and, more generally,

f@®), ..., 2(ka)) = F (za), - - -, 2(4,), a,b,¢) 4.4.4)
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for any G—field z over the triangulation S (of course, the c—term, being constant, could
be dropped from F' but that would make the form of F' dependent on c).

Recalling the p.—expectation-value formula (3.4.1) and the p—distribution of the
random variables h(l4,; -) given in (3.2.2), we have:

/ F (k1 0), -, Bk w)) dpo(w)
__
B Nz (o) Gn xG?

.J(yAm . .yAl(cb‘la-lba)—l) dadb[] Qria,|(wa,)dya,,  (44.5)
=1

F(yAn"',yAm)a’bvc)'

where Np(c) is as in (4.4.2) (which is the same as stated earlier in (3.4.2)).

A combinatorial argument (Lemma A1 in [Se2]) shows that if we take the y,’s and
a,b,c such that ya,, ---ya, = cb~'a~!ba (as is required by the 4(-) term in (4.4.5))
then it is possible to associate to this data a G—field x over § in such a way that

z(a) =ya, forie {1,...,m}, (4.4.62)

z(A)=a, z(B)=b, z(C) =c. (4.4.6b)

In (4.4.6a) we have tacitly raised = to a G—field, also denoted z, on the triangulation
of D which projects by ¢ : D — X to the triangulation S of X.

The goal now is to change variables ({ya, }, a, ) — {z.,}. In order to do this it is
necessary to understand how []~, dya,dadb is transformed. It is shown in the proof of
Lemma Al in [Se2] that the G—field z can be chosen in the following way:

(i) for a certain collection of bonds e, the variables z. are chosen arbitrarily; for the
remaining bonds :

(ii) for one bond e’ lying on ¢(0 D) and appearing in the loop A (i.e. e, lies on the part
of A on ¢(0D)), z(e?%) is the product of @ with some of the ‘previously’ assigned
values of z;

(iii) for one bond e} lying on ¢(6 D) and appearing in the loop B, z(e}) is product of
b with some of the ‘previously’ assigned values of z;

(iv) for one bond e}, lying on X and appearing in the loop C, z(eZ,) is product of ¢
with some of the ‘previously’ assigned values of z;

(v) there is one bond b; corresponding to each A; with zp, chosen to be ya, times
some of the ‘previously’ assigned values of z.

(A more precise formulation, along with a specification of what ‘previously assigned’
means, is given in the proof of Lemma A1 of [Se2].)

From (i)—(v), and the translation-invariance of Haar measure, it follows that in the
integral on the right side of (4.4.5), we can introduce the variables {z.;} instead of
({ya,}, a, b), and then the right side of (4.4.5) equals:

1
NT(c)/F(z(Al)’""3(Am),1‘(A),x(B), c)-

) (z(C)c' ‘) ﬁ Qr)a, (z(aA,-)) dze, - - -dze,,. “44.7)
=1
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This calls for some explanation: recall from (i) that certain z.; can be chosen arbitrarily,
these are integrated over G in (4.4.7) without changing the value of the integral since

Jgdz = 1; the term J(yA,,, . -yA,(cb'la“ba)'l) disappeared since (4.4.6a,b) and
(4.2.1)imply thatya, - - -ya,(cb~'a~'ba)~! = eis satisfied automatically by our choice
of the z.,. Finally the new §(-)—term ¢ (:c(C)c‘ ‘) appears because, by condition (iii)
above, one of the bond variables z., with e = ez, on 9L and appearing in C, must be
chosen in such a way that z(C) = c; this says that this z. is not really a ‘variable’ but is
determined by the other z.; (and c). That the choice of ez, does not affect the value of
the integral (4.4.7) follows by a change-of-variables argument (if e, is another bond on
0X appearing in C' then, given all the other variables z., a new variable z(e;) may be
introduced in place of z(eZ,) by requiring that z(e{; ) be such that z(C) = c, arelationship
that expresses z(e) as a product of z(eg,) with certain of the other bond-variables z.).
Now (4.4.4) and (4.4.6b) imply that (4.4.7) is equal to

m
_1 > e
ol / £ @(xy), .. .,x(nn))J(z(C)c ) E Qria; (x(aA,)) dz,, ---dz.,,.
(44.8)
Thus, recalling that we started our algebraic manipulations with the loop expectation-
value formula (4.4.5), we see that [ f (h(k1;w), ..., h(kn;w)) dus(w) is equal to
(4.4.8), thereby proving (4.4.1). O

4.5 Invariance of loop expectation values for p%. Unlike in the case of the “free-
boundary” theory developed in [Se2], we cannot expect the loop expectation values

/f(h(m;w), ooy h(knsw)) dpf (W)

to be invariant under area-preserving transformations of 2. This is because the loop C
has been selected out as a special loop and so we must consider only area-preserving
homeomorphisms of 2 which fix C.

Thus we wish to show that if ¢ is an area-preserving homeomorphism of ¥ and
¢ o C = (C then

/f(l(ﬂl),-'- I(Kn))J(z(C)c“).
HQm,n (204))) dee, - --dz,,
/f(-’l«‘(tﬁ °0K1),...,x(do 'cn))J(z(C)c“l)

T @riay (202)) oy ---day,, @5.1)
j=1

where on the left we are using a triangulation S while on the right we are using a
triangulation &’. The loops «; and C' are composed of simplices in S, and the loops
¢ o k; and C are composed of simplices in S’.
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First we observe that either side of (4.5.1) is invariant under subdivisions of the
triangulation. This is a consequence of the convolution property of the heat kernel

Q:(-):
/G Quey")Qu(y2) dy = Ques (z2),

which we can use to ‘collapse’ adjacent 2—simplices A} and Aj of a subdivision
of S:

/QTIA;I (”(aAI)) Qr|a;| (I(aAE)) dzy = Qr|a*| (z(aA*)) 4.5.2)

wherein A* is the region formed by collapsing A} and A3 along their common edge

b. Extra bond-variables which remain after collapsing such common edges can be

ifntegrated away (or combined into bond variables for the undivided triangulation) using
dzp=1.

Since the only way area appears in the right of (4.5.2) is through | A*| = |A}|+| 43|,

it follows that the left side of (4 5.1) depends on areas only through the areas of the

connected components R, ..., Ry of '\ U"“Im(n,) (here Im(k;) is the image of the

path x; as a subset of 2, and we have set k,4; = C, for convenience). A more detailed
argument is available in Fact 1 of the Appendix in [Se2].

By the ‘Hauptvermutung of topology’ (Theorem 4.6 in [Br]), S and S’ have
subdivisions § and §’ and there is a simplicial isomorphism ¢ : & — §’ obtained by an
isotopy of ¢, preserving the sets Im(x;) and Im(C), such that ¢ o C = C, and ¢ o «; and
é o k; are the same when taken as sequences of bonds in &’. In view of the invariance
of the integrals in consideration under subdivisions we may and will assume that § = S
and §' = &'. Thus ¢ is a simplicial isomorphism between S and S'.

By simple relabelling of z. as z ;,), the left side of (4.5.1) equals:

/ f(z($o~1),...,z($onn))6(x<$o0)c")~
TI@ria,(2(06(4)) dzey - - dzey,. 4.53)
j=1

Since ¢ o k; and ¢ o «; are the same as sequences of bonds in S’, and since ¢ o C = C,
relabelling the simplices makes (4.5.3) equal to:

[1@@onn,... 260 mnd(zCx)

m
H Qr)3-1ar) (I(3A§)) dz; ---dz , 4.54)
a1

(the number M’ of edges in S’ equals the number M because in the present situation S
and §' are isomorphic). Now, as observed earlier (after (4.5.2)), (4.5.4) depends on the
areas |¢~!(A;)| only through certain of their sums; specifically, through the areas of
the regions d;‘ 14(R;), where, as before, the R, . . ., R n are the connected components
of the complement of Im(k;) U - - - U Im(k,,) U Im(C) in X. Since é is an isotopy of ¢
through maps taking the subset Im(k;) U - - - U Im(k,,) U Im(C) always into the same
subset, it follows that ¢~ !¢(R;) = R;. Therefore, (4.5.4) equals
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] F@@oR,...,z(80 k) (2(Chec")
HQT,A, (204)) dzg; - -dzy, 4.5.5)

and this being the right side of (4.5.1), we have proven (4.5.1).

4.5.1. Observations.

(1) The above arguments show that the restriction that ¢ is the identity on C' may be
removed if C' were to be replaced by ¢(C) on the right side of (4.5.1).

(2) Since the left side of (4.5.1) involves a triangulation S and the right side involves
S’, we may set ¢ to be the identity and conclude that either side is independent of
the specific triangulation used.

(3) The observation (2) is not surprising in view of the fact that the integrals in (4.5.1)
are, up to the constant N7 (c), the loop expectation-value as given in Theorem 4.4.
Nevertheless, the arguments above give an independent and direct proof (one which
also does not depend on the triangulations being of the type described in Sect. 4.1).

We turn now to the corresponding results for 4. For this we use the notation dgc
to denote the G—invariant unit-mass measure on a conjugacy class © in G; thus

F(c)dec= [ F(kck~1)dk forany c € 6.
e G

46.

Theorem 2. Let k,,...,k, be loops on X, all based at o, composed of oriented
1—simplices of a good triangulation S of X (of the type described in Sect. 4.1). Let f
be a bounded measurable function on G™. Consider any conjugacy class © in G. Then

[ £t hsniwn duf)
[ 1@, s0end(z00)

" Nr®)
T1@rias (z(aAj)) dz,, - -dz.,,dec, 46.1)
j=1

where A, . . ., Ay, are the positively oriented 2—simplexes of S, ey, . . ., ep and their

reverses are the distinct oriented 1—simplices of S, Q:(-) is the heat kernel on G
normalized to fG Q:(x) dz = 1, dz being unit-mass Haar measure on G, and

Nr(©) = / Qr|z|(cb~'a"'ba)da db dec. (4.6.2)
G?

The meaning of the § —function in (4.6.1) is that for some arbitrary bond e; lying on 0%
and appearing in the loop C, the variable z.; should be replaced by the value which
makes z(C) = ¢ and dz.; should be dropped fmm the integration.
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Proof. The proofis virtually identical to that of Theorem 4.4, except that we use the u$ -
expectation-value formula (3.4.3) as starting point instead of the u%,—formula (3.4.1)
used for proving Theorem 4.4. a

47.

Theorem 3. The loop expectation values f f(h(kw), ..., h(Kn;w)) dpg (w) remain
invariant if each k; is replaced by ¢ok;, where ¢ is any area-preserving homeomorphism
of X which preserves the orientation of C.

Proof. Recall, from Observation (1) in Sect. 4.5, that the general form of (4.5.3) is:
/ f @), . .., :v(fcn))d(:c(C)c' ‘) f!Qijl (x(aA,-)) dze, - - dze,,
= / f@@om),..., 240 raNb(2(d0C) ) -
: ﬁlQm;, (z@4)) d:ce:lv- dzg @4.1.1)
i

the notation being as for (4.5.1), and ¢ any element of G. We will show that either
integral depends not on the full curve C but only on the part of C' which lies on 2.

In (4.7.1) we can take ¢ € © and integrate by the G—conjugation-invariant measure
dec; this yields a formula of the form:

/ [ 16 (2(C)e™) L+ 1doc = / [-18(2(40C)7" )l Vdee.  (472)

Now the loop C' can be expressed as
C=L-Cs-L, 4.7.3)

where C lies entirely on X, and L is a path from o to a point on X where C' ‘first
hits’ §X. Then

z(C) = z(L) " 'z(Cp)z(L). 4.7.4)

We substitute this into (4.7.2) and observe that the §(- - -) term on the left can be reordered
into the form .

§ (z(Co)z(L)cz(L)7"). (4.7.5a)

Now since dgc is a G—conjugation-invariant measure on O it follows that in the
integrations in (4.7.2), the § —term (4.7.5a) can be replaced by

8 (z(Co)c™?). (4.7.5b)

Returning to (4.7.2), we then have

/ [-- 16 (=(Co)e™) - 1doe = f [-13(260 Co)e )l Tdoc.  (4.7.6)

Now Cj and ¢ o Cj can differ only in their starting points and orientation. We have
assumed that ¢ o C' and C have the same orientation; thus the loops Cs and ¢ o Cs
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can only differ in their starting points. But then z(¢ o C5), as a product of the bond-
variables z., is a cyclic permutations of z(Cj), i.e. a conjugate of z(Cj). Since dgc
is G—conjugation-invariant it follows that in the right side of (4.7.6) ¢ o Cy can be
replaced by Cj. Tracing our arguments back to (4.7.1) we conclude that:

z(C)c‘l) HQTIAJ'I (z(BAj)) dzre, - dze,,
=1
- / @@ or,..., 26 0 k)b (=)
T @riay (204)) deg; - -dzer . @1.7)
J=1

and this what we wished to prove. Note that, as in Sect. 4.5, taking ¢ to: be the identity
map in (4.7.7) shows that the loop-expectation-value formulas are actuaily independent
of the particular triangulation used. ]

5. Other Surfaces

In this section we will sketch the construction of the boundary-holonomy-restricted
quantum gauge field measures for a general compact 2—dimensional Riemannian man-
ifold with boundary, and write down the loop expectation-value formulas.

5.1 Hypotheses on X, and generators of m1(X,0). In this section, X' is a compact
2—dimensional Riemannian manifold with boundary.

Instead of the loops A, B, C of the earlier sections, we now have the following
generators of 7 (X, 0):

(1) If ¥ is orientable, has genus g > 0, and has p boundary-components, then we
have loops
Ay, By,...,Ag, By, Ch,...,Cp

generating 71(X, o) subject to the relation that

Cp---CiBgAgByAg - - - BiA1 By A, gives the identity in my(Z, 0).

The loops C; are of the form L;C!L;, where C! traces a loop around boundary
component #i and L; is a simple path from o to a point of C/ (the point where C;
“first hits’ X))
(X2) If X is unorientable and has p boundary-components, then we have loops
Al,...,Ag,C],. ..,Cp

generating (X, o) subject to the relation that
Cp---Ci1AgAg - - - A1 A gives the identity in (X, 0).

The loops C; are of the form L;C! L;, as described for (Z1).
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5.2 The connection spaces A(O) and A(c). We are interested in connections w with
specified values, or restrictions, on the values of the holonomies A(C;; w). For simplicity
we shall work with simultaneous restrictions on all of the Cj; restrictions on only some
of the C; can be handled similarly. Thus we consider the spaces of connections:

Alcy-. ) E{w €A h(Cisw)=cy, ..., hCpiw)=c,},  (5:2.1)
for any (ci,...,¢cp) € GP,

A@ € {w e A: (KCiw), ... hCpiw)) €6}, (522)
for any G-conjugation orbit © in G?.

Here, by G-conjugation orbit we mean an orbit of the conjugation action of G on G?,
i.e. a subset of the form {(zc1z7!,...,zcpz™ 1) : z € G}.
We shall use the notation

e, .,0) (5.2.3)

5.3 The measures . and p$. Let T be a fixed positive real number. On A(c)/G, we
are interested in the measure

dps(w)) =

. @e-SYMWTa((h(C,;w), o hCpw)e ) D], (53.1)

while on A(©)/G we are interested in the measure

duf(w)) = e~ SymW)/Tg, ((h(c,;w), e h(c,,;w))) [Dw], (532)

Zr(6)

wherein dg is specified in the manner explained after (2.7.5).
As in the case of the torus, we start with the Gaussian probability space

(L4isx , p1,disx ) for the disk D. (5.3.3)
Then we define
Q% { Quiae x G if T is orientable, i.c. satisfies (Z1) (53.4)
< 4 X G if X satisifies (X2)
Similarly,

We define the measure y. to be pr i X (Haar on G?8 ) (the o in the exponent being
2 if (X'1) applies and 1 if (X'2) applies) conditioned to satisfy the following constraint
(recall that Ly is the radial path from O to zo = (1,0) € dD):

cp-- -cll;;‘aglbgag .- -bl'lal—lba “if (X'1) applies

3.6
cp---cnaé---a% if (X'2) applies ’ (5.3.6)

h(Lo-8D - Lo;wy) = {

where
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def | (w1,a1,b1,...,ag,bg) if (X'1) applies
w = {(wl,al, .., ag) if (52) applies - G-3.7)
Thus the constraint will hold p% -almost-everywhere.

To define u$ we use the same constraint condition on the measure

1 gisc X (Haar on G?8) x (G-invariant unit-mass on ©) (5.3.8)

wherein o is as before. The space on which p? will sometimes be denoted .4(0)/G.
Expectation values with respect to p7 and 4 may be obtained in a way exactly
analogous to that explained in Sect. 3.4 for the one-holed torus.
Stochastic holonomies with respect to ,u% and p are also defined exactly analo-
gously to (4.3.1) in Sect. 4.3. )
Carrying out essentially the same arguments as in Sect. 4 we obtain the following
generalized version of Theorems 4.4. and 4.6.

54.

Theorem 4. Letk,, ..., k, beloops on X, all based at the point o, composed of oriented
1—simplices of a good triangulation S of X ( of the type described in Sect. 4.1). Let f
be a bounded measurable function on G™. Consider any c = (¢, . . ., ¢p) € GP. Then

/f (h(k1;w), . . ., h(Kkn;w)) dpz (W)

= 1 2 P C, -1
- [ et s [T 6 (2(Coe;)

i=1

[1@ria; (z(aﬂj)) Aoy ATy, (5.4.42)
j=1

where Ay, ..., Ay, are the positively oriented 2—simplices of S, ey, . . ., ep and their
reverses are the distinct oriented 1—simplices of S, Q:(-) is the heat kernel on G
normalized to |, ¢ Qi(z) dz = 1, dz being unit-mass Haar measure on G, and

Nr(9)

def { Jou Qrizi(ep - c1bg 'ag 'bgag - b7 'ay 'bar) day - - - dbg  if (Z1) applies
" f5: Qrizi(ep 102+ - -ad) day - - - dag if (X2) applies *
The meaning of the 6 functions in (5.4a) is that, for each C;, for some arbitrary bond e;

lying on 0% and appearing in the loop C;, the variable z.; should be replaced by the
value which makes z(C;) = ¢; and dz.; should be dropped from the integration.

For u$, we have:

/ f (h(K150), . . ., h(kn;w)) dpu (W)

P
- v | F@t,. 26an ] 56 (2(Coc ) docs

i=1

H QTlAjI (3(6A1)) dze, - -dze,,.
j=1

The meaning of the delta-function de and the integrator dec are explained in Sect. 2.7.
The normalizer Nr(0) is [, Nr(c) degc.
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The normalizer N7 (c) has appeared in the appendix of [Se2] as a topologically-
invariant function associated to the system of loops C1, ..., C, on X. The functions
Nr(O) have appeared in [Wil].

As in Sect. 4, the loop expectation value formulas (5.4a,b) are invariant under
area-preserving homeomorphisms of X' which fix the loops C; pointwise. However, for
p > 1, the analog of Theorem 4.7 need not hold.

6. Spaces of Connections and 2—Forms on Them

In this section we describe the surface, spaces of connections, and 2—forms which we
shall be working with in Sects. 6-9. Some of the notation and definitions are lifted
directly from [KS2,3].

6.1 The surface X, group G, the connection spaces A, A(©), M(O). Henceforth,
X will denote a compact connected oriented 2—dimensional manifold of genus g > 1,
with a connected non-empty boundary 8. In Sects. 8 and 9, X will be taken to be also a
Riemannian manifold. We shall use a fixed basepoint o in X, and piecewise smooth loops
Ay, By, ..., Ag, B, C : [0,1] = X, all based at a point 0 € X, which generate the
fundamental group (X, 0), subject to the relation that CTB—ngBgAg -++...B1A1B1 A
is homotopic to the constant loop at o, wherein we denote by X the reverse of any path
X. The loop C is of the form LC* L, where C* is a simple loop around the boundary
0X and L is a path from o to the initial point of C*; the loops A; and B; are also of
the form A; = LA! L and B; = LB} L. A detailed description of these loops is given
in [KS3: Sect. 6.1] (and in a wider setting in [Se2]), but we shall not need such details
here.

We work with a principal G-bundle  : P — X, where the gauge group G is now
assumed to be compact, connected, and semisimple. The semisimplicity hypothesis is
not of essential significance but we impose it to focus on the more significant issues.

Since X has boundary, the bundle P is trivial and so there is a smooth section
s : ¥ — P. Connections and other forms on P can be pulled down to X' by using s. In
this way we can and will identify the space .4 of all connections on P with the space of
all smooth g-valued 1-forms over X; thus we take

A = space of all smooth g-valued 1-forms on X' . (6.1.1)

The section s is used only for convenience and the constructions (such as symplectic
forms) and results we discuss are independent of the choice of s.

A connection w € A is flat if its curvature is zero, i.e. if dw + %[w, w] = 0. We will
be interested in the set of all flat connections :

o def

A’ = {w:w € Aandw is flat}. 6.1.2)

We work with a fixed basepoint u € 7~ 1(0), where o is the basepointon X. If k is a
piecewise smooth loop on X based at o, then, as explained in Sect. 2.2, h(x; w) denotes
the holonomy of w around x, with u as initial point.

We shall denote by © a conjugacy class in the group GG; we shall work with the
spaces

A©@) ={w e A:h(C;w) €O} and A2O) = {w € A: h(C;w) € O}. (6.1.3)
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The group G (Sect. 2.3) of automorphisms of P can be identified, via the section s,
with the set of all smooth maps X' — G; the group structure is now simply pointwise
multiplication. The subgroup G, now consists of those ¢ € X for which ¢(0) = e. The
action of G on A is given by:

AXG 3 A:(A,d) > A -6 Ad(g~)A + ¢~ 1ds. (6.1.4)

This action carries the sets A(Q) and .A%(O) into themselves, and we have the moduli
space

M@©) = A%©)/6. 6.1.5)

6.2 The 2—forms £2 and §2¢. We are interested in a certain 2—form £2g on .A(©) which
was introduced in [KS3]. The definition is:

e 0+0..+0,. 6.2.1)

We shall explain now the definitions of the 2—forms 2, {2., and f2,. The standard
2—form {2 on A (as described in {AB]) is given by:

24,B) % / (AA B). (6.2.2)

where A and B are g—valued 1—forms on X' and the product (A A B) is the 2—form
on X given by (A A B)(X,Y) = (A(X), B(Y))g — (A(Y), B(X))g.

Recall, from section 6.1, the loop C, part of which goes around 8X. Let A be a
tangent vector to A (i.e. A is a g—valued 1—form on X), and define

t
a:[0,1] 5 gt alt)=— f Ad(h;HA(C'(9)) ds, (6.2.3)

where s — h, describes parallel transport along C: h’(s)h(s)~! = —A (C'(s)) with
h(0) = e. Itis known (and readily verifiable) that a(t) is the variation in k; corresponding
to the variation A in the connection w. Define 3 : [0, 1] — G similarly with respect to
a tangent vector B to .A. The 2—form 2., is defined by:

1 1
2.(A,B) —% /0 fo e42(c(s), /(1)) ds dt, (6.2.4)

where .
{ 1 ifs <t
€5t =

1 ifs>t.
Next, the 2—form £2,, on A(BO) is defined by:

21,4, B = =3 (a1}, (Ad ()~ 1) BD) + 2 (1), (Ad @~ DD, (6:2.5)

where ¢ = h(C;w), C being the loop for §X as described in Sect. 6.1, and ¢, 3 ar as in
(6.2.3). The terms involving (Ad (c) — 1)—l are understood by setting (Ad (c) — !

to be 0 on ker[Ad(c) — 1] = [(Ad(c) — 1)(g)] - Thus all terms on the right of the
definition (6.2.1) of 2¢ have been specified.

6.3 The results of [KS3]. For ease of reference, we shall record here certain facts relating
to M(©) and 2, including most of the results of [KS3].
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(i) The 2—form f2¢ is equivariant under the action of G. Let A, B € T, A(®) (an
element of T, A(©) is, by definition, of the form Ow; | 8t|;-o where t — w; € A(O)
is such that (t,p) — w;(p) is smooth and wy = w) and suppose that A or B is
tangent to the G—orbit through w, in the sense that it is equal to d(w - ¢:)/ Ot|:=o for
somepatht — ¢, € G with(t, p) — ¢.(p) smooth and ¢y = id. Then f26(A, B) =0
(Proposition 5.1 in [KS3].)

(i) The holonomy representation

H:w > (h(Aw), A(BL;w), . . ., h(Ag; w), h(Bg; w), h(C;w)) € G* x O,
6.3.1)
induces a bijection A(©)/G, — II~'(e), where G, is the subgroup of G consisting
of all ¢ with ¢(o) = e, and

IT:G*®x 0 —G:(ayby,...,a5bgc) > cby'a; bgag - -b7 a7 byay.
6.3.2)
The group G acts on the right of IT ~'(e) by conjugation, and the holonomy mapping
H is G — G equivariant with respect to the homomorphism G — G : ¢ — ¢(0),
and induces a bijection of the full moduli spaces

M(©) - IT7(e)/G. (6.3.3)

(iii) There is a dense open subset D of G such that for every conjugacy class © passing
through any point in D, the set I~ (e) is a smooth submanifold of G*® x ©.

(iv) There is a2—form 2, ¢ on G x © whose restriction to IT ' (e) pulls back to ¢
by the holonomy map H.

~V) Ifaell "l(el_and A, B € ToII"\(e) (this being taken, by definition, to be
kerdIl,) then £2, 6(A, B) is 0 if A or B is tangent to the G—orbit through o;
moreover, ﬁo,e is G-equivariant. In this sense ﬁo,e descends to a 2—form, also
denoted 2o, on IT~'(e)/G. (Theorem 3.6 in [KS3])

(vi) The 2—form e is closed (i.e. ﬁo,e on IT~1(e) is closed); it is non-degenerate on
the smooth part of I1~'(e)/G for all © passing through a dense open subset of a
certain neighborhood of the identity in G (Theorem 4.1 in [KS3]). By the ‘generic
(or smooth) part of I ~'(e)/ G’ we mean the subset of points corresponding to the
points on IT~'(e) where the derivative dII is surjective and where the isotropy
of the G—action is minimal within any component. (Sect. 7.4 below gives a more
detailed explanation of ‘generic part’ of M(©))

(vii) Formula specifying 2¢: Let (@ HYV,cCV), (aH®,cC?) € T, (G% x O);
then

20,6 ((@HD,cCV), (aHD, cCY))

Z eik(Ad (i1 ---a)) " HP, Ad(ak- -- 'al)-lHl(,l)>g
1<i k<4g

~5((Ade™ ~ 1)7 O, (Ade™! - Ade) (Ade! — 1) €Yy, (634

where



682 A. Sengupta
1 ifi<k
k=40 ifi=k,
-1 ifi>k
and we have used the convenient if unusual notation of setting
a= (al’ a3z, as, a6, - - -, X4g-3, a4g—2) (6‘3'5)

and

def

ajo =o' forallj € J {1,2,56,...,4g - 3,4g— 2}, (6.3.6)

and, analogously, H® = (H"”, H | H §'), HD, ..., Hs;)_g,; Hi;)_z), and
Hj+2 = —Ad(aj)Hj forallj € J. 6.3.7)

In (6.3.4), the terms (Adc~! — 1)~ are meaningful because cCV,cC® € T.©
and, as is readily seen, ¢ 1T,0 = (Adc™! — 1)(g)-

Note that (6.3.4) specifies the 2—form §2, ¢ on all of G’ x ©; the 2—form 2 is
obtained from its restriction to I7~!(e).

6.4 The sense in which M induces 2¢ from 26. We wish to make a technical remark
here concerning Sect. 6.3(iv). A precise statement of 6.3(iv) is as follows. Let (o, ¢) €
IT-'(e) C G* x O, and consider vectors vy, vz € T(a,c) (G x ©) which are tangent
to smooth paths lying entirely on IT~!(e). It has been shown in Sects. 4.1-4.4 of [KS2]
that: .

(a) there are paths [0, 1] = A%©) : ¢ — wi, with i = 1,2, such that (¢, p) — wi(p) is
smooth and  (w}) is initially tangent to v;, for i = 1,2.

() 2o (V1,V2) = 2, o(v1, v2), where V; = 8wt /Ot|s=o, fori =1,2.

In view of Sect. 6.3(i), it is then reasonable to say that 2, ¢ gives the 2—form on
IT-Y(e) ~ A(O)/G, (as in Sect. 6.3(ii)) induced by £2¢, and hence that the 2—form
o for M(O) is induced by 2¢. However, to make this a strictly logical conclusion
one should verify that if A, B € T,.A%®) are such that #'(w)A or H'(w)B (the
derivatives being pointwise partial derivatives, for instance H'(w)A = dH(w:)/8t|i=0
ift = w, € A%O) is such that (t, p) — w;(p) is smooth and dw;(p)/Ot|s=0 = A) is O
then 2¢(A, B) = 0. For the case of closed surfaces this has been proven in Theorem
5.9.1(i) of [Se6] by showing that #'(w)A is 0 if and only if A is tangent to the G,—orbit
through w. We expect that this result (and, with minor modifications, its proof) holds for
surfaces with boundary. A full treatment of this issue in the setting of compact surfaces
with any number of boundary components is postponed to a future investigation. For the
purposes of this paper it will suffice to take the relationship of 2¢ and {2¢ as specified
above by (a) and (b).

7. Properties of 2o, a Determinant Identity, and Non-Degeneracy for 2o

The goal of this section is to prove that 2¢ is non-degenerate. For this we shall first
prove a determinant identity ((7.8.1)) which will be useful again in Sects. 8 and 9.



Yang-Mills on Surfaces with Boundary 683

7.1 Notation. We record here some notation some of which has already been used in
Sect. 6. We work with a conjugacy class © in GG, and we use the map

II:G%%x60 -G :(ayby,.., ag, bg,c) — cbg'lag_lbgag- . -bflal—lblal. (7.1.1)

The indexing set

JE1{1,2,5,6,..,4g— 3,4g — 2} (71.12)

is convenient to label a typical point in G?8 x © as
a=({ej}jes,0)-

Thus, comparing with the usual notation (ai, by, ..., ag, bg, c) we have set a; = ay,
a3 = by,..., ag_3 = ag, aag_2 = bg. As seen in the expression for £2, ¢ in (6.3.4), it is
also convenient to introduce

-1 -1 -1 -1
Q3 =0y Q4= 0 ..., Olg_ ] = Ogy_ 3, 0l4g = Q. (7.1.3)

Correspondingly, a vector in T(q,.)(G?® x ©) has the form ({a;Hj}jey,cC), with
Cec'T.0C g (not to be confused with the loop C itself), and we set

Hjuy=—(Adaj)H;forje J. (7.1.4)
It may be convenient to view the above notation as an expression of the imbedding

G x 0 = G*% x O :(ay, by, ...,ag,bg, ) = (a1, by, a7, b7, ..., ag,bg, a7, b7 ).

7.1.5)
The derivative of I ata point (a, ¢) € G?8 x © will be taken, by means of left translation,
as amap T(a,c) (G? x ©) — g; itis given by

4g
dl@o(@H,cC)=Y_ fil} Hi+ f3'C, (7.1.6)
i=1
wherein
fi=Ad(a;-- o). (7.1.7)
Alternatively,
Al cf(aH,cC) =Y (fi}i = [)H; + f35'C. (7.1.8)
jedJ
Here we have used the fact that forany j € J,
Ad(f7, D Hjs2 = —Ad(f ) H;. (7.1.9)

This form is useful for determining the adjoint d/I(,, .\, which, again by left trans-

lations, we will take as a map g — (¢%8) & (c~'7.0); it is given by:

dIlf, X = ({(fj—l = fi+2)X}jes, Progar fag X ) ; (7.1.10)
where pry,,, is the orthogonal projection g — ¢~ IT..©. For the orbit map

Yae): G =GB X O: 2> y40(z) = ({zajz™'}jes, zez™") (7.1.11)
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the derivative is the map g — g% & (c~'T.©) given by
Ve,y(@H,cC)= ({(Adoj"' = 1) Hj}jes, (Adc™' = 1) C) . (7.1.12)

Here C is of course an element of ¢c~'7,0 C g, and is not the loop C of Sect. 6.1.
7.2 Interpretation of maps of the form (Adc — 1)~!. We record some simple facts,

conventions, and observations which will be useful later in computations. For ¢ € G,
let

Z. € {X €g:(Ado)X = X}. (1.2.1)
Since
(Ade—1)*=Adc™ ' -1, (7.2.2)
it follows that
(Adct' - 1) (9)=Z} =c7'T.0 (7.2.3)

and (Ad ¢*! — 1) map Z} into itself isomorphically; by (Adc*! — 1)~ ! we shall mean
the inverse of this map. We have encountered and shall encounter again the composite
(Adc~! — Adc)(Adc™! — 1)~!. Observe that

Adc '~ Adec=—(Adc— D)(1+Adc ) =(1+Adc)(Ade~! - 1). (1.2.4)

Thus (Adc™! — Adc) maps g into Z;', and so (Adc™! — Adc)(Adc™! — 1)~! maps
ZZ into itself. Splitting any X € g into a component in Z. and one in Z} shows that

(Ade™! = Ade)Ade™! = D }(Ade™! = DX = (Adc™! — Ado)X. (7.2.5)
From (7.2.4) we have, forany CV € Z} and X € g,

{(Ademt = 1) CO, (Ade! - Ade) X )
g
=—(CO, (1+Adc7) X))
=(C?,(Adc - 1)"! (Adc™! — Ade) X), (7.2.6)

where in the second equality we used the hypothesis that CV € Z} and the fact
(following from (7.2.4)) that

(Ade —1)"' (Ade™! — Ade) X = — (1 +Adc™!) X +an element of Z..

The following result (similar to a result discussed in [KS1] for closed surfaces) says
that the map I, introduced in (6.3.2), plays a role somewhat analogous to that of a
moment map.

7.3.

Lemma7.1. Let (a,c) € T~ '(e) C G® x O, (aHW, cC) € T(oc)(G? x O), and
X € g. Then

2,0 ((aHD,cCY), v, (X)) = <dU(a,c)(aH(”, cCcW). (1 +;4dc> X> ’
g

(73.1)



Yang-Mills on Surfaces with Boundary 685

Proof. Recall that o = {a;}jes, and ajy2 = o |, forevery j € J, and
fi & Ad(a;---ay) forevery i € {1, ...,4g}. Recall also the expression (7.1.12) for
7{a.c). Then the expression for §2, ¢ in (6.3.4) gives:

ﬁ ,© ((aH(l) CC(I))) ’%a c)(X))

291 E e (FAED, £ (Ada 1) X)

1k 1
! <(Ad T-1)7'e®, (Ade! - Ado) X)

@26 12 (S B AQ = 2D+ Gt - 7O1X)

i=1

+l (P, (1+Adc™") X)
1
(719) <H(l)) [f] 1(1+f4g —Jj- 1l fj—l)

_fj+2 (1 +f4-gl - _1+l ]+2)] X>
+% ((Adc)CV, (1+Adc)X)

=2 <H“’, j-1 = fis2) ( * g ) X> + <(Adc)c<”, (%) X>

jed
7.18) <dII(.,,c,(aH“), cC), (1_"'_2Ad_c) X>,

where the last line is obtained from the hypothesis that (c, ¢) € IT~!(e) which implies
that (Adc)fag = 1. O

7.4 The generic stratum of M(©). The moduli space M(O) is, in general, not a
manifold. For the purposes of this paper we shall define the tangent space T{ )11 ~1(e)
to be kerdIl(q,c); this could contain vectors which are not tangent to any paths in

IT~'(e). By a k—form on IT~'(e) we mean the restriction of a k—form on G?8 x ©
to (the tangent spaces of) IT~!(e). A G—equivariant k—form 7 on IT~!(e) for which
n(vi, ..., vx) = 0 whenever any v; is in the image of the derivative of the orbit map of
the conjugation action of G will be taken to be a k—form 7 over M(6). Such a form 7}
is closed if it arises from a form 7 on G?8 x © for which the restriction of dn’ to the
tangent spaces of IT~!(e) is 0.

A simple argument based on the expressions for dI1{,, ., and 7, ., givenin (7.1.10)
and (7.1.12) shows that if (a, ¢) € IT~(e) then

ker dIT{,, o = ker y(y o). (7.4.1)

It has been shown by means of Sard’s theorem in Sect. 3.2 of [KS4] that there is a
dense open subset of G such that if © includes a point in this set then IT is a submersion
at every point on /7~ 1(e) and thus IT~!(e) is a smooth submanifold of G?8 x ©. We
shall focus on such 6, to be called generic ©.
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For generic ©, we see by (7.4.1) that the conjugation action of G on IT~!(e) is
locally free. Standard results of transformation group theory ([Bre]) imply that in each
connected component of IT~!(e) there is a dense open subset such that the quotient of
this under the action of G is a smooth manifold and the quotient map is a submersion. It
follows that there is a dense open subset of M (@)which is a manifold, to be called the
generic part (or stratum) of M(©), of dimension (2g — 2) dim G +dim(©). The quotient
map IT~!(e) = M(O) over this generic part is a submersion.

It will be convenient to define the following ‘tangent space’:

T,M©) ¥ (dIT3(g) +7,(@) " C T T~ \(e). (71.42)

The subspace in (7.4.2) is equivariant under the conjugation action of G.
If p projects to a point 7 in the generic part of M (©) then the derivative at p of the
quotient map sets up

a G-invariant isomorphism q. of 7, M(©) onto T3M(O). (714.3)

Smooth G-equivariant k-forms on 17~ 1(e) which vanish on the directions 7;, (g) corre-
spond one-to-one by q* to smooth k—forms on the generic part of M(O).

We equip T5M(O) with the inner-product which makes
the isomorphism q. in (7.4.2) an isometry. (7.4.4)

Some of the discussion and results below carry over to more general @, and we expect
that suitable sharper versions of the results below exist for all conjugacy classes ©.
Towards this, note that for general © we may define q*§2¢ at p € IT ~1(e) to mean
the restriction of £2, ¢ to 7, M(©), and define det £2, ¢ to be the determinant of the
restriction of 50,9 on T, M(©) with respect to any orthonormal basis in T, M(O)
(Sect. 7.6 contains more on such determinants).

The case where © consists of one point (this being any point lying necessarily in
the center of G) becomes essentially identical to the theory for closed surfaces, i.e. the
theory covered by [KS1].

7.5.
Lemma 7.2. Split T(a,c)(ng x @) as a direct sum of orthogonal pieces
Tia,o(G* x ©) = dIT{y o(9) D Ve 0)@) D T,y M(O). (1.5.1)
Then, with respect to this decomposition, ?2-0,9 has the ‘matrix form’
x  Q *
-@* 0 0 |, (715.2)
x 0 q*"fe
where Q is the bilinear map dII{,, .\(g) X V(4 c)(g) — R given by

1+Adc
Q (Y, Va0 X) = <dﬂ<a,c>Y, ——X > (1.5.3)

and Q' is the bilinear map ~(, (g) x dII{, .(g) — R given on (v(, ,X,Y) by the
right side of (1.5.3).
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Proof. First we observe that (o, c) € IT~!(e) implies that IT o Ya,c)(x) = e for every
z € G, and so dII{,, .(g) and 7, .,(g) are indeed orthogonal. From (7.3.1) it follows
that 2,0 (Y, Yy X) isOwhenY € kerdI(a,c); since dIT7,, (g)* = kerdIl(q c), this
explains the two zeros in the second column. The top block @ in the second column is,
by definition of the “matrix form”,

Q(4, B) ¥ D26(4, B)

and so the expression (7.5.3) for Q) is simply a restatement of (7.3.1). The second block
in the first column now follows by skew-symmetry of ﬁo,g. The bottom corner block
follows from the fact that g is, by definition, the image of _.(70,9 under the isomorphism
g« of (7.4.4). O

7.6 Determinants. Let A : V — W be a linear map between finite-dimensional inner-
product spaces. If ker A # {0}, or if V = {0}, then we define det(A4) = 0. If A (¥ 0) is
an isomorphism onto its image A(V'), then by det A we shall mean the determinant of a
matrix of A relative to orthonormal bases in V and A(V'). Thus det A is determined up
to sign, but is otherwise independent of the choice of bases. Consideration of matrices
shows that det (A|(ker A)L) = det (A*|A(V)). If A is an isomorphism onto W, and
if B: W — Z is a linear map into a finite dimensional inner-product space Z, then
det(BA) = det(B) det(A).

If P: V xW — Ris a bilinear form, where V and W are finite-dimensional
inner-product spaces of equal dimension, then by det P (determined up to sign) we shall
mean the determinant of the matrix [ P(v;, w;)], where {v;} and {w; } are orthonormal
bases in V' and W, respectively; det P is taken to be 0 if V and W are 0—dimensional.
The determinant det £2¢, which we shall use below, is to be understood in this sense.

7.7.

Lemma 7.3. Let (o,¢) € II"(e). Denote by (dII @ dII) the bilinear form on
T(a,c)(G*8 x ©) defined by

(I @ dIT)(X, Y) = (Al X, e ), (1.7.1)
and let (dI1 ® (Ad c)pry,,) be the bilinear form on Tia,. (G x ©) given by
(dIT ® (Ad Py, (X, V) = (e X, (Ad P, Y ), (1.12)

where pry,,, is the projection of Tia,c) (G x ©) on the last factor c='T,©. Then,
assuming that c is not in the center of G, ( i.e. © consists of more than one point)

- 1 1
det (9,,,9 - E(dH ®dI)+ 5<dH ® (Adc)pr2g+l))
= det (—%(Adc -1 'Adc ! - Ado)Adc! - 1)-‘) , (7.7.3)

where (Adc™' — 1)~ and (Adc — 1)~! are taken as maps from (Adc™! — 1)(g) into
itself.
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Proof. Let (a,c) € IT~!(e), and consider vectors (aH®W,cCW), (aH?®,cC?) €
Tia,c)(G* x ©). Recall the expression for £2, ¢ in (6.3.4):

0.6 ((@HD,cCW), (@HD, cC?))

ag
-1 e (Y, £ HP)

i,k=1
—% ((Adet - 1) cW,
(Ade™! - Adc) (Ade™! - 1) @), (1.7.42)

where
fi=Ad(a;--- ),

(ala ey a4g) = ((11, bl, al_ly bl_lx ey Qg bg’ ag—la bg_l)a
a=(ay,bi,...,a5,bg) = {ej}jes,
J={1,2)5,6,...,4g— 3,4g — 2},
](:)2 =— (Adaj) HJ(.') forevery j € J,
all as explained in Sect. 7.1. From these we have
2,0 (@H®,cCY),(@H®,cCP)) = 3~ (HP, Qip HP) +(CP, 2511241 CP),
J.keJ

(7.7.4b)
wherein (upon using the relationship (7.1.9) between H;,, and H; in the expression for

2,6 in (7.7.4a))
1 _ _ - -
Qe =5 [fi-1 (e fils — knfild) = fia (Garfili —anfin)] (1759
and, using the second equality in (7.2.6),
Dogr12g41 = —%(Adc -1 YAdc™! - Ade)(Ade~! - 1)L (7.7.5b)

Recall that ;
J=1{1,2,5,6,..,4g— 3,4g — 2},
sothat JU(J +2)={1,2,...,4g}.
So, from (7.7.5a),for j, k € J with j +2 < k,

2p = 31~ TGty — i) (1.76)
On the other hand, from the expression for dII(4 ) in (7.1.8) we have:
(T @ dIT) ((aHW, cCV), (aH®, cC?)) (1.7.7)
720 S (G - FOE, G - EDEPY (a9
jked

+ 3 (U - FHEP, (AdoC®)

j€J
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+{(AdoC®, (f1, - f75) HP) + (€, ¢?) (1.1.9)
and
(dIT ® (Adc)prag,) ((H®D,cCD), (@ H®, cC?)
VS U - fhES, (Ad c)c<2>> +(CV,Cc?).  (1.7.10)
jeJ
Thus, setting

— 1 1
2Y¥02,6- 5 (4T @ dIT) + ~(dIT @ (Ad)pryg,,), (7.7.9)
we can write

(04 ((aH(l) C(l)) (aH(Z) C(Z)))

= E < H®, 2, H(2)> Z( HY, ng+1C(z)>

J,k€J j€d
+3° (C‘Z’, 95g+1kH£2’> +(CY, 2541261C?) (1.7.10)
keJ
where
1
Dgr12g = —5(Ade - 1)~ YAde ! — Ade)(Ade™ ! - 1)7! (7.7.11)

and, from (7.7.6), (7.7.7) and (7.7.8),
2= io1 = fidl = o) = 3Uio— fidUl = fi) =0
forj,ke Jwithj+2 <k

(1.7.12)
and from (7.7.4b), (7.7.7) and (7.7.8),

1 1 .
,;'2g+1 =0- -z—(fj_l el fj+2)Adc+ -i(fj_.l - fj.,.z)AdC =0 fOI‘] eJ ((7713)

and, similarly,

Dgrr = —3Adc™ (F71 - fih) fork € J. (7.7.14)
Thus the ‘matrix’ [.Q;- )i ke for £2' has an upper triangular form:
Dy 0 O 0
* Ds 0 0
* * .o .o 0
= - - Dj 0 ’ (17.15)
+ * % % D3 0
|+ x ox % * 2412841

where the diagonal entry D;, for j, j+1 € J, is given from (7.7.5a), (7.7.7) and (7 7.9),
by
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p; | % Piia ]
L 945+1 7 j+15+1
r -1 -1
P Su S | o fs

= -1 filioy LB ] (1.1.16)
| —fifio+ [l — finfia Jinfi —1

i Ad (o} 'ajia;) ~ 1 Ad (o 'aj41) ]
| —Ada; +Ad(aj ) o] 'ajne;) — Adaj))  Ad(ej o am)—1]°

This factorizes (as observed in [KS1]) as

e (a(—)1 b(—)‘> (5 ) G (1)) (5 2) (1.7.17)

where a = Ado; and b = Ad o4). This implies that det(D;) = 1. Combining this
observation with the form for 2’ given in (7.7.15), we have:

det 2 = det 2,150 || detD; = det 25,1541, (7.7.18)
jeJ!
where J' = {j € J : j+1 € J} = {1,5,...,4g — 3}. Recalling the expression for
29541 2g+1 8iven in (7.7.11), the proof is complete. O

7.8.

Lemma 7.4. Let (a,c) € IT™'(e) C G*8 x O, and suppose that IT : G2 x @ — G is
a submersion at (o, ¢). Then

2
_ det'y(’ac) )
detPo = [ —@9 | det [(1 — Adc) 7.8.1
ctice (deth(*a'c) et [¢ o™, (7.8.1)

where det [(1 —Ado)” ‘] is the determinant of the map
(1-Ade)':z2} >z}
with Zc‘" being the subspace (ker(Ad c — 1))J‘ =(1—-Adc)(g).

In particular, 2 is non-degenerate on the smooth part of IT~(e) /G.

Proof. Recall from Lemma 7.5 the splitting T(, (G*8 x ©) as a direct sum of orthogonal
pieces

Tia, (G x ©) = dIT{, (@) ® Vin,0)(@) D Tiar, M(O) (1.8.2)
and the corresponding ‘matrix form’ of £2, ¢ given by
* Q *
[_Qt o 0 ] , (7.8.3)
* 0 q* 6

where

1+Adc
Q (Y’ 7(,a,c)X) = <dn(a,6)Y ) 5 X> (7.8.4)
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for every Y € dII[, .(g), and qu : T(a,o)M(O) — TmM (O) is as explained in
Sect. 7.4.

Note that in the decomposition (7.8.2), the sum of the second and third summands
is ker dI1(qc). Using this we see that the ‘matrix’ for 3(dI] ® dIT) at (a, c) has the form

* 0 0
0 0O (7.8.5)
0 0O

and the matrix for 3(dIT ® (Adc)pry,,;) at (e, c) has the form

* Q1 x
[0 0 0} , (7.8.6)
0 0 O

where @ is the bilinear map dII{,, .\(g) X ¥(,,)(g) — R given by
) .
Q1 (¥, a0 X) = 50, (Ade)Ade™" - DX). (1.8.7)
Recall the bilinear form £ on Tia,c)(G* x ©) given in (7.7.9):
; def = 1 1
2= 0o — (AT @dIT) + 5(dI @ (Ad)pryg,,)-

From the preceding observations we see that, relative to the splitting of T(o,,c)(ng x @)
as in (7.8.1), £2’ has the matrix form:

* Q2 *
[—Q‘ 0 0 ] , (7.8.8)
0 * q* .Q@

where Q2 = @ + Q) is the bilinear map dII(;, .,(9) X V(4 )(9) = R given by
Q2 (Y, Ya,0X) =(dH(0,)Y, X) = (Y, dII{, 4 X) (7.8.9)
and —Q" is the bilinear map v, .\(g) x dIT¢, .(g) = R given by

A
~Q (oY) = = (Ao, 220X

From (7.8.8) we have, as usual not worrying about signs,
det £’ = det Q, det(—Q") det 2o,
and the expressions for @, and —Q" then imply that

detdII, detdIT,
det 2’ = Lt ) et (- L+Ade
detyi, e  detv(y o 2

)}detﬁe. (7.8.10)

Now decomposing g as the orthogonal sum of Z. = ker(Adc — 1) and Z, L, we have

1+Ade 1+Ade
det( 3 )—det( >

Zt - zcl) ) (7.8.11)
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Combining the expression for det 2/ given in (7.8.10) with that obtained earlier in
(7.7.3), and using (7.8.11), we obtain

2
T - ( detv, ., ) det [(Adc — 1)~'(Adc — Ade)(Adc™! - 1))

detdIIf, ., det ((1 +Adc) ch)
2 -1 4
@24 ( det Vi) | 96t — Adc)™ det ((I +Ado) IZ° ) (1.8.12)
detdITy, ., det (1 + Ado)| 7+ )

thus proving the determinant identity (7.8.1). g

Recall from Sect. 6.3(iii) that there is a dense open subset D C G such that for
every conjugacy class © passing through any point of D, IT is a submersion at every
point of the level set IT~!(¢) and thus IT~!(e) is a smooth submanifold of G?8 x 6. In
Sect. 7.4 we saw that 2¢ is a smooth 2—form on a subset (which we call the generic
part) of M(©) which is a smooth manifold; as noted in Sect. 6.3(vi), it has been proven
in [KS2] that 2 is a closed 2—form on this generic part of M(©). Combining this
with Lemma 7.8 we obtain the following result.

79.

Theorem 5. The 2—form ¢ is a symplectic structure on the generic part of M(O)
Jor every generic conjugacy class © in G.

8. Limiting Quantum Yang-Mills and Symplectic Volume

In this section X' is equipped with a Riemannian metric; i.e. X' is a compact connected
smooth Riemannian manifold with one connected boundary component 3.5. We will
prove that as T' | O the measures u$ (given heuristically by (2.7.5) and rigorously
in Sect. 5.3) converge, in a sense specified below, to a volume measure on M(O) =
A%©)/G which corresponds locally to the symplectic structure 2¢ on M(O) (if ) is
a symplectic 2—form on a 2d—dimensional space, then the corresponding volume form
vol,, is the exterior power A4)\/d!).

Recall that the measure p? , as constructed in Sect. 5.3, is a probability measure on

a space A(0)/G,. For each well-behaved loop x on X based at o there is a random
variable w — h(kx;w) € G which corresponds to the the holonomy of w around «. For
our present purposes we shall not need any details of the definition of A4(€)/G,, nor of
the stochastic random holonomies, nor of what ‘well-behaved’ loops mean. What we
shall need is summarized in the following special case of Theorem 5.4, which may be
taken as a specification of y$, thus providing a choice of a starting point for our present
discussions.

The triangulations of X that we use are assumed to be ‘admissible’ in the sense of
Sect. 4.1. Alternatively, for the purposes of the present section, we may work with any
arbitrary triangulation of X and consider p$ as being a measure defined by means of
(8.1.1) below.
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8.1 Loop expectation values for u$.

Let S be a (well-behaved) triangulation of X, with the basepoint o as a 0-simplex. Then
forany loops k1, ..., k, based at o and consisting of oriented 1-simplices of S, and any
bounded measurable function f on G,

/f(h(m;w), ey (K w)) dpS (W)
= Nr(©)™! / f @K1, ..., z(kn)) § ((C)eP)

[19n14; (z04)) dz., - - -dz.,,doc, (8.1.1)

j=1

where the notation is as explained in Theorem 5.4. The normalizer Nr(0O) is given by:
Nz (©) = / Qr\5|(cbg 'ag 'beag - - b7 a7 'b1a)) dadb dec. (8.1.2)
G

By appropriate subdivision of S and by joining o to a vertex of each 4; by an
appropriate curve /;, each loop x in S based at o can be expressed as a ‘composite’ of a
sequence of the loops of the forml; - A; -1; and their reverses, and the loops 4;, B;, C and
their reverses (by ‘composite” here we include the eperation of successively dropping
edges which are traversed in opposite directions consecutively in the usual composite
of curves). This has been described in more detail in Sect. 4.2. Each z(x;) in (8.1.1)is
then a product of the z(;)~'z(dA;)¥'z(l;) and z(A; )", z(B;)E!, and z(C)*!. Thus

we can express f (z(kt), ..., 2(kn)) as F (4 , -, Y, , {@i, b}, ¢) (8.1.3)

for some function F', where
Ya, = e '2@4))2;), (8.1.4)
a; = (A, b = 2(B;), e = z(C). (8.1.5)

Conversely, given y, . Y4, > {@i, b}, c in G, satisfying
Yo, " "Ya, =cbg"lag"bgag b7 lar  bay.
there is an assignment e — ., with zz = z_"! for every oriented 1—simplex e of S,

such that (8.1.4) and (8.1.5) hold.
With this change of variables it follows, as for (4.4.5),

/ £ (hk1;0), .., h(Rn; ) dp@ W)

1
= F(y, ,... L bi),¢) -
N1®) Jomxcuxe Warr o Yam {0 ik )

J(yAm yA (cbg 'ag 'bgaghy 'ay 'bia))™") dec
Hda,db HQT;A,.(yA, )y, (8.1.6)

i=1 i=l
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where the §(-) term means that any one of the y s, may be replaced in the integrand by
the value which makes the argument in 4(-) equal to e, and the corresponding integration
dy a0 along with the §(-)—term, dropped from the integration.

Taking T | 0 we obtain the following lemma which is very close to Lemma 2.14
in [Se4]; since the sketch proof presented in [Se4] is sloppy enough to be viewed as
incorrect we present a detailed argument here.

82.

Lemma 8.5. Let k,, ..., k, beloops based at o and composed of oriented 1—simplices
of the triangulation S, let f be a continuous function on G, and let F be associated to
f as described above in (8.1.3). Then

tim [ £ (i), ... hsni) i)
=L -1 - b
- Jim Nr(©) /F(e, e {an b},
Q) 5) (cb; 'ag; 'bgag - - -b7 ‘a7 'bra1) daydby - - -dagdbgdec,  (8.2.1)
provided that the limit on the right side exists and provided that the limit

def .. 11— -1 -
No(©@) = '-’l’l'%/czs Qrz|(cbg lag lbgag oo by 1a1 b1a1) dadb; - - -dagdbgdec

8.2.2)
exists and is positive.

Proof. Let \r be the Borel measure on G™ x G?8 x © specified by requiring that for
every continuous function h on G™ x G?8 x ©,

/hd)\T=/ h(y1,.. -Ym=1,Ym, 81, ., bgC) -
Gm-1xGBxO

m-—1 g
Q1A Yrm) (H QT|Aj|(yj)dyj) (H daidbi) dec (8.2.3)

J=1 i=1
wherein
Y ={(a1,...,bg,0)} m-1---y1)"" (8.2.4)
and, as usual,
I(ay,...,bg,0)= cbg'lag'lbgag . -bl'lal'lblal. 8.2.5)

By a change-of-variables argument, the role of y/,, (and of A,,) can be replaced by that
of y; (and of A;) in the integration (8.2.3). '
'i'he loop expectation value formula (8.1.6) says that

Fh(kpw), ..., (Kkn;w)) du?(w)
1
= ¥2®) /F(yla...,ym>{ai;bi},c)d)\'1"({yj},{a;,b,‘},c). (8.2.6)
So we estimate

| [ 7 e cvm, s, 823,) dhals}, s b
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_/F(e:--wey{ai;bi},c) dd\r({y;}, {ai, b}, ¢)
S Z/IF(C,---ye,ij--,ym,{ai,bi},c)—
7=
Fe, . e, Yjnts - Umy {00, b3}, 0| ddrGs} {ain ko) B2.7)

wherein the j = m term is interpreted using F'(e, . . ., e, {a;, b; }, ¢) as the second term
in the integrand.

Let ¢ > 0. By (uniform) continuity of F', there is a neighborhood U of e such that,
forany j € {1,...,m}, if y; € U, then the integrand on the right side in (8.2.7) is less
than ¢. Thus, since the total mass of Ay is N7 (©),

left side of (8.2.7) < me - N7(0) + 2| Flsup Y _ Ar(Sjc), 8.2.8)
j=1
where
Sie E {1, Um, {0, b}, ) EG™E x O 1 y; ¢ U} (8.2.9)

Using the convolution property [ Q:(ab)Q,(b~'c)dadb = Q;.s(ac), the conjugation
invariance of Q;, and [; Q;(z) dz = 1, we have

Ar(Sje) = /¢ Qr14;®)Q1)z|-T14, (T(ay, ..., b, c)y™") dyda; .. .dbgdec
y¢U.

< sup @114,/ (8.2.10)
yeU.
Since limg o sup, ¢; Q:(y) = O for any neighborhood U of e, we can divide (8.2.8) by

Nr(©),letT | 6, and use the hypothesis that No(©) exists and is positive to conclude
that (8.2.1) holds. 0

For the following, recall from section 8.3 that for any © which passes through a
certain dense open subset of G, the map IT : G? x © — G is a submersion at every
point of IT~1(e).

83.
Theorem 6. Assume that

(i) O is such that II is a submersion at every point of I1™'(e)

(ii) IT~'(e) has a dense open subset I1~'(e)° on which the isotropy of the conjugation
action of G is Z(G)

(iii) volg (.M(G)O) < oo, where M(O)° is the projection of IT~'(e)° onto M(O)
by the projection map I1~'(e) = I1~'(e)/G ~ M(O) ( as in (6.3.3)), and vol-ﬁ(9
is the volume with respect to the symplectic structure 2¢ on M(O)".

(iv) Kji,...,kn are loops on X based at o, as in section 8.1.

Then for any continuous function f on G™ which is invariant under the conjugation
action of G,
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lim / F(hiri;0), . ., h(kn;w)) dpf )

1

vl M@)) M(e)of(h(fcl,w), ooy bk w)) dvolg (WD) (8.3.1)
Proof. In view of the limiting formulas given in Lemma 8.2, we shall focus on comput-
ing limy 0 [ o H(a1, .- -, bg, Qs (II(ay, . . ., bg, ¢)) day ...dbgdec, for continu-
ous functions H.

By the submersivity hypothesis, IT~!(e) is a submanifold of G*8 x 6. Picking any
point z, € IT~!(e) we have, again by submersivity of I at z., a coordinate system x
on a neighborhood W of z, in G x © and a coordinate system on a neighborhood
U of II(z.) in G such that II(W) = U and II|W corresponds, in the coordinates, to
projection on the first dim(G) coordinates.

Let

V=ITW) Y e)=I"'e)nW

Thus, taking the coordinate system x such that x (W) is a cube, there is a diffeomorphism

Q:UxV-aW
such that IT o @ : U x V — U is the projection on the first factor. Therefore, writing

w = P(u, v),

the derivative d® ) : g D T, () — Tow,nyW = dII;(g) + kerdIl,, can be
expressed as a matrix of the form

. .9 T,
Ay B " 0 1» (8.3.2)
kerdIl,, [* qu;(u’v)]

where D)@y ) : T, [T~ '(e) — ker dI1 gy v) is the partial deriative of @ in the second
variable, and B! is the restriction of d 1, to dIT},(g) = (ker de)J'.

It should be noted that the diagonal blocks listed in (8.3.2) are indeed ‘square
blocks’. Moreover, det B! = detdIT},. Consequently,

| det D2¢(u ,u)|

| det dd , = .
Y |detdIT},, |

8.3.3)

Let H be a continuous function on G*® x © with compact support contained in W.
For the following computations it is necessary to bear in mind that we use the unit-
mass invariant measures on G and ©, and these differ by constant volume factors from
the respective Riemannian volume measures. Then, upon using (8.3.3), we have the
following change-of-variables formula

vol(G)*&vol(©) H (ai1,...,bg,¢) Q: (I(ay, ..., bg, ) da; ...dbydec
G%xO
| det D2¢(u ,,)I
= vol(G) / H ($(u, v)) Q¢ (u) == duda(v), (8.3.4)
UxV Q |detdITg, .|

where du is the (restriction to U of the) usual unit-mass Haar measure on G, do(v)
the Riemannian volume measure on V C IT~!(e), and vol denotes volume measured
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with respect to the Riemannian metrics on G and © induced by (-,-),. Since H is
continuous and has compact support contained in W, we can apply the heat-kernel
property lim;_,o f & M@)Q:(z) dz = h(e) valid for all continuous functions k on G, to
conclude that

lim H (al, ..., bg, c) Q: (H(al, .. .,bg,c)) da ...dbydec

ti0 Jguxe
I det D2¢(e,v)‘

_ 1-2g -1
= vol(G) ~“4vol(©) /V H (&(e,v)) [detd H;(e,v)l do(v). (8.3.5)

Since | det D,P (¢, is the Jacobian, at v, of themap V — V : v — &(e, v), we have

lim H (al, ..., by, c) Q: (H(al, e bg,c)) da; ...dbgdec
t0 Jguxe .
= 1-2g -1
vol(G)!~2&vol(©) /V H(v)——l G dlTe] do(v)
- 1-2¢ -1
vol(G)'~28vol(©) /H o HO gerg e do(v), (8.3.6a)

where in the last line we used again the fact that H is supported in . By a standard
partition-of-unity argument, we conclude that

lim H (al, .. .,bg,c) Q: (H(al, .. .,bg,c)) day ...dbgdec
ti0 Jouxe

1
1-2 -1
= vol(G)' ~*8vol(®) / e H (v)—-————-—l N H.ﬂ do(v) (8.3.6b)

holds for every continuous function H on G?& x ©.
Applying this to the limiting formulas (8.2.1) and (8.2.2) we have

lim / f h(g1;w), . . ., h(kn;w)) dpF W)
= No(@)~vol(G)! ~2vol(©)~!

Fe,...,e,a,c)|det(dT )|~ do(a,c) 8.3.7)
mo-'(e)

with

No(8) = vol(G)!~&vol(©) ! / | det(d T c))* |~  do(a, ¢) (8.3.8)
I-(e)

and do being the Riemannian volume-measure on IT ~!(e); the limiting formula (8.3.7),
and the existence of the right side of (8.3.7), is contingent upon Ny(©) being positive
and finite. Positivity of No(©) is clear from (8.3.8) since 1T~ (e) # §; finiteness will be
shown below in (8.3.13).

Let IT~'(e)° be the dense open subset of 1T~ !(e) on which the isotropy of the G-
action on the manifold is Z(G). Then by standard facts from the theory of transformation
groups (Sect. 16.4.1(i), Problem 16.10.1 and Problem 12.10.1(a) in [Die]), the projection
IT~1(e)® - M(O)?is a principal G/Z(G)—bundle over the manifold M(©)°. Since f
is G—invariant, it follows that so is F and hence the function F(e, . .., e, (-))| IT~(e)°
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is constant on the fibers; we will sometimes view F'(e, ..., ¢, (-)) as a function on the
quotient I7~1(e)°/G. Writing F (e, . . ., e, (-))| 1T ~1(e)° as a sum of functions supported
on subsets of I7~!(e)° on which there are local-trivializations, it follows from (8.3.7)
(see [KS1] or Lemma 5.8 of [Se5] for details of this argument) that

lrii% / f(h(ki;w), .. ., h(kn;w)) dpf W)

L vol(G)! -2

= No(©)~ vol(O)

vol (G/Z(G))

Idet'y(’a’c)l

Fe,...,e,a,0) —————"—do(a,c) 839
/n—l(e)O/G ( ) | det(d 1T (o,c))*| ¢ ( )

and

vol(G)?~28 | detY(q, o

Nol©) = T51@) A2 Jg-reyc Taet@la)']

d&(a,c), (8.3.10)

with d& being the volume-measure on IT~!(e)?/G corresponding to the Riemannian
structure on IT~!(e)°/G (this being as in (7.4.4)). Recall from Lemma 7.8 that

| det‘%a,c)l
| det dil, ’c)|

a

= [Pf(6)| |det(1 — Ade)™!|7"/2, 8.3.11)

where the Pfaffian |Pf(2¢)| is the square-root of |detf2g|. Furthermore, since
Pf(Re)d7 = dvolg; , we see that the right side of (8.3.9) is given by

1/2 vol(G)1—28
vol(©)

/ F(e,...,e,a,c)dvol; (a,c) (8.3.12)
I-1(e)’/G ©

No(©)~! |det(1 — Ade)~!|” vol (G/Z(G)) -

and, recalling the identifications IT~!(e)/G ~ M(O) and IT~!(e)°/G ~ M(O)°,

1 |- 172 vol(G)*~%8

No(©) = |det(1 — Adc)~ vol(©) - #Z(G)

volg_ (M(©)°), (8.3.13)

where c is any point in ©. The hypothesis that vol;_ (M(©)?) is finite now shows that
Ny(O) is finite and this justifies (8.3.7) and hence also (8.3.9) and (8.3.12).

Now returning to the relationship between f and F' explained in (8.1.3), (8.1.5) and
in the remarks following (8.1.5), we have

fh(k1;w), ..., h(kn;w)) = Fe,...,e,ay,...,bg ) (8.3.14)

for any flat connection w with h(4;;w) = ai, h(Bi;w) = b; and h(C;w) = c.
Combining (8.3.9), (8.3.12) and (8.3.14), the proof is complete. O
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9. The Case of SU (2) Bundles

In this section we specialize the considerations of the preceding Sects. to the case
G = SU(2) and show that a sharp form of the semiclassical limit formula holds. We
also determine the symplectic volume of M(©) explicitly.

We shall exclude the case where © consists of one point (which must be one of the
matrices +7). The excluded cases are essentially contained in the theory for SU(2) and
SO(3) flat connections over closed surfaces, and this theory is treated fully in [Se5].

9.1.

Theorem 7. Let the group G be SU(2), and let © be a conjugacy class containing
more than one point ( i.e. © is not the conjugacy class of I or of —I). Then:

[i] M(O) is a smooth (6g — 4)— dimensional manifold which is connected.

[ii] the 2—form 2¢ on M(O) is symplectic and the corresponding volume of M(O) is

2
3 .
2(r — 0,) [ YAy D] ifg=1
volz, (M(©)) = 2 ,
amsing, [LLSYD Y vol(SUQYE2 T, 29 ifg>2
9.1.1)
where x, is the character function of SU(2) specified below in (9.1.7), c is any point
in the conjugacy class ©, 0. is the number in (0, 7) for which cos8. = Tr(c)/2, and
vol (SU(2)) is the volume of SU(2) with respect to the fixed metric (., ‘)g on its Lie
algebra.
(iii] if S be a triangulationof X, and k,, . . ., k,, loops based at o made up of oriented

1— simplices of S as in Sect. then for any continuous conjugation-invariant function f
on G™,

tim [ £ (eiiw, .., hsni) i)
1

= %) T ; dvolz ([w)). .1,

vl M©®) i) F(h(k1;3w), . .., h(kn;w)) dvolg_([w]). (9.1.2)
Proof. (i) In SU(2) any element not in the center lies in a unique maximal torus, and two
elements commute if and only if both lie in the same maximal torus. This implies that the
isotropy of the G conjugation action at any (ay, ..., bg,c) € II~ () c G* x @ (with I
being the identity matrix, and © being other than the one-point conjugacy class {I}) is
Z(G) = {£I}. Consequently, from (7.4.1), IT is a submersion at every point of I7~(I),
and so IT~!([) is a smooth submanifold of G2 x O, of dimension 3(2g)+2—3 = 6g— 1.
Since the isotropy group of the G action is {+1} everywhere it follows, by standard facts
from transformation group theory alluded to earlier ([Die]), that I7~!(1)/G ~ M(O)
is a smooth manifold of dimension 6g — 4, and IT~!(J) — II“(I)(G ~ M(@)isa
smooth principal SU(2)/{£I}—bundle. Let (a1, c1), (a2, ¢2) € IT~'(I); in particular,
1, ¢z € O. Since G = SU(2) is connected, there is a continuous path [0, 1] > G : t —
z; such that o = I and zlcle‘ = ¢,. Therefore ¢ — (ztal:ct'l, xtclxt'l) is a path
in IT=1(I) from (a1, ¢1) to a point (o, c2) where o lies in K~ !(c; '), where K is the
product commutator map

K :G®™ 5 G:(ay,by,...,a5,b) + b7 'a; 'bgag - - - b7 ay 'b1a;.
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In Proposition 3.10 of [Se5], it was proven that the set K ~!(c~!) is connected for every
c e SU(2). Consequently, o) can be connected to a; by a continuous path lying in

l(c2 l) Combining all these observations we conclude that (a1, ¢;) can be connected
to (a2, ¢2) by a continuous path in IT~!(J).

(ii) Recall from (8.3.13) that, since now M(0)° = M(O),

lim Q: (cb; 'ag 'bgag - - -b7 a7 'b1ay) day - - -dbgdec

t—0 G2EX©
1/2  vol(G)*~28

=|det(1 — Ado)~!|” ol@) 72 e M©D). 9.1.3)

By definition of dec, [ h(c)dec = [ h(zciz~!)dz for any ¢, € 6. It follows then
by conjugation invariance of Q); that for any ¢ € O,

/zg Q: (cbglag‘lbgag . ~bi'1a1'1b1a1) da; - - -dbgdec
GBxO
=/2 Q: (cb;'a; 'bgag - - b7 'ay 'byay) day - - dby. 9.1.4)
G2

The heat kernel Q; has a standard expansion in terms of characters of the group G.
Using this, it is proven in Lemma 5.5 of [SeS] (see also [Wil]) that

lim Qt(cb ag Ybgag - - -b7 a7 b1ay) day - - - dbg

t—0
"—.'ﬁr- ifg=1
2sin 8 g
= { Zsind . : (9.1.5)
{ Zn=l ff'fr(—cg lfg Z 2
where
6. € (0, ) is defined by cos . = Tr(c)/2, 9.1.6)

i0.
i.e. ¢ is conjugate to (e 0 e_egc ), and x, is the character of the n—dimensional

irreducible representation of SU (2):

1
sin [n cos~! {—Tr(c)}]
xn(c) = sin—[cos—‘{%Tf(c)}] L for every ¢c € SUQ2) \ {xI}. 9.1.7)

Combining this with (9.1.3) we have, with 4. as in (9.1.6),

2 |det(1 — Adc)~ 1] vol(@) 7525 ifg=1
volﬁ‘5 M@®)) = .
2|det(1 — Ad c)"[f vol(@)vol(GY22 32, X3 ifg > 2
(9.1.8)
Next we compute vol(@). Fix ¢ € ©. If we view SU(2) as a 3-sphere in R* in the usual
way, the angle between ¢ and I is .. So the surface area of the 2-sphere © is

9.1.9)

vol (SU(2)) ] 3
272 ’

vol(©) = 4 sin’ 4, [
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where of course the volume of SU(2) is with respect to the metric (-, -)g on the Lie
algebra of SU(2).

i0
The mapping ¢*® — Ad ( 0 e'(')“’ ) is a homomorphism of the circle group onto

the group of rotations in a plane in g and has kernel {+1}; therefore Ad c is rotation by
angle 26, in a plane orthogonal to the maximal torus of ¢, and so

. -1
— cos 26, sin 26, ] 1 (9.1.10)

—1y3 _ 1 —_—
|det(1 — Adc)™' |2 = det[ —sin20, 1-—cos20.] ~ 2siné,

Substituting this into (9.1.8) yields the volume formula (9.1.1).

(iii) is a special case of Theorem 8.3, bearing in mind that now M(0)° = M(©), and
that, by (ii), this has finite volume. O

9.2 Remarks.

(i) As already noted,the cases @ = {I} and © = {—I} are essentially contained in
the study of the moduli space of flat connections over the trivial SU(2)—bundle
and the non-trivial SO(3)—bundle over the closed surface of genus g dealt with in
[Se4,5]. The following observations are based on [Se4,5]. The moduli space M([)
consists of a number of strata whose structure and volumes have been determined
in [Se4,5]. The moduli space M(—1I) consists of one point if g = 1; if g > 2 then
M(=1I) is a smooth connected 3(2g — 2)—dimensional manifold. The 2— form 2o
is symplectic and the corresponding volume is obtained by considering

-1 - -1 -1 .

tl_Lr& Q: (=1 -b;'a;'bgag---by a7 'brar) day - - - dbg;
this leads to the value 2 - vol (SU(2))*2~2 3"22 (—1)"~!/n?~2 (which is the same
as is obtained if we set vol(@) and the determinant factor equal to 1 in the formula
(9.1.8)).

(ii) If in the first formula in (9.1.1) (the case g = 1) we set 6. = 0, we obtain the value

2
3 . . .
272 -‘%’@ which is exactly the volume computed in the closed-surface

theory of [Se5] (and in Lemma 3.11 in [Se4]). Such a comparison cannot be made
for g > 2 since in this case the dimension of M (@) collapses at @ = {I}.

(iii) If we set g = 1 in the second formula (i.e. the one for g > 2) in (9.1.1) and use
the trigonometric sum formula Y .- (sinnd)/n = (r — 6)/2 for 6 € (0, r), then
what results is the first formula in (9.1.1) (i.e. the one for g = 1); thus the second
formula actually covers all cases.

Appendix

We will quote some results from [Se2,3] and indicate briefly how they are applied in
Sects. 3 and 5 to the construction of u$ and u$.

The basic conditional proability result we need is (from [Se2]):
Al. Theorem. Let (§2;, F;, P;), fori = 1,2 be probability spaces, where §2, and §2, are
complete separable metric spaces and the corresponding F; are the Borel c—algebras.
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Let G be a compact Lie group. Consider random variables h; : §2; = G, fori = 1,2,
each having positive density with respect to Haar measure on G. Then there is a unique
assignment

Fi1F) x G —[0,1]: (E,2) = P(E|hihy = 2)

such that the following hold:
(i) E — P(E|hihy = 2) is a probability measure for every z € G.
(ii) z > P(E|hihy = 2) is measurable for every E € F; ® F», and

/V P(Elhihz = 2)dpia(z) = (Py @ P)(E N {hihs € V})

holds for every Borel V C G, where p;; is the probability measure on G describing
the distribution of hih;

(iii) z = P(A X B|h1hy = z) is continuous for every A € Fy and B € F,. Moreover,
P{hihy=z}|hihy=2)=1

Using the conditional measure described above, we can construct another conditional
measure, which is the one we use for the measures p5 and p$.
A2. Definition. Let (§2;, F;, P;), fori = 1,2, 3, be probability spaces, with (§,, F,, P;)
and (§22, F», P;) being as in Theorem Al. Let G be a compact Lie group and consider
G—valued random variables h; on §2;, with h; and h, having positive densities with
respect to Haar measure on G. Consider the product space (2,F) = (§1,F)) X
(02, F>) x (825, F3); for E € F we define

ef 1
P(Elhihy = h3) € 7 /ﬂ dP3(w3) P(E“”|h,h2 = hs(ws))Plz(h3(w3)) (A2.1)

where p1y is the density of hihy with respect to Haar measure on G, and E“* =
{w1,w2) : (w1,w2,w3) € E}, and

Z= /n p12(h3(ws3)) dPs(w3), (42.2)

Then P(:|h1hy = h3) makes sense, is a probability measure on (£2, F), and satisfies
P({h1h = h3}|hihy = h3) = 1. (A2.3)
Thus P(-|h1hy = h3) really lives on the subset of §2 where hih; = hj.

A3. Construction of u%. Fix a positive real number 7. We shall describe the details of
the construction of u%., for any ¢ € G, in terms of the conditional probability measure
described in Definition A2. For the sake of notational simplicity we shall only describe
the case considered in Sect. 3, i.e. of the torus with one hole. The general case is exactly
analogous and is discussed briefly in Sect. A5 below.

For the construction of u%., divide the disk D into an upper half Dy and a lower
half D; . The boundaries D and d Dy, when considered as loops, will be taken to
start from the center O of the disk D. Thus, with Ly being the radial path from O to
z9 =(1,0) € D, we have

h(aDL;w)h(aDu;w) = h(fo -0D - Lo;w) (A3.1)
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for any connection w over D.

Equip D with the measure which corresponds, via the quotient map ¢ : D — X,
to the Riemannian area measure on X'. For any subset A C D (such as A = Dy or
A = Dy ) let L?(A; g) be the corresponding Hilbert space of g-valued square-integrable
functions on D vanishing outside A. B

Let £2; be a Hilbert-Schmidt closure of LA Dy ; g) and PT, or simply P, the standard
Gaussian measure, with variance scaled by T', on the Borel o—algebra F; of §2;:

thus for each f € L2(Dy; g)thereisa Gaussian random variable f on {2, such that

forany fi, f2 € L*(Du; g), (f1, fo)rapy = T{f1, f2) D9

The g—valued white-noise referred to in Sect. 3.2 (or at least the part of it over Dy)
is obtained, for instance, by choosing any orthonormal basis ¢y, . . ., €4 of g and setting

FY(E) = Y% | (1ges)e; for every Borel E C Dy .

Let (£2,, F>, P») be the corresponding space of Dy, (we are suppressing the super-
script T in PY).

We modify the definition of {24, given in Sect. 3.2 to:

D4iox = 2y X 2. (A43.2)

Finally, let £2; = G2, and let P; be the unit-mass Haar measure on G2. The functions h;
are as follows:

hi(w1) = h(0Dy;wy), (A3.3)
ha(w2) = (0D ;w2), (A3.4)
h3(a,b) = cb~'a=ba, (A3.5)

In (A3.4) and (A3.5), the left sides are defined in terms of solutions of the stochastic
differential equation (3.2.1) and, as pointed out after (3.2.1), are G—valued random
variables with densities Q7|p,,|(-) and Q7|p,|(-), respectively.
As in Sect. 3.3, we define
2 = gisx X Gz, (A3.6)

and we define the measure u5 by
pg = P(lhiha = hy), (A43.7)

where the right side is the probability measure specified above in Definition A2.
Although 2. does not depend on ¢, it follows from (A2.3) that the measure y. really
lives on the subspace of w for which the constraint

h(Lo-8D - Lo;w) = cb~'a"'ba

holds (the left side is defined to be the product h(GDy ;w2)h(0Dy;w;), following
(A3.1)).

From the expression in (A2.2) for the ‘normalizer’ Z = Zr(c), and from the
observations made above concering the densities of #; and h;, we have:

Zr(c) = / Qr|z|(cb~'a""ba) da db,
G?

which is the same as our earlier value (3.4.2).
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Ad. Construction of 19 . The construction of u$, where © is any conjugacy class in G,
is similar to that for 5. The only difference is that now we set

23=G*x 6. (44.1)

take the measure P; to be (unit-mass Haar on G2) x (the G —invariant unit-mass measure
on ©), take F3 to be given by h3(a, b, c) = cb~'a~'ba, and define

o = Py X G? x O. (A4.2)

The spaces (§2;, F;, P;), for : = 1,2, and the corresponding variables h; and h; are as
for u%. With this, we define

p$ E P(-|hihy = h3). (44.3)

The corresponding normalizer Z = Np(©) is then:
Nr(©) = / Qr|zi(cb~'a"'ba)da db dec (A4.4)
GZx @

which agrees with the value in (3.4.5).

AS. Other surfaces. For general compact surfaces (as described in Sect. 5), §23 is taken
to be G°8 x GP (with notation as in Sect. 5; o is 1 if X is unorientable, 2 otherwise),
and hj is taken to be the appropriate function of the a;, b;, c; given by the right side of
(5.3.6).

Finally, we quote from (Proposition 4.5 of) [Se2] the exact expectation-value formula
which was alluded to in Sect. 3.4.

A6. Proposition. With notation and hypotheses as in Sects. A2 and A3, let ¢ =
D1,.-.,0m) : 21 = G™ and Y = (Y1, ...,¥p) : §25 = G™ be measurable func-
tions. Suppose that ¢y - - - 1 = hy and ¢y - - -y = hy, where the h; are as in Sect. Al.
Suppose also that ¢ has a bounded density pg on G™, and v has a bounded density py,
on G™. Then for any bounded measurable function f on G™ x G™ x §23, we have (with
w = (W1, w2, w3)):

[ (60, pin, ) dPlbita = bo

1
== / f(x,y,w3)pg(x)py (¥)d (rk R YRR 'yzh3(w3)_l) dP3(w3),

A
where 6(-) means that we can drop any z; (with1 < j < k)ory; (with1l < j <
l) from the integration and replace it in the integrand with the value which makes
Ty -1y - - Y1 = hy(ws), and Z is the normalizing constant given in (A2.2).

In applications, we work typically with random variables of the form h(x; w), where
« is an admissible loop in D based at O; breaking « into pieces in Dy, and pieces in
Dy (and adjoining appropriate additional radial segments) we can express h(x;w) as a
product of variables h(k’;w), where £’ is a loop in Dy, or in Dy . Thus Proposition A6
is applicable in situations, where ¢; and 1; are holonomy variables h(x'; -).
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