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Abstract: An example of noncommutative Brownian motion is constructed on the
monotone Fock space which is a kind of "Fock space" generated by all the decreasing
finite sequences of positive real numbers. The probability distribution at time t > 0
associated to this Brownian motion is shown to be the arcsine law normalized to mean
0 and variance t.

1. Introduction

In quantum probability theory or noncommutative probability theory, several (noncom-
mutative) Brownian motions have been known (see Parthasarathy [Par], Meyer [Mey],
and Schurmann [Sch2]). For example, the following have been known.

The noncommuting pair of classical Brownian motions arises from the boson Fock
space in which the commuting independence and the commuting central limit theorem
are concerned (see Segal [Seg], Cushen and Hudson [CuH], Giri and von Waldenfels
[GvW], and Hudson and Parthasarathy [HuP]). The associated probability law to this
bosonic Brownian motion is the Gaussian distribution.

The noncommuting pair of fermion Brownian motions arises from the fermion Fock
space in which the anticommuting independence and the anticommuting central limit
theorem are concerned (see Hudson [Hud], von Waldenfels [vW], Barnett, Streater and
Wilde [BSW], and Applebaum and Hudson [ApH]). The associated probability law to
the fermion Brownian motion is the distribution of Bernoulli type. The noncommut-
ing pair of free Brownian motions arises from the free Fock space in which the free
independence and the free central limit theorem are concerned (see Voiculescu [Voi],
Speicher [Spe], and Kummerer and Speicher [KuS]). The associated probability law to
the free Brownian motion is the Wigner semicircle law. There is also a one-parameter
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family of Brownian motions called the generalized Brownian motions which interpo-
late the three important Brownian motions of boson, fermion and free (see Bozejkoand
Speicher [BoS], and Schiirmann [Schl]). These noncommutative Brownian motions
are deeply connected with the general notion of "independence" and "Fock space." In
these examples, "Fock space" is used to realize in a concrete Hilbert space the abstract
notion of noncommutative "independence" and the associated "Brownian motion (or
white noise)." The general notion of "independence" and "white noise" in quantum
probability theory was formulated by Kiimmerer (see [Kum, Spe]).

In a previous paper [Mur 1], for the purpose of constructing an example of the non-
commutative "de Moivre-Laplace theorem," we introduced the (discrete time) monotone
Fock space which is a kind of "Fock space" generated by all the decreasing finite se-
quences of natural numbers. We proved in this Fock space a noncommutative "de
Moivre-Laplace theorem" where the limit distribution was shown to be, neither the
Gaussian law nor the Wigner semicircle law, but the arcsine law normalized to mean 0
and variance 1.

In this paper, for the purpose of constructing an example of noncommutative "Brow-
nian motion," we introduce the (continuous time) monotone Fock space which is the
natural generalization of previously introduced (discrete time) monotone Fock space to
the continuous time situation. We construct on the monotone Fock space an example of
noncommutative Brownian motion where the associated probability distribution at time
t is shown to be fit(dx) = fi(dx/y/t). Here /i is the "standard arcsine law" obtained in
the previous paper.

The paper is organized as follows. In Sect. 2, we give the definitions of the monotone
Fock space, the canonical processes and related operators. In Sect. 3, we investigate
the independence structure of monotone Fock space. It is proved that the canonical
pair process on monotone Fock space is a process with independent increments in the
Kummerer independence. In Sect. 4, we calculate the probability distribution of the
canonical process under the vacuum state. The probability distribution at t > 0 is shown
to be the arcsine law with mean 0 and variance t > 0. The canonical processes are
interpreted as noncommutative Brownian motions.

2. Monotone Fock Space and Canonical Processes

In this section, we give the definition of (continuous time) monotone Fock space. The
von Neumann algebra with the vacuum state associated to the monotone Fock space is
a quantum probability space where we construct a noncommutative Brownian motion.
First we remark that our construction of monotone Fock space i$ analogous to the
treatment of symmetric Fock space given in Maassen [Maa],

Let T = IR+ be the set of all positive real numbers t > 0. It is interpreted as the
set of times. We make the convention that we use the short notation r = (t\ > tj >
• • • > tr) to mean an r-tuple (tut2, • • • ,*r) with U £ T and t\ > t2 > • • • > tr.
Let Er = {(*i > ti > — - > tr)\U £ T} be the set of all decreasing finite sequences
r = (ti > t2 > • • • > tr) of length r from T. We assume that EQ = {A} the singleton
consisting of the null sequence A. For a pair a = (s\ > • • • > sr), r = (ti > • • • > ts) of
decreasing sequences satisfying sr > tu denote by (a > r) a new decreasing sequence
(s\ > - - > sr > t\ > - - > ts) obtained by natural composition of <r and r . We
also assume that (<r > A) = a and (A > r ) = r. Let %r = I?(ET\ r > 1 be the
complex Hilbert space of all L2-functions on Er with respect to the Lebesgue measure
A (induced from that of Mr), which we call the r-particle space. The scalar product
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< |- > is assumed to be linear in the right-hand side variable. The vacuum space
(O-particle space) %o is the £2-space L2({A}) over the singleton {A} with unit mass.
We make the natural identification of %$ = L2({A}) with the complex number field
C. Let Q : A *-+ 1 be the vector of %Q corresponding to the unit element 1 G C in
this identification. Let # = ®r?/r be the Hilbert space direct sum of r-particle spaces,
which we call the (continuous time) monotone Fock space. The vector Q as an element
of monotone Fock space # is called the vacuum vector.

To make the description possibly simple, throughout this paper, we will not distin-
guish two £2-integrable, measurable functions f(a) and f\(<r) if f(cr) = /i(<r), /i-a.e. <r.
So we omit the phrase "^-a.e. <r," whenever there is no need to emphasize the distinction
with ^-measure 0 between two measurable functions.

We define the monotone product f > g of two vectors f Efir and g G Us by

It is a vector in Wr+s • Note that f > g = 0if f,g €W\ and the support of / is on the
left-hand side of the support of g, i.e. Vs G supp(/), W G supp(#), s < t. This product
naturally gives a structure of associative algebra to a dense subspace 4>o = "the algebraic
direct sum of r-partcle spaces" C #. For each one-particle vector h G H\9 we define
the creation operator 6% as the left multiplication operator with respect to the monotone
product:

We write its bounded linear extension by the same symbol 8%. Note that 8^Q = A. We
define the annihilation operator 8^ as the adjoint of the creation operator. Its explicit
action on an r-particle vector u = u(r) = u(t\ > • • • > tr) with r > 1 is shown to be
the integral operator with respect to the left-hand side variable:

U >t2 > > tr).
>tr

Note that 8^ Q = 0. The map h i-*- 8% is linear and the map h »-> 8^ is antilinear.
Let >1 = W*(l, (JJ, (Ĵ  |/i G %i) be the von Neumann algebra generated by all the

creation and annihilation operators with identity 1. The von Neumann algebra A has a
special state <f>() =< Q\ • Q > called the vacuum state. The pair (.4, <f>) is interpreted as
a quantum probability space.

Denote by \i the indicator function of a finite interval / C M+, and let us write
8j = J£ , <Jj = <£~ in short notation. We also put D\ = 8£ot)i D^ = J^t), t > 0.

The operator process {£>;!"}t>o (resp. {Df }t>o) in (A, <t>) is called the creation process
(resp. the annihilation process).

Let (Ph,Qh)> h G ?£i be the canonical pair defined by

Here i is the imaginary unit in C. Let us write Qi = QXj and P/ = Px in short notation.
Put Qt = Q[o,t) and Pt = P[o,t)» then we get a noncommuting family {Qt}t>o (resp.
{Pt}t>o) of self-adjoint operators. The noncommutativity of the family {Qt}t>o can be
checked as follows. For 0 < s < t, we have
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QsQtO = QsX[o,t)

X[0,t) + ( /

= X[0,a) > X[0,t) + SQ.

In the same way, we have

QtQsQ = X[o,t) C>

The appearing two 2-particle vectors u = X[0,s) > X[0,t) and v = X[0,t) > xto,*) are
different:

0 (otherwise),

> 0 and s > t2),
0 (otherwise).

So we get the noncommutativity QsQt 4 QtQs, 0 < s < t. Besides the family {Pt}t>o
is also mutually noncommuting because {Pt}t>o is unitarily equivalent to {Qt}t>o
as shown in Sect. 4. We call these two processes {Qt}t>o and {Pt}t>o the canonical
processes.

The known theories of quantum stochastic calculus (see [HuP, ApH, KuS]), i.e. the
bosonic, fermionic and free stochastic calculi suggest that we interpret the canonical
process {Qt}t>o 0*esp. {Pt}t>o) as a kind of Brownian motion. We want to justify
this interpretation. In the following sections, we investigate the properties of canonical
processes {Qt}t>o and {Pt}t>o (or equivalently those of creation and annihilation
processes {D{}t>o and {£>*"" }*><))•

3. Independence in Monotone Fock Space

In this section, we examine the independence structure in the monotone Fock space.
The general definition of "independence" in quantum probability theory was given

by Kiimmerer (see [Kum] and [Spe]) as follows. Let L be a totally ordered set. L is
interpreted as a set of times.

Definition 3.1. A time indexed family {Ci }I^L of subalgebras of a unital algebra C is
independent in the sense of Kiimmerer with respect to a state p over C if

ak) = p(ai)p(a2) • • p(ak)

whenever a, € Ciif i= 1,2, • • •, k with l\ < l2 < • • < Ik* k > 1.

Let A(I) = W*(l, Sjy Sj) be the von Neumann algebra generated by the creation
and annihilation operators Sj, Sj associated to a finite interval / , with identity 1. Let us
write/i < I2< < Ik when*i <t2 < '<tkforal\ti € / i , t 2 € / 2 , ••-,** e 7*-
Then we have

Theorem 3.1. The pair process {(Df, A~)}*>o has the property of independence of
increments in the Kummerer independence, with respect to the vacuum state <j>:forany
k, any mutually disjoint finite intervals I\,I2,-,Ik with I\ < I2 < • • • < /*, and any
operators A\ e A(I\), A2 e A(I2), • • •, Ak € A(Ik), we have
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Proof. We first prove the factorization property in the special case that A{ is a monomial
Mi of Sf.. So we assume that A{ is given by

with some signatures £i,i, £,-,2, • • •, £»,#< € {+, —}. Here we adopt the convention that
Ni = 0 means M, = 1. We adopt the short notation M, = I~J Sj. to mean such a
monomial. Let 71 AD* r > 1 be the closed subspaces of $ defined by

HAD = {feL2&r)\f{<r) = o,*eEr\EADh
with EAD = {<r - (*i > *2 > • • • > sr) e Er\ Si e / , Vt = 1,2, • • •, r}. Recall that
we made the convention that we omit the phrase "A-a.e," and hence f(<r) = 0 precisely
means /(cr) = 0, A-a.e. a. It is easy to see that the followng holds:

(II ^ ^ cn u uSi«r(/*),

Let us prove <j>{M\M2 • • • Mk) = <j>(M\)<f>(M2) • • • <j>{Mk) by mathematical induction on
k. For k = 1, it is trivial. Let k > 2 and put u = (M2M3 • • • Mk)fi, then only two cases
are possible:

(a) :ue# r ( /2U-- -UJ*)forsomer > 1, andt/^O.
(b): u e CO.

First consider case (a), then we get <$£ u = 0 because of

where the last equality comes from I\ < I2 U • • • U Ik. We also get rfjj w = 0 because of

[8>T) = 0,

where the last equality comes from I\ f) (I2 U • • • U /*) = 0. So when Mi = f| J^ ^ 1,
we have

^ 1 ^ 1 ' 2 • .•#l'
Nl-%l

l
tNlu > = 0

because of <$* 1/ = 0. On the other hand we have

< Q\MXQ > « i2\M2Q > < Q\MkQ »
= < Q\MXQ >< Q\M2 - - - MkQ >
= < Q\Mxn>< Q\u> = 0

because (a) implies < Q\u >= 0. Therefore case (a) with M\ = \[ Sjx ^ 1 implies the
factorization

<j>(MlM2 • • • M*) = <f)(Ml)<t>(M2) •
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Besides case (a) with M\ = I"] &\x = 1 &&o implies the factorization.
In case (b), the vector u must be of the form u = aQ with some scalar a e C, and

hence we get

= < Q\M\ai2>

= < Q\M\Q > a = < S2\M\Q >< Q\aQ >

= < Q\MXQ>< Q\M2'"MkQ>

= < Q\M\Q >< Q\M2Q > < Q\MkQ >

So in both cases (a) and (b), we have the factorization property. By the induction on
Ar, we conclude that the factorization property holds for all Ar > 1 and all monomials

5
Next we must show that the factorization property holds for all polynomials P t of

the creation and annihilation operators &f. That is, A{ is supposed to be of the form

with some monomials Af/'* of Sf. and some complex scalars a^ e C. In this
case, the factorization property is easily obtained from the multi-linearity of the map

Finally let us show the factorization property for arbitrary A\ E A(I\), • • •, Ak G
. Since A\ is the limit, in the weak operator topology, of some polynomials

•Pfe) = Urn
n—>-oo

= lim <t>(Pln))<KP2)-<KPk) = (f>(Al)<j>(P2)-<f>(Pk)-
n—foo

Using the convergence

in the weak operator topology and repeating the preceding discussion, we get

<KAi A2 • • Ak) = <j>{Ax)<t>{A2) • • • ftAk).

This completes the proof. D

As a corollary of Theorem 3.1, we get

Corollary 3.1. The canonical process {Qt}t>o (resp. {Pt}t>o) is a process with inde-
pendent increments in the Kummerer independence, with respect to the vacuum state
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4. Probability Distribution of Canonical Process

In this section, we calculate the probability distribution associated to the canonical
process {Qt}t>o (and that to {Pt}t>o).

Let us calculate the probability distribution /*/ of an increment Qi = Qb — Qa,
I = [a, 6), 0 < a < 6, of the canonical process {Qt }t>o under the vacuum state </>. We
shall calculate the probability distribution \ij by the moment method. Let us calculate
the p"1 moment mp of Qj in the vacuum state <j>. We have

Note that since 8j Q = 0, the set CQ U [J^i Mr is stable under the action of 8j and Jf.
Hence the term

<t>{sys]2 • .8]*) =< Q\sys]2 •. -syn >
survives only when 8jl Sj2 • • • 8£jp Q G CO. Such a requirement imposes some constraint
on a sequence e = (£i, £2, • • •, £p) of signatures +, —. It is easy to see that mp = 0 for
odd p. Let us calculate the p**1 moment <£(Qj) for even p = 2k. At first we see that, for
the term < Q\8y8]2 • • -8]PQ > not to vanish, the numbers #{j|£; = +} and #{j\ej =
—} must coincide with the same number Ar, because #{i|£j = +} ^ #{j|£j = —}
implies either 8y8]2 • • -8*/ Q = OorO jS^S]2 • • 8£jpn e U ^ i ^ r - Furthermore more
constraints must be imposed on a sequence e = (e\, £2, • • •, £p) as follows. For the term
< Q^yS]1 - - 8)pn > not to vanish, the vector <JJ'JJI+1 • • 8tpQ must not vanish for
each / = 1,2, • • •, p. So the number #{j\j > /, 6j = —} of "times of annihilation" must
not exceed the number #{.; | j > l,ej = +} of "times of creation," for each/ = 1,2, • • -,p.

Therefore, for the purpose of calculation of the p 1" moment <£(#/) with p = 2Ar, we
have only to take into account the sequences e = (e\, 62, • • •, ep) satisfying

(a) # { j | £ i = + } = #{j\€j = - } = *,

A sequence e satisfying these conditions is called an admissible sequence. Such a
sequence can be visualized in more pictorial language. We connect i and j> i < j , by a
line if and only if

(i) #{ft | /<fc<i,e f c=+}-#{ft | /<ft<i,efc = - } > 0 , t < VI
(ii) #{ft|i < A < j , £ft = +} - #{A|i < ft < j , £* = - } = 0.

For example e = ( - , - , —, + , - , + , + , + , - , + , - , - , + , +)is visualized as in Fig. 1. Such

Fig. 1. An admissible figure g

a figure g = g(e) corresponding to an admissible sequence e = (£1, £2, • • •, ep) is called
an admissible figure. There is the bijective correspondence between the admissible
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sequences {e|admissible} and the admissible figures {^|admissible}. Denote by G(p)
the set of all admissible figures corresponding to the admissible sequences of even
length p = 2k. Put G = UfslG(2k). For each finite time interval / = [a, b) and each
admissible figure # G G(2k) associated with the sequence (€\, £2, • • •, £21*) of signatures,
put 89j = S]lS]2 - - - Sj2h. Then the 211th moment m2* is given by the formula

geG(2k)

Denote by < g\I > the vacuum expectation < Q\Sf Q > of 8%. Define the function d(g)
by d(g) = k for g = </(e) with e = (£1, e2, • • •, £2*). Then we can prove the following.

Theorem 4.1. < g;I > is the monomial, with order d(g), of the length A(/) of time
interval / , i.e.

Here the system of coefficients {o>(g)}g£G is determined by the recurrence relation:

V) *(g) = l (if9
(2) a(g) = a(gi)a(g2) • • • a(9i) (if 9 = 9\92 •

Before proving Theorem 4.1, we prepare two lemmas.

Lemma 4.1. SgjQ =< g\ I > Q.

Proof. Note that 8fQ£ Cfi because g is an admissible figure. Since we have <
n\Sgjn >=< g\ I > by the definition of<g\I >, we conclude 8%Q =< g\I > Q.
D

We adopt the short notation {> s} to mean the set {t € R+\t > s}.

Lemma 4.2. For each r-particle vector u = u(a) = u(s\ > S2> - — > sr) with r > 1,
f =< ^; / fl {> si} > ti(o-).

/ Let us prove the equality by the mathematical induction on d(g). First consider
the case of d(g) = 1, i.e. g = I 1 . Since we have

dt xi(t)(Xi

= / dt Xi(t)xi(tM<r) =
Jt>Sl

and

if? > u(<r)

we get the desired equality.
Now let us make the inductive hypothesis that the equality (8$U)(<T) =

< </; J H {> s\} > u(<r) holds for all g such that d(gr) < k. Let us show the equality for
d{g) = fe. Consider the case of g = #i02 • ̂  with / > 2. Put
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<Pgi gi-i(<r)=<9i-9i-i'>ln{>si} > and (pgt(<r) =< grJ

with a = (s\ > S2 > - - > sr). Since d{gi) < k, we have

by the inductive hypothesis. Furthermore, since d(g\ • • -gi-i) < k, we have

(8?'''9>-lvX<r) = <pgl...gi_l(or)v(cr) for v = <pgtu

by the inductive hypothesis. Hence we get

(*?«X«r) = (Sf 9l-'Sfu)(<r) = (Jf 9'-

On the other hand, we have

;ln {> sx} > u(<r) =

= < fll^l1;/} < p i ; / n {> si} > Q > u{<r)

where the second equality comes from Lemma 4.1. Combining these, we get the desired
equality.

Finally let us consider the case of g = l<7il. Put (pgi(t > <r) =< g\\ 10 {> t} >
andipgi(t)=< gi;in{>s\}r\{>t} >. Since d(g\) < k, we have

(Sf v)(t > <T) = <pgi(t > <r)v(t ><r) for v = \i > «

by the inductive hypothesis. By the same reason, we have

Hence we have

= / dt X/n{>»,}V'p,(<)X/n{>«1}(<)

On the other hand
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= (6j69iv)(<r) = (6j<pgiv){a)

= / dt \~Mpgi (t > <r)v(t > a)

= / dt 3oOO < gwIn {> t} > xi(tM<r)

= f dt <gi;ln{>t}>u(<r).
Jln{>s,}Jln{>s,}

Combining these, we get the desired equality. Since we have checked the equality in
each cases, this completes the proof. •

Proof of Theorem 4.1. Let us prove the statement by the mathematical induction on dig).
For the case of d(g) = 1, i.e. g = I 1, we have

; /) = {Q\SJS]Q) = J dtximxiH) = HD,

and hence ([ 1; / ) = A(J) and a (I 1J = 1. In the case of g = g\gz • • gi, we have

<9i-gr,i> = <n\s? 9l-i&fn> = <f l |*f*- ' <</,;/> n>

= a(gl • • • </,

= a ( e / 1 ) - a

where the second equality comes from Lemma 4.1. Hence we get

(</i--</i;{>=aO/i--</()A(/)d(a iS' )

and a(g\ •••<//) = a(g\)- • a{gi). In the case of g = i9il, we have

= Jds xlisktf xi)(s) = j ds xW) <gi;in{>s}>

= f ds < sn; I n {> s} > = f ds ai

Here the third equality comes from Lemma 4.2 and / is assumed to be of the form

/ = [a, 6). Hence we get ( fill; / ) = a(gi)(b - a)**1*1 and a ( fill) = ^ r . By

the induction on d(g), we complete the proof. •
From Theorem 4.1, we get the expression for the moment miu:
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Put a2k = J2geG(2k)a(9) an^ ao = 1» * e n ^ e sequence {a2/c}^eN satisfies the following
recurrence equation:

ao = 1,

i=1 *r2

because of the recurrence relation for {a(g)}g^G in Theorem 4.1. Such a form of
recurrence equation was already obtained and solved in a previous paper [Murl].

Following [Murl], we briefly sketch the process solving the above recurrence equa-
tion. At first let us solve it with a formal calculation. Let f(s) = X *

(formal) generating faction for the sequence {aik}*GN- Let g(s) = / f(s)ds9 then we
Jo

have

fci k2
E E
i = 1 A:i + /c2 + • • • + kj = A;

E V Q2(/g|-l) jfet

^ * 1
k-3 k\ + k2 + • • • + kj; = A:

1

Hence we get the differential equation for g:

1
1-000

, i/(0) = 0.

Differentiating this equation and eliminating g(s\ we get the differential equation for

and the solution f(s) = A ^ . Expanding /(s) to the binomial series, we finally get

Though we obtained the expression for a%k by a formal calculation, we can a posteriori
check that aik = ("Jc

5)(—2)* is certainly the unique solution of the recurrence equation.
The sequence {a2/c W N uniquely determines a probability measure fi on the real line
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1f
[

(-V2<x<y/2),

0 (otherwise)
as the unique solution of Hamburger's moment problem. This can be checked with a
direct calculation of the moment generating function associated to the above probability
measure \i [Murl]. We call the above probability measure fi the standard arcsine law
because it is the normalization of the usual arcsine law /io (see [Fel]),

0 (otherwise),

into a probability distribution with mean 0 and variance 1. Since rri2k = 02* A(/)*, the
sequence {rri2k}keN uniquely determines a probability distribution /// which is given

Now we finally get the probability distribution/// of an increment of the canonical
process {Qt}t>o-

Theorem 4.2. The probability distribution \ij of an increment Qj =Qt — Q$, I = [s, t),
0 < s < t, in the vacuum state </> is the arcsine law normalized to mean 0 and variance
t - s:

1
(/2(t ) < X < y/2(t - S)),

*«•{.-
For another canonical process {Pt}t>o> we get the same result as follows. Let us

define a unitary operator T on # by Tu = iru, u G %r* r = 0,1,2, • • •, where i is
the imaginary unit. It is an analogue of the Fourier-Wiener transform in the theory of
classical Brownian motion. It is easy to see that TQiT~x = P/ , TPjT~x = —Qi
and TQ = Q. So it gives rise to the unitary equivalence between the triples (#, Qj, Q)
and (#, P/ , /?). Hence Theorem 4.2 holds in the form that {Qt}t>o is replaced with

Corollary 4.1. The probability distribution of an increment Pj = Pt - P5, / = [s,*)>
0 < s < t i n r/i^ vacuum state <j> is the arcsine law normalized to mean 0 and variance
t-s.

We remark that the standard arcsine law already appeared as the limit distribution
of a noncommutative de Moivre-Laplace theorem [Murl]. This noncommutative de
Moivre-Laplace theorem was constructed on the "discrete time" monotone Fock space
with noncommutative random walks {qn}nen and {pn}neN (see [Murl] for details).
The canonical process {Qt}t>o (resp. {Pt}t>o) can be viewed as a scaling limit of
random walk {^n}n€N (resp. {pn}nGp0. From this point of view and the independence
result in the previous section, we conclude that {Qt}t>o (resp. {Pt}t>o) can be viewed
as a noncommutative analogue of Brownian motion.

In Fig. 2, we plot the graph of probability distribution fit = /i[o,t> of the canonical
process Qt, t > 0. The distributions at time t = 1/4,1,4 are sampled.

We are now trying to develop a quantum stochastic calculus on the monotone Fock
space which will be presented in an upcoming paper [Mur2].

Acknowledgement. The author wishes to express his hearty thanks to Prof. M. Motoo and Prof. M. Ohya for
constant encouragements.
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4 - 2 0 2 4
Fig. 2. The distribution of noncommutative Brownian motion {Qt}t>o
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Postscript. After revising the paper, the author was informed by Professor Y. G. Lu at the Random Walk

Miniworkshop held in Nagoya University on 20-21 June 1996 that he had obtained similar results in the

setting of his theory of interacting free Fock spaces, in: Y. G. Lu, "An interacting free Fock space and

reciprocal semi-elliptical law". To appear in Me. Fun. Ana. Topo. and in: M. De Giosa and Y. G. Lu, "From

quantum Bernoulli process to creation and annihilation operators on interacting q-Fock space", submitted to

Nagoya Math. J.


