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Abstract: We introduce a certain cellular algebra Q(n, r) which is a quotient of the
g-Schur algebra Sq(n,r). This is naturally equipped with a canonical basis which
is compatible with Lusztig's canonical bases for certain modules for the quantized
enveloping algebra U(sln). We describe a diagram calculus for Q(n, r) which makes
calculations involving the corresponding canonical bases easy to understand.

1. Introduction

The g-Schur algebra Sg(n, r), which was introduced by Dipper and James in [2], is
a certain finite-dimensional associative algebra over the ring of Laurent polynomials
A = Z[v, t;"1]. Du [3] has described a certain natural free .4-basis {6™^} for the q-
Schur algebra, which we shall refer to as the canonical basis. It is known [8, Corollary
4.7] that the structure constants with respect to this basis have interpretations in the
framework of perverse sheaves and intersection cohomology. It is also known (see for
example [5, Theorem 4.6]) that the basis {0™^} is very closely related to Lusztig's
canonical bases for modules quantized enveloping algebras, which were defined in [9].
These bases have turned out to be very important in representation theory.

In Sect.2 we define and study a certain quotient Q(n, r) of 5^(n, r) which inherits
a basis from the basis {^A«} of Sq(n, r). This quotient Q(n, r) is closely related to the
Temperley-Lieb algebra TLr of type A. Using the main result of [6], we show that the
multiplication in Q(n, r) can be easily described in terms of a diagram calculus which
is an extension of the r-diagram calculus for the Temperley-Lieb algebra (described
for example in [12, Sect. 1]). Furthermore, the diagrams can be interpreted as canonical
basis elements of Sq(n, r).

In Sect. 3 we describe the cellular structure of Q(n, r) (in the sense of [7]) and
classify the absolutely irreducible modules for Q(n, r) over a field.
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In Sect. 4 we use the homomorphism 7iy from an .4-form U = Uj^isln) of the
quantized enveloping algebra U(sln) to Sq(n, r) (as in [4]) to describe a left action of U
on Q(n, r) which gives rise to the action of U on the canonical basis for its irreducible
highest weight modules over a field.

Since the results of this paper tie together Temperley-Lieb algebras (which were
defined in [11] and were motivated by the Potts model in statistical mechanics) and the
quantized enveloping algebras of Drinfel'd and Jimbo (which arose from the study of
the quantum inverse scattering method), one would expect there to be some physical
interpretation of these results.

2. The algebra Q(n, r)

It turns out that the result [6, Theorem 3.8.2], which shows that the product of two
"canonical" basis elements in TLr is a scalar multiple of another one, is a manifestation
of a more general, but equally elegant, result which applies to the representation theory
of g-Schur algebras and quantized enveloping algebras.

Following [3, Sect. 2], we define A = A(n, r) to be the set of compositions A f= r
of r into n pieces. We shall assume until further notice that n > r, so there exists an
element LJ E A given by LJ = ( 1 , 1 , . . . , 1,0,... 0). To a composition A of r we associate

r
in the natural way a parabolic subgroup W\ of the symmetric group Sr.

Let A and fi be arbitrary elements of A. To each Kazhdan-Lusztig basis element
Bw of H, where w is the double coset representative of maximal length for the double
coset WxwWjx, we define an element 0™ )fi. The set of all such 0™^ spans an associative
algebra called the g-Schur algebra and denoted by Sq(n, r).

Let us denote by ga,b,c the coefficient of Bc in Ba Bb. Then the multiplication in the
g-Schur algebra is given by

where

(wo,fi being the longest element of W^) and

The Hecke algebra %=% (Ar _ i) corresponding to the Coxeter group of type Ar _ i
may naturally be identified with the subalgebra of Sq (n, r) spanned by the basis elements
0™,u) (corresponding to the basis elements Bw).

The Temperley-Lieb algebra TLr of type A is the quotient of W by the ideal J
spanned by all basis elements Bw where w corresponds under the Robinson-Schensted
map to a pair of tableaux with at least 3 columns ([6, Proposition 3.1.1]). (A good
reference for the Robinson-Schensted correspondence is [10].) Following [6], we denote
the nonzero images in %/J of elements Bw E % by Fw. It was shown in [6, Theorem
3.8.2] that the basis of elements Fw coincides with the basis of r-diagrams as given in
[12, Sect. 1]. From now on we make this identification implicitly.
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Definition 2.1.1. Letn>r. We denote byQ(n, r) the quotient ofSq (n, r) by the ideal I
spanned by elements 0™ ^ where w corresponds to a tableau with at least three columns.

Note that it is clear from the definitions that the given elements span an ideal, because
the corresponding elements of % do (see [6, Proposition 3.1.1]). Thus Q(n, r) inherits
a canonical basis from the 0-basis of Sq(n, r). We write the elements of this as C* »•

Lemma 2.1.2. Let £* ̂  be a canonical basis element ofQ(n, r). Then W\ and W^
are each generated by sets of commuting simple reflections, and x corresponds (via the
Robinson—Schensted algorithm) to a pair of tableaux with one or two columns.

Proof We recall that a semistandard tableau is one in which the entries increase weakly
along rows, and strictly down the columns. It is known from [5, Sect. 3] that the basis of
elements 0™ ^ is naturally parametrised by pairs of semistandard tableaux of the same
shape as the tableaux corresponding to w; furthermore, the content of the left tableau
is A and the content of the right tableau is //. It is clear from the definition of Q(n, r)
that x corresponds to a pair of tableaux with one or two columns. The condition of
semistandardness now forces all the components of the compositions A and /J to have
size 0,1 or 2. The associated Weyl groups W\ and W^ are determined by the components
of size 2, which correspond to commuting simple reflections which generate the groups.
D

It is convenient to represent £™ ̂  as a diagram, thus generalising the r-diagrams for
Temperley-Lieb algebras.

Definition2.13. A generalised r-diagram consists of a pair (A,//) of elements of
A(n,r) and two rows of r nodes together with r edges linking pairs of nodes. The
elements A and fi correspond to compositions ofr into at most n pieces, and the pieces
must be of size 2, 1 or 0. Each node is the endpoint of exactly one edge, and the edges
must not intersect. Edges are of three types: vertical, which link nodes in different rows;
flat, which link adjacent nodes in the same row; and horizontal, which link (possibly
adjacent) nodes in the same row. The diagram has aflat edge linking points i and i + 1
in the top row if and only if(i, i + 1) £ W\, and aflat edge linking points i and i + 1 in
the bottom row if and only i/(i, 2 + 1)6 W^.

Fig. 1. An r-diagram (r = 5)

Figure 2 gives an example of a generalised r-diagram corresponding to the pair
(A, /i), where W\ is generated by the transposition (4,5) and W^ is generated by
the transposition (2,3). (Note that A and \i are not defined by this condition.) This
corresponds to the element £™ M, where Fw corresponds to the diagram in Fig. 1 (which
is the same as this figure with the labels erased and the flat edges, denoted by straight
lines, replaced by horizontal ones).

Two generalised r-diagrams A and B multiply in the following way. If A has pair
(A, fi) and B has pair (J/, p) then the product AB is zero unless p = v. In this case
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Fig. 2. An generalized r-diagram

we place the diagram for A above B, identify the lower row of A with the upper row
of B, and remove all the nodes in the new combined row. This process results in a
new diagram, C, and produces some loops which are of two types: those which are
constructed entirely of flat edges and those which are constructed entirely of horizontal,
but not flat, edges. Suppose there are x loops which do not consist entirely of flat edges.
Then AB = [2]*C, where C is labelled by the pair (A, p). (Note that the "flat loops"
have effectively been ignored.)

The point of introducing generalised r-diagrams is that the multiplication in Q(n, r)
is easy to understand in terms of them.

Theorem 2.1.4. The A-linear map sending (% to the generalised r-diagram corre-
sponding to the r -diagram for w and the pair (A, /i) is a monomorphism of A-algebras.

Proof First we note that it; is the longest element in the double coset \V\wWp if and
only if sw < w for each s E W\ and ws < w for each s G W^. One sees easily that
this is equivalent to the r-diagram for Fw having points i and i + 1 joined in the top
row when (t, i + 1) G W\, and having points i and i + 1 joined in the bottom row when
(i, i +1) G Wfj,. So different basis elements of Q(n, r) do indeed correspond to different
generalised r-diagrams.

It remains to show that the multiplication is correct. This comes from comparison
with the multiplication of the F-basis (governing the Temperley-Lieb algebra), the
J5-basis of the Hecke algebra and the 0-basis of Sg(n, r). One needs to ensure that the
product is zero when the weights are incompatible (which is true), and that when the
weights are compatible, the product is l/h^ times the corresponding product in the
Temperley-Lieb algebra or Hecke algebra. Thanks to Lemma 2.1.2, h^ is equal to [2]x

where x is the number of commuting reflections generating W^, or, equivalently, the
number of "flat loops" formed in the multiplication of the diagrams A and B. The proof
now follows. D

3. The Cellular Structure of Q(n, r)

The next aim is to show that the algebra Q(n, r) is a cellular algebra in the sense of [7].

3.1. Generalised Parenthesis Diagrams. In this section we generalise the parenthesis
diagrams which appeared in [12, Sect. 2]. These were certain diagrams in correspon-
dence with standard tableaux with at most two rows (and hence in correspondence with
standard tableaux with at most two columns). We wish to find a set of diagrams which
are in correspondence with semistandard tableaux with at most two columns.
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Definition 3.1.1. A generalised (r, p)-parenthesis diagram consists of:

1. a label, which is an element A G Afa, r) satisfying A, < 2 for all i;
2. a graph, which is a row of r points on the x-axis together with p non-intersecting

edges which lie in the lower half plane, each of which joins precisely two of the
points. The edges are of two types: horizontal and flat. Aflat edge occurs between
points i andj if and only ifj = i +1 and (i, i +1) lies in the Weyl group W\. If points
a, 6, c satisfy a <b < c and a is connected to c, then b is required to be connected
to some other point.

Example 3.1.2. Figure 3 shows a generalised (5,2)-diagram whose corresponding Weyl
group W\ is generated by the simple transposition (3,4).

Fig. 3. A generalized (5,2)-parenthesis diagram

Remark 3.1.3. By placing an (r, p)-parenthesis diagram, a, on top of an inverted (r, p)-
parenthesis diagram 6, and connecting the isolated points with non-intersecting vertical
edges, one obtains a generalised r-diagram with p vertical edges. Every generalised
r-diagram arises uniquely in this way. We denote the resulting generalised r-diagram
by |a)(6|. (Recall that the product |ai)(&i||a2)(&2| is some power of [2] times another
element | ) ( |

3.2. Connections with semistandard tableaux. We now show that generalised (r, p)-
parenthesis diagrams are in natural correspondence with semistandard tableaux with at
most two columns and r boxes in total, p of which are in the second column.

Definition 3.2.1. Let A E A(n,r). We define the ordered r-tuple l{\) of integers
(£(A)i,.. .,^(A)r) to be the unique weakly increasing sequence where the integer s
occurs Xs times.

Definition 3.2.2. We may identify an (r, p)-parenthesis diagram D with graph g and
label A with a pair consisting of a graph g and a function p : r -» n taking i to £(X)i.
We call p(i) the value of the ith point in the diagram D.

Note that points i and i +1 have the same value if and only if they are connected by
a flat edge.

Definition 3.23. We say point i of the diagram D is of type 2 if it is connected by a (flat
or horizontal) edge to a point to its left. Otherwise we say i is of type 7, which means
that it is isolated or connected by a (flat or horizontal) edge to a point to its right.

Proposition 3.2.4. Let D be a generalised (r, p)-parenthesis diagram. Let T& be the
unique column-standard tableau with two columns and r boxes in total, p of which are
in the second column, satisfying the conditions that the ath column ofTj) consists of
the family p(i) as i ranges over points of D of type a. Then TQ is semistandard and
every semistandard tableau with at most two columns arises from a unique generalised
(r, p)-parenthesis diagram in this way.
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Example3.2.5. Let n = 6, r = 5, A = (1,0,1,2,0,1). Then (̂A) = (1,3,4,4,6) and
W\ = ((3,4)). (Recall that W\ is the stabiliser of £(X) and not of A.) Now consider the
diagram D shown in Fig. 3. Points 4 and 5 are of type 2, and the others are of type 1.
This corresponds to the semistandard tableau T& given by

1
3
4

4
6

Proof of Proposition 3.2.4. Let D b e a generalised (r, p)-parenthesis diagram. After
replacing the flat edges with normal horizontal edges, this corresponds to a parenthesis
diagram in the sense of [12] together with a function p as in Definition 3.2.2. Using
Westbury's correspondence [12, Sect. 2] between parenthesis diagrams and standard
tableaux with at most two columns and p boxes in the second column, we obtain a
standard tableau together with the function p. We now relabel the entries of the tableau
by replacing i with p(i). We claim this is semistandard. The fact that the rows are weakly
increasing follows from the monotonicity of p. The only possible problem is that we
have a repeated entry in one of the columns. This cannot happen because if there are
two points with the same value in the diagram £>, one must be of type 1 and the other
of type 2.

The inverse of the above correspondence can be described as follows. Start with a
semistandard tableau T. There is a unique standard tableau V and a function p : r —> n
such that (a) T is the relabelling of T' by p (as above) and (b) if T has identical entries
in position a of column 1 and position b of column 2, then the entry in position a of
column 1 of T" is one less than the entry in position b of column 2 of T'. Referring to
Example 3.2.5, we would find that T" was equal to

1
2
3

1
2
4

4
5

3
5

rather than

We then form the parenthesis diagram corresponding to T" as described by Westbury.
If points i and i + 1 are connected whenever (i, i + 1) E W\ (where A is such that £(\)
corresponds to /?), then we are done since we can flatten all the relevant edges. This is
indeed the case; if (i, i +1) G W\ then p(i) = p(i + 1) which means that point i +1 is the
right endpoint of an edge and point i is the left endpoint of an edge. It follows by the
non-intersection condition that they must therefore be joined. This completes the proof.
D

Remark. Notice that the set of basis elements of Q(n, r) corresponding to pairs of
standard rather than semistandard tableaux is canonically isomorphic to the Temperley-
Lieb algebra TLr of type A.

3.3. The Cellular Structure ofQ(n, r). We recall the definition of a cellular algebra from
[7, Sect. 1].
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Definition 33.1. (Graham, Lehrer) Let R be a commutative ring with identity. A
cellular algebra over R is an associative unital algebra, A, together with a cell datum
(A, M,C\*) where

1. A is a poset. For each A G A, M (A) is a finite set (the set of tableaux of type X) such
that

C : ] J (M(A) x M(A)) -> A

is injective with image an R-basisofA.
2. If\eAandS,Te M(A), we write C(S, T) = C% T G A. Then * is an R-linear

involutory anti-automorphism of A such that (Cg T)* = Cj, s.
3. IfXeAandS.Te M (A), then for alia G A we have

p A ) ,
S'€M(A)

where ra{S\ S) G R is independent ofT and A« A) is the R-submodule of A
generated by the set

{C$,l%Tu : ii < A, S" G MOO, T" G MOi)}.

Proposition 33.2. Let R be the subring Z[t,t~l] of A, where t = [2]. Let A1 be the
set of integers from Oto [|J inclusive, ordered by the reverse of the usual order on the
integers. For p G A', let M(p) be the set of generalised (r,p)-parenthesis diagrams.
Let * be the anti-automorphism of'Q(n, r) corresponding to top-bottom inversion of the
diagrams. Let C be the map taking two generalised (r, p) diagrams with the same value
ofp to a generalised r-diagram as explained in Remark 3.1.3.

Then, working over R, Q(n, r) is a cellular algebra with cell datum (A', M, C, *).

Proof The fact that all the axioms are satisfied follows easily from the definition of
Q(n,r). D

Corollary 3 3 3 . The algebra Q(n, r) is quasi-hereditary.

Proof Note that the element A = A* in A(n, r) given by

r-2k

gives rise to the basis element (%*x of Q(n, r), where w+ is the longest element in W\.
This is idempotent and corresponds to an element in the cell labelled by k G A', and
this phenomenon occurs for all k. It follows from [7, Remark 3.10] that Q(n, r) is
quasi-hereditary. •
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4. Connections with Lusztig's Canonical Bases

In this section we take the base ring of Q(n, r) to be a field, K, containing Z[t], where
t = [2], unless otherwise stated.

4.1. The cell modules for Q(n, r). We now describe the cell representations (in the sense
of [7, Sect. 2]) for Q(n, r) in terms of the calculus of generalised (r, p)-diagrams.

Associated with the p*" cell module we have a bilinear form <j)p(x, y) as follows.

Definition 4.1.1. Let x and y be generalised (r, p)-parenthesis diagrams. Then we
define a bilinear form <j>p on W(p) by the condition that <j>p(x, y) is the coefficient of
\a)(b\ in \a)(x\\y)(b\. We willalso write (x, y)for</>p(x, y).

Remark. Such a bilinear form <f> is a standard feature of cellular algebras: see [7,
Definition 2.3]. It follows from that theory that <f>p(x, y) does not depend on a or 6.

Definition 4.1.2. Let p e A1. We define the p t h cell module W(p) to be the span of all
the generalised (r, p)-parenthesis diagrams with left Q(n^ r)-action given by

\.c = <j>p(b,c)a.

We define the p*" cell representation to be that afforded by the p"1 cell module.

Remark. The fact that this is well-defined follows from Axiom 3 of Definition 3.3.1 and
Proposition 3.3.2.

Definition 4.13. We write rad(p)for the subspace of the p"1 cell module given by

{x e W(p) : <j>p(x, y) = 0 for all y£Wp}.

Remark. The theory of cellular algebras shows that rad(p) is a submodule of W(p).

Proposition 4.1.4. The set of all W(p)/rad(p), where p E A' is a set of (nontrivial)
pairwise nonisomorphic absolutely irreducible modules for Q(n, r) over afield.

Proof. Recall from the proof of Corollary 3.3.3 that for each k G A! there exists an
idempotent C^x E Q(n, r) which we shall denote by |4c)(4c|, where tk is a certain
generalised (r, fc)-diagram. (In fact, £(k) is the diagram with label A whose graph has
k flat edges on the left and no other edges.) Since this element is idempotent it follows
that (£k ,£k) is nonzero, and thus that <j>k is nonzero. The proof now follows from [7,
Theorem 3.4]. •

4.2. Compatibility with Lusztig 's Canonical Basis. The next aim is to show that the basis
of generalised (r, p)-diagrams for W(p) is, under suitable identifications, the same as
Lusztig's canonical basis.

Let us now assume that the field K is of characteristic 0 and contains the indetermi-
nate v, and hence the field Q(v). We regard W(p) as a module for the g-Schur algebra
Sq(n, r)K over the field K in the obvious way (recall that Q(n, r) was defined as a
quotient of Sq (n, r)).



A Diagram Calculus for Certain Canonical Bases 529

Lemma 4.2.1. Letpe A!. Let fi e A(n, r) be the weight

P r-2p

Then in the notation of [5], W(p) is canonically isomorphic to V(fi).

Proof. So long as we keep v as an indeterminate, [5, Sect. 1.3] tells us that the g-Weyl
module Vfyi) is an irreducible module for Sq(n, r)K of highest weight \i. The weights of
the modules W(p) are the elements of A(n, r) associated to the diagram basis elements.
They are also the contents of semistandard tableaux of shape /*, which means that the
most dominant weight is /i and the unique basis element of W(p) of this weight is £p

(in the notation of the proof of Proposition 4.1.4). Proposition 4.1.4 now implies that
V(JA) is a quotient of W(p\ but the semistandard basis theorem for g-Weyl modules
(see e.g. [5, Theorem 1.5]) implies that the dimension of both modules is the number of
semistandard tableaux of shape /i. Thus we have equality, as required. D

Corollary 4.2.2. The module W(p) is irreducible.

Proof. The dimension argument above forces rad(p) = 0, and the conclusion follows
from Proposition 4.1.4. D

Theorem 4.2.3. The basis of generalised diagrams for W(jp) agrees with Lusztig 's
canonical basis for V(fi).

Proof. It is explained in [5, Theorem 4.6] that Lusztig's canonical basis for V(ii)
(regarded as a module for U(sln)) is the same as Du's canonical basis for V(fi) (regarded
as a module for Sq(n, r)).

Let VQ be a highest weight vector in V(fi) (which defines vo up to nonzero scalar
multiples). By Lemma 4.2.1, we may choose vo to be the diagram £p. Then Du's
canonical basis for V(n) is given (see [5, Theorem 4.6]) by the elements

It follows that the required elements 0 are those that map to elements C £ Q(n, r), where
£ is of form \x)(£p \ for a generalised (r, p)-parenthesis diagram x. Thus the generalised
(r, p)-parenthesis diagrams coincide with the canonical basis. D

4.3. Action of the generators ofU on the diagrams. An important part of the representa-
tion theory of quantized enveloping algebras is their so-called highest weight modules,
such as the module Vfyi) in Sect. 4.2, which was generated as a {7(s/n)-module by the
vector vo. It is well-known that a highest weight module for a quantized enveloping
algebra is generated by vo as a [7""(s/n)-module, where U~ = U~(sln) is the subal-
gebra of U(sln) generated by the generators f \ , . . . , fn-\- For this reason it is helpful
to describe the action of / , on the module W(p). (We do not tackle the case of the
action of the generators e, of U+(sln)9 but this can be understood with exactly parallel
techniques.)

Definition 43.1. Let fi £ A(n, r). If ^ > 0, we define p~(i) to be the element ofX of
A{n,r) satisfying

A, = /x» — 1 ,

At+i = /i,+i + l,

\k = pk otherwise.
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Definition 43.2. LetXe A(n, r) be such that A, < 2 for all i, and let p be the number
of\i equal to 2. Let W\ be the associated Weyl group. We define the generalised (r, p)-
parenthesis diagram £\ to be that with label A and diagram D, where points i and j are
joined by a (flat) edge if and only ifj = i + 1 and (i, i + 1) G W\.

It was known ([1, Sect. 5.7], [4]) that the image of / , under the homomorphism ny
from U to Sq(n, r) is given by

where u>(A, /i) is the longest element in the double coset W\lWp and the sum is taken
over all fi E A(n, r) for which yT (i) makes sense.

If we then project 7rr(/,) to Q(n, r) in the natural way and act it on the left on a
diagram element of W(p) (for some p) with label /i, at most one term ^-/i

(j)
(^)/i) will

survive. (This follows from a simple argument based on the weight spaces of the g-Schur
algebra.) Provided one term does survive, it is convenient to classify the situation as
"case 1, 2, 3 or 4" according to which of the conditions below is satisfied by /z:

l*i = 2, iiM = 0, (1)
/ii=2, /ii+i = l, (2)

/i, = 1, /i,+i=0, (3)

l. (4)

If all the terms map to zero, we say we are in "case 0".

Definition 433. Suppose i and fi are such that we are in case 1, 2,3 or 4 above. Let D
be the generalised r-diagram | ^ ) (^ t | whose graph is g. Define the integers a and b by

and

This means that points a, a + 1 , . . . , 6 are precisely those points.in the diagram for
£fji with value iori + 1. Note that no point in the vertical strip of g containing points
a, a + 1 , . . . , b in the top and bottom rows is connected to any point outside this strip.

We define a generalised r-diagram fi(fi) with pair (/i~ (i), fi) by replacing the strip
from point a to point b (inclusive) in the graph g in thefollowing ways:

Case 1. Here b = a + 1. We change the flat edge between points a and b in the top row
of D to a horizontal edge.

Case 2. Here b = a + 2. Keep the flat edge joining points a and a + 1 in the bottom row
where it is, but remove the other edges. Join points a + 1 and a+ 2 in the top row
with aflat edge, and connect point a in the top row with point a+ 2 in the bottom
row with a vertical edge.

Case 3. Here 6 = a. The graph g remains unchanged; only the labels change.
Case 4. Here b = a + 1. Remove the two vertical edges linking the points labelled a

and b. Join points a and b in the top row with aflat edge, and points a and b in the
bottom row with a horizontal edge.
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Proposition 43*4. Regard the set of generalised (r, p)-parenthesis diagrams as Lusztig ys
canonical basis for V(fi) as in Theorem 4.2.3. Then the left action offo on a diagram d
ofWip) with label /i is given by the (usual) left action offi(fi) on d, iffi(fi) is defined,
and zero otherwise.

Proof. By projecting / , to Sq(n, r) using 7iy and then to Q(n, r) by taking the image
after quotienting by / , one can easily check that Definition 4.3.3 makes this action
compatible with the action of / , on Lusztig's canonical basis. •

Remark. As was mentioned before, the case of the generators et is very similar; es-
sentially all that happens is that the diagrams produced in Definition 4.3.3 come out
upside-down.

It is possible in theory to describe the action of the / , on the basis elements para-
metrised by tableaux instead of generalised (r, p)-parenthesis diagrams, but this is much
less enlightening.

We conclude with an example in the case n = 5, r = 5, p = 3.

Example 4.3.5. Let A = (2,2,1,0,0) and // = (1,2,1,0,1). Consider the canonical
basis element of V(\) given by diagram in Fig. 4, or by the tableau

1
2
5

2
3

Then the action of /2 falls into case 2 and is given by left multiplication by the
element shown in Fig. 5, where /i~(2) = (1,1,2,0,1).

Fig. 4. Module basis element before the action of h

Fig. 5. Generalized r-Diagram corresponding to fi

Fig. 6. Module element after the action of {i
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The result of the action is the basis element shown in Fig. 6, which corresponds to
the tableau

1
3
5

2
3

4.4. Remarks on the case n < r.. Finally we consider Q(n, r), where n < r. Let us fix
N > r. Note that there is a natural embedding i of yl(n, r) into J4(JV, r) which sends
A € A(n, r) to A', where A( = A, if i < n, and A( = 0 otherwise.

Proposition 4.4.1. The algebra Q(n, r) is canonically isomorphic to the subalgebra of
Q(N, r) spanned by basis elements £J , where A and p are of the form L{\\) and t(p,\)
respectivelyf for some \\,ii\ E A(n, r].

Proof. This is immediate from the fact that the .4-linear map sending 0 ^ •-> 0^X)l{^
is an algebra monomorphism, which is an easy consequence of the definition of the 6
basis. D
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