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On families between the Hardy-Littlewood and
spherical maximal functions

Georgios Dosidis and Loukas Grafakos

Abstract. We study a family of maximal operators that provides a continuous link con-
necting the Hardy-Littlewood maximal function to the spherical maximal function. Our theorems
are proved in the multilinear setting but may contain new results even in the linear case. For this
family of operators we obtain bounds between Lebesgue spaces in the optimal range of exponents.

Introduction

Spherical averages arise naturally in PDE but Lp bounds for maximal spherical
averages were first obtained by Stein [24], who showed that the spherical maximal
function

(1) S(f)(x) := sup
t>0

1
ωn−1

∫
Sn−1

|f(x−tθ)| dσn−1(θ)

is bounded from Lp(Rn) to Lp(Rn) when p> n
n−1 and n≥3 and is unbounded when

p≤ n
n−1 and n≥2. The positive direction of this result was later extended to the case

n=2 by Bourgain [4]. Here dσn−1 is the canonical surface measure on the sphere
and ωn−1 is the measure of the entire unit sphere. A number of other authors have
also studied the spherical maximal function; see for instance [6], [7], [20] and [23].
Extensions of the spherical maximal function to different settings have also been
considered; see [5], [9], [14] and [19].

The boundedness of the maximal operator S in [24] was obtain via the auxiliary
family of operators

(2) Sα(f)(x)= sup
t>0

2
ωn−1B(n2 , 1−α)

∫
Bn

|f(x−ty)|(1−|y|2)−α dy,
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defined originally for Schwartz functions, where 0≤α<1. Here B
n is the unit ball

in Rn, B is the beta function defined by B(x, y)=
∫ 1
0 tx−1(1−t)y−1 dt for x, y>0.

For each 0<α<1, Stein obtained boundedness for the operator Sα from Lp to
itself in the optimal range of exponents: p> n

n−α , when n≥3. This was extended
to the case n=2 indirectly in [4] and more explicitly in [20]. In [16] the authors
obtained boundedness results for maximal operators associated to a more general
set of measures that includes the family Sα.

Recall another classical averaging operator, the Hardy-Littlewood maximal
function

M(f)(x)= sup
t>0

1
vn

∫
Bn

|f(x−ty)| dy.

Here f is a locally integrable function on Rn and vn is the volume of Bn.
The relationship between the aforementioned operators is as follows: The fam-

ily Sα provides a continuous link that connects M to S in the following explicit
way: For any f∈L1

loc(Rn) and any x∈Rn we have

M(f)(x)≤Sα(f)(x)≤S(f)(x),
lim

α→1−
Sα(f)(x)=S(f)(x),

lim
α→0+

Sα(f)(x)=M(f)(x).

These assertions are contained in Theorem 2 and are proved in the next section.
In this paper, we denote by dσˇ−1 the surface measure on unit sphere S

ˇ−1

in R
ˇ, vˇ the measure of the unit ball in R

ˇ and ωˇ−1=dσˇ−1(Sˇ−1) is the total
measure of Sˇ−1. Recall that ˇvˇ=ωˇ−1 for any integer ˇ≥2. We also use the
notation B

ˇ for the unit ball in R
ˇ and RB

ˇ for the ball of radius R>0 centered
at the origin in R

ˇ. The space of Schwartz functions on R
ˇ is denoted by S(Rˇ).

Our purpose is to study multilinear versions of S, Sα and of M . We define a
multi(sub)linear maximal operator as follows:

(3) Mm(f1, ..., fm)(x)= sup
t>0

1
vmn

∫
Bmn

m∏
i=1

|fi(x−tyi)| dy1...dym.

The uncentered version of this maximal operator first appeared in the work of
Lerner, Ombrosi, Perez, Torres, Trujillo-Gonzalez [18] with the unit cube in place
of the unit ball. Next, we introduce the family of operators

(4) Sm
α (f1, ..., fm)(x)= 2/ωmn−1

B(mn
2 , 1−α) sup

t>0

∫
Bmn

m∏
i=1

|fi(x−tyi)|
dy

(1−|y|2)α ,

defined initially for functions fi∈S(Rn) and 0≤α<1. This is a multilinear extension
of the operator Sα=S1

α introduced in (2).
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We recall the definition of the multilinear spherical maximal operator

(5) Sm(f1, ..., fm)(x)= sup
t>0

1
ωmn−1

∫
Smn−1

m∏
i=1

|fi(x−tθi)| dσmn−1(θ1, ..., θm),

given also for functions fi∈S(Rn). When m=1, Sm reduces to S in (1). The bilinear
analogue of Stein’s spherical maximal function (when m = 2) was first introduced
in [10] by Geba, Greenleaf, Iosevich, Palsson, and Sawyer who obtained the first
bounds for it but later improved bounds were provided by [3], [12], [15] and [17].
A multilinear (non-maximal) version of this operator when all input functions lie
in the same space Lp(R) was previously studied by Oberlin [21]. The authors in [3]
provided an example that shows that the bilinear spherical maximal function is not
bounded when p≥ n

2n−1 . Last year Jeong and Lee in [17] proved that the bilinear
maximal function is pointwise bounded by the product of the linear spherical max-
imal function and the Hardy-Littlewood maximal function, which helped them es-
tablish boundedness in the optimal open set of exponents, along with some endpoint
estimates. These results were extended to the multilinear setting in [8]. Recently
certain analogous bounds have been obtained by Anderson and Palsson in [1] and
[2] concerning a discrete version of the multilinear spherical maximal function.

We would like to extend the definitions of the operators in (4) and (5) to
functions in fi in L1

loc(Rn). Fix fi in L1
loc(Rn) and x∈Rn; then

(6) t �−→F (t)= tmn−1
∫
Smn−1

m∏
i=1

|fi(x−tθi)| dσmn−1(θ1, ..., θm)

is integrable over any interval [0, L], which implies that the integrals in (5) are finite
for almost all t>0. Likewise, if F is as in (6) and t∈(0, L), then

(7)
∫
Bmn

m∏
i=1

|fi(x−tyi)|
dy

(1−|y|2)α =
∫ 1

0

F (tr)
(1−r2)α

dr

tmn−1 ≤ 1
tmn−α

∫ L

0

F (s) ds
(t−s)α ,

and the last integral is the convolution (evaluated at t) of the L1 functions Fχ[0,L]
and s−αχ(0,L] on the real line, hence it is finite a.e. on (0, L). We conclude that
the integral in (4) is finite for almost all t>0 for fi∈L1

loc(Rn) and x∈Rn.
Now, one cannot properly define the supremum of a family {At}t>0 (At≥0)

which satisfies At<∞ for almost all t>0. But it is possible to define the essential
supremum of {At}t>0, which is practically the supremum restricted over the subset
of (0,∞) on which At<∞. So to extend the definitions of the operators in (5)
and (4) to functions fi∈L1

loc(Rn) for any x∈Rn by replacing the supremum in
these expressions by the essential supremum ess.sup. However, this adjustment
is not needed when fi∈Lpi(Rn) with

∑n
i=1

1
pi

= 1
p<

mn−α
n , since, in that case, the
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corresponding averages vary continuously in t. See Corollary 5 below. Based on
this discussion we provide the following definition.

Definition 1. Let t>0, fi∈L1
loc(Rn) for 1≤i≤m, and x∈Rn. We define

(8) Sm
α,t(f1, ..., fm)(x)= 2/ωmn−1

B(mn/2, 1−α)

∫
Bmn

m∏
i=1

fi(x−tyi)
dy

(1−|y|2)α

and

(9) Sm
α (f1, ..., fm)(x)= ess.sup

t>0
Sm
α,t(|f1|, ..., |fm|)(x)

for 0≤α<1. We also define

(10) Sm
1,t(f1, ..., fm)(x)= 1

ωmn−1

∫
Smn−1

m∏
i=1

fi(x−tθi) dσmn−1(θ1, ..., θm)

and

(11) Sm(f1, ..., fm)(x)= ess.sup
t>0

Sm
1,t(|f1|, ..., |fm|)(x).

In this paper we prove the following results:

Theorem 2. Let 0<α<1. Given fi∈L1
loc(Rn) and x∈Rn we have

Mm(f1, ..., fm)(x)≤Sm
α (f1, ..., fm)(x)≤Sm(f1, ..., fm)(x)(12)

lim
α→1−

Sm
α (f1, ..., fm)(x)=Sm(f1, ..., fm)(x)(13)

lim
α→0+

Sm
α (f1, ..., fm)(x)=Mm(f1, ..., fm)(x).(14)

These statements are valid even when some of the preceding expressions equal ∞.

As Mm is pointwise controlled by the product of the Hardy-Littlewood opera-
tors acting on each function, this operator is bounded from Lp1(Rn)×...×Lpm(Rn)
to Lp(Rn) in the full range of exponents 1<p1, ..., pm≤∞ and 1/p1+...+1/pm=1/p.
Boundedness for Sm holds in the smaller region n/(mn−1)<p≤∞ as shown in [8].
So it is expected that Sm

α are bounded in some intermediate regions. This is the
content of the following result.

Theorem 3. Let n≥2, 0≤α<1, and 1<pi≤∞. Define p by
∑m

i=1
1
pi

= 1
p . Then

there is a constant C=C(m,α, p1, ..., pm) such that

(15) ‖Sm
α (f1, ..., fm)‖Lp(Rn) ≤C

m∏
i=1

‖fi‖Lpi (Rn)

for all fi∈Lpi(Rn) if and only if

n

mn−α
<p≤∞.
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Figure 1. Range of Lp1×Lp2→Lp boundedness of S2
α when 0≤α≤ 1 and n≥2. The bilinear

spherical maximal function is bounded below the black dotted line, while the bilinear Hardy-
Littlewood maximal function is bounded on the entire square.

Moreover, if (15) holds, then the constant C can be chosen to be independent of the

dimension (as indicated by the parameters on which it is claimed to depend).

We graph the range of boundedness for the bilinear operator S2
α.

Remark 4. As a consequence, we obtain dimensionless Lp1×...×Lpm→Lp

bounds for the multilinear maximal function Mm for all 1
m<p≤∞; this extents the

result of Stein and Strömberg [26] to the multilinear setting.

The estimates in (15) imply that when fi∈Lpi(Rn) with
∑n

i=1
1
pi

= 1
p<

mn−α
n ,

then for almost all x∈Rn, Sm
α,t(f1, ..., fm)(x) are finite uniformly in t>0.

Corollary 5. Let 0≤α≤1 and suppose that for all 1≤i≤m, fi∈Lpi(Rn) where
1<pi≤∞ satisfy

∑m
i=1

1
pi

= 1
p<

mn−α
n . Then for almost every x in R

n, the function

t �→Sm
α,t(f1, ..., fm)(x) is well defined and continuous in t∈(0,∞). Therefore in Defi-

nition 1, for almost all x∈Rn, we can replace the essential supremum by a supremum

in both (9) and (11).

Corollary 6. Let 0≤α≤1 and suppose that for all 1≤i≤m, fi∈Lpi

loc(Rn) where
1<pi≤∞ satisfy

∑m
i=1

1
pi

= 1
p<

mn−α
n . Then for almost every x∈Rn,

(16) lim
t→0

Sm
α,t(f1, ..., fm)(x)= f1(x)...fm(x).

Parts of Theorem 2 may be new even when m=1. Theorem 3 is only new when
m≥2 as the case m=1 was considered in [24]. The proofs of these theorems can be
suitably adapted to the measures

q

B(mn/q, 1−α)
d�y

(1−|�y |q)α
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for any q>0 in lieu of
2

B(mn
2 , 1−α)

d�y

(1−|�y |2)α

in (4). To simplify the notation in our proofs, we adopt the following conventions:

�y=(y1, ..., ym)∈(Rn)m [�f ]=(f1, ..., fm)
d�y=dy1...dym (f1⊗...⊗fm)(�y )=f1(y1)...fm(ym)
�θ=(θ1, ..., θm)∈Smn−1 ⊗�f=f1⊗...⊗fm
x=(x, ..., x)︸ ︷︷ ︸

m times

∈(Rn)m |⊗�f |=|f1|⊗...⊗|fm|

Two main ideas are used in the proof of Theorem 2; integration by parts and
the fundamental theorem of calculus, both with respect to the radial coordinate.
Theorem 3 is based on a slicing formula that allows us to control Sm

α by the product
of the Hardy-Littlewood maximal operators acting on m−1 input functions and of
Sα (defined in (2)) acting on the remaining function. This gives estimates near the
vertices of the region on which boundedness is claimed, while the remaining bounds
are obtained by multilinear interpolation.

The proof of Theorem 2

Before we discuss the proof of Theorem 2 we note that when α=0, equality
holds in the first inequality in (12), since

ωmn−1

2 B
(mn

2 , 1
)

= ωmn−1

2
2
mn

= vmn.

That is, Mm[�f ](x)=Sm
0 [�f ](x). In fact (12) is valid even when α=0, since

Mm[�f ](x)=Sm
0 [�f ](x) = sup

t>0

1
vmn

∫ 1

0

∫
Smn−1

|⊗�f |(x−tr�θ ) dσmn−1(�θ )rmn−1 dr

≤ 1
vmn

∫ 1

0
sup
t′>0

∫
Smn−1

|⊗�f |(x−t′�θ ) dσmn−1(�θ )rmn−1 dr

=mnSm[�f ](x)
∫ 1

0
rmn−1 dr

=Sm[�f ](x).

Proof of Theorem 2. First we show that for any 0<α<1 we have Sm
α [�f ](x)≤

Sm[�f ](x) for any x∈Rn. Indeed, we have

1
ωmn−1

2
B(mn

2 , 1−α) ess.sup
t>0

∫
Bmn

|⊗�f |(x−t�y )(1−|�y |2)−α d�y
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≤ 1
ωmn−1

2
B(mn

2 , 1−α)

∫ 1

0

rmn−1

(1−r2)α ess.sup
t>0

∫
Smn−1

|⊗�f |(x−rt�θ ) dσmn−1(�θ ) dr

≤ 1
ωmn−1

2
B(mn

2 , 1−α)

( ∫ 1

0

rmn−1

(1−r2)α dr

)
ess.sup

t′>0

∫
Smn−1

|⊗�f |(x−t′�θ ) dσ(�θ )

=Sm[�f ](x),

as the r integral in the parenthesis is equal to 1
2B(mn

2 , 1−α). This concludes the
proof of the second inequality in (12).

Next we prove the first inequality in (12). That is, for a fixed x∈Rn and 0<α<

1, we show that Mm[�f ](x)≤Sm
α [�f ](x). If for some x∈Rn we had Mm[�f ](x)=∞,

we would also have that Sm
α [�f ](x)=∞ as (1−|�y |2)−α≥1 when |�y |<1. So we may

assume that Mm[�f ](x)<∞ in the calculation below. For fixed t>0 we define

Ht(r)=
∫ r

0
smn−1

( ∫
Smn−1

|⊗�f |(x−ts�θ ) dσ(�θ )
)
ds=

∫
|�y |≤r

|⊗�f |(x−t�y ) d�y,

for r>0. As each fj is locally integrable, the integral on the right converges abso-
lutely, and thus the expressions in the parentheses are finite for almost all s>0 and
moreover, the s-integral converges absolutely. Thus Ht(r) is the integral from 0 to
r of an L1 function. Then, the Lebesgue differentiation theorem gives

d

dr
Ht(r)=H ′

t(r)= rmn−1
∫
Smn−1

|⊗�f |(x−tr�θ ) dσ(�θ ) for almost all r > 0.

Moreover, for any r>0 we have

ess.sup
t>0

1
vmnrmn

Ht(r)= ess.sup
t>0

1
vmn

Hrt(1)= ess.sup
t′>0

1
vmn

Ht′(1)=Mm[�f ](x)<∞,

where in the last equality we replaced the essential supremum by the supremum,
using the continuity of the function

t �−→Mm
t (f1, ..., fm)(x)= 1

vmn

∫
Bmn

m∏
i=1

|fi(x−tyi)| dy1...dym,

for any fi∈L1
loc(Rn), which can be obtained by an application of the Lebesgue

dominated convergence theorem. Let

cmn,α = 2
ωmn−1B(mn

2 , 1−α) .
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For any 0<b<1 we write

Sm
α [�f ](x)

≥ ess.sup
t>0

cmn,α

∫ b

0
H ′

t(r)
1

(1−r2)α dr

=ess.sup
t>0

cmn,α

[
Ht(b)

1
(1−b2)α −

∫ b

0
Ht(r)

−2αr
(1−r2)α+1 dr

]

≥ ess.sup
t>0

cmn,α

[
Ht(b)

1
(1−b2)α −

∫ b

0
Mm[�f ](x) −2αr

(1−r2)α+1 vmnr
mn dr

]

= cmn,α

[
Mm[�f ](x) vmnb

mn

(1−b2)α −
∫ b

0
Mm[�f ](x) −2αr

(1−r2)α+1 vmnr
mn dr

]

= cmn,αM
m[�f ](x)vmn

[
bmn

(1−b2)α −
∫ b

0

−2αr
(1−r2)α+1 r

mn dr

]

= cmn,αM
m[�f ](x)vmn

[
mn

∫ b

0
(1−r2)−αrmn−1 dr

]
,

where all the previous steps make use of the assumption that Mm[�f ](x)<∞. Let-
ting b→1− we obtain the first inequality in (12). So we established both inequalities
in (12) for fi∈L1

loc(Rn).

Our next goal is to show that

(17) lim
α→1−

Sm
α [�f ](x)≥Sm[�f ](x),

where lim denotes the limit inferior. Let us fix fj in L1
loc(Rn) and x∈Rn. We define

G�f (t)=
∫
Smn−1

|⊗�f |(x−t�θ ) dσmn−1(�θ ).

We observed earlier that for any L<∞ we have∫ L

0
tmn−1G�f (t) dt≤

m∏
i=1

∫
(|x|+1)Bn

|fi(yi)| dyi <∞

thus G�f (t)<∞ for almost all t>0. So let us fix a t>0 for which G�f (t)<∞. For
this t we will show that

(18) lim
α→1−

∫ 1

0
G�f (rt)2rmn−1(1−r2)−α

B(mn
2 , 1−α) dr=G�f (t).
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Once (18) is shown, we deduce

lim
α→1−

sup
t′>0

∫ 1

0
G�f (rt′)2rmn−1(1−r2)−α

B(mn
2 , 1−α) dr≥G�f (t)

and taking the supremum on the right over all t>0 for which G�f (t)<∞, yields (17).
Notice that the supremum over these t’s is the essential supremum which appears
in the definition of this operator.

To prove (18), it will suffice to show that

(19) lim
α→1−

∫ 1

0

∣∣G�f (rt)−G�f (t)
∣∣2rmn−1(1−r2)−α

B(mn
2 , 1−α) dr=0.

For smooth functions with compact support ϕi we have

(20) lim
α→1−

∫ 1

0

∣∣G!ϕ (rt)−G!ϕ (t)
∣∣2rmn−1(1−r2)−α

B(mn
2 , 1−α) dr=0

as∣∣∣∣ m∏
i=1

∣∣∣ϕi(x−rtθi)
∣∣∣− m∏

i=1

∣∣∣ϕi(x−tθi)
∣∣∣∣∣∣∣≤

∣∣∣∣ m∏
i=1

ϕi(x−rtθi)−
m∏
i=1

ϕi(x−tθi)
∣∣∣∣≤C t(1−r)

and this factor cancels the singularity of (1−r2)−α while limα→1− B(mn
2 , 1−α)=

+∞.
Let us suppose that 0<ε<1 is given. For our given fi∈L1

loc(Rn), fixed t>0,
and x∈Rn, we pick ϕi smooth functions with compact support such that

‖fi−ϕi‖L1(( 1
t +1)(|x|+1)Bn) ≤ ε.

This implies that

(21)
∥∥f1⊗...⊗fm−ϕ1⊗...⊗ϕm

∥∥
L1(( 1

t +1)(|x|+1)Bmn) ≤C ′ε,

where

(22) C ′ =
m∑
i=1

∏
1≤j≤m

j �=i

(
‖fj‖L1(( 1

t +1)(|x|+1)Bn)+1
)
,

using the identity (valid for complex numbers ai, bi)

(23) a1a2...am−b1b2...bm =
m∑
i=1

b1...bi−1(ai−bi)ai+1...am.

In view of (20), the proof of (19) will be a consequence of the estimate:

(24)
∫ 1

0

∣∣Q(�f, !ϕ, tr, t)
∣∣2rmn−1(1−r2)−α

B(mn
2 , 1−α) dr≤C ′′ε
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where
Q(�f, !ϕ, tr, t)=

(
G�f (rt)−G�f (t)

)
−

(
G!ϕ (rt)−G!ϕ (t)

)
.

Notice that this function is integrable in r over [0, 1]. Thus the fundamental theorem
of calculus applies, in the sense that rKQ(�f, !ϕ, tr, t)= d

dr

∫ r

0 sKQ(�f, !ϕ, ts, t) ds for
almost all r in [0, 1]. (K here is a fixed positive power.)

For any 0<b<1 we have
∫ b

0

∣∣Q(�f, !ϕ, tr, t)
∣∣2rmn−1(1−r2)−α

B(mn
2 , 1−α) dr

=
∫ b

0

d

dr

∫ r

0
smn−1∣∣Q(�f, !ϕ, ts, t)

∣∣ ds 2(1−r2)−α

B(mn
2 , 1−α) dr

=
( ∫ b

0
smn−1∣∣Q(�f, !ϕ, ts, t)

∣∣ ds) 2(1−b2)−α

B(mn
2 , 1−α)

−
∫ b

0

( ∫ r

0
smn−1∣∣Q(�f, !ϕ, ts, t)

∣∣ ds)2(−2αr)(1−r2)−α−1

B(mn
2 , 1−α) dr

≤
( ∫ 1

0
smn−1∣∣Q(�f, !ϕ, ts, t)

∣∣ ds)[
2(1−b2)−α

B(mn
2 , 1−α)−

∫ b

0

2(−2αr)(1−r2)−α−1

B(mn
2 , 1−α) dr

]

=
( ∫ 1

0
smn−1∣∣Q(�f, !ϕ, ts, t)

∣∣ ds)[ ∫ b

0

2(1−r2)−α

B(mn
2 , 1−α) dr

]

≤
( ∫ 1

0
smn−1∣∣Q(�f, !ϕ, ts, t)

∣∣ ds)[ ∫ b

0

2(1−r)−α

B(mn
2 , 1−α) dr

]

≤
∫ 1

0
smn−1∣∣Q(�f, !ϕ, ts, t)

∣∣ ds 2mn−1,

as (1−α)B(mn, 1−α) is bounded from below by some constant C ′(mn). It remains
to show that the integral

∫ 1

0
smn−1∣∣Q(�f, !ϕ, ts, t)

∣∣ ds
is bounded by a constant multiple of ε. But this integral is controlled by

∫
Bmn

∣∣∣∣∣∣∣ m∏
i=1

fi(x−tyi)
∣∣∣−∣∣∣ m∏

i=1
ϕi(x−tyi)

∣∣∣∣∣∣∣ d�y
+

∫
Bmn

∣∣∣∣∣∣∣ m∏
i=1

fi(x−yi)
∣∣∣−∣∣∣ m∏

i=1
ϕi(x−yi)

∣∣∣∣∣∣∣ d�y
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which, in turn, is bounded by∫
Bmn

∣∣∣∣ m∏
i=1

fi(x−tyi)−
m∏
i=1

ϕi(x−tyi)
∣∣∣∣ d�y+

∫
Bmn

∣∣∣∣ m∏
i=1

fi(x−yi)−
m∏
i=1

ϕi(x−yi)
∣∣∣∣ d�y.

Then using (23) we obtain that the preceding expression is bounded by 2C ′ε, where
C ′ is as in (22). This proves (24), which as observed earlier, implies (17).

Finally, we prove (14). To do this, in view of (12), we fix x in R
n and fi in

L1
loc(Rn). It will suffice to show that

(25) lim
α→0+

Sm
α [�f ](x)≤Mm[�f ](x).

For t>0 we set

Kt(α)= 2
ωmn−1B(mn

2 , 1−α)

∫
Bmn

%|f |(x−t�y )(1−|�y |2)−α d�y .

Since we are taking the limit as α→0+ we may consider α<1/2. By the triangle
inequality, for 0<α<1/2 we have

(26) Kt(α)≤Kt(0)+
∣∣Kt(α)−Kt(0)

∣∣≤Kt(0)+α sup
0≤β≤1/2

|K ′
t(β)|,

where we denoted by K ′
t(β) the derivative of Kt with respect to β. Let us tem-

porarily assume that fi are bounded functions. Fix 0≤β≤1/2. We write

|K ′
t(β)|= 2/ωmn−1

B
(
mn
2 , 1−β

)2

∣∣∣∣B (mn

2 , 1−β
) ∫

Bmn

|⊗�f |(x−t�y )
(

ln 1
1−|�y |2

) d�y

(1−|�y |2)β

−
(

d

dβ
B

(mn

2 , 1−β
)) ∫

Bmn

|⊗�f |(x−t�y )(1−|�y |2)−β d�y

∣∣∣∣
≤ 2

∏m
i=1 ‖fi‖L∞

B
(
mn
2 , 1−β

) ∫ 1

0
(1−r2)−βrmn−1

(
ln 1

1−r2

)
dr

+
2

∏m
i=1 ‖fi‖L∞

B
(
mn
2 , 1−β

)2

( ∫ 1

0
s−β

(
ln 1

s

)
(1−s)mn

2 −1 ds

)
1
2B

(mn

2 , 1−β
)

≤ 2
∏m

i=1 ‖fi‖L∞

B(mn
2 , 1)

[ ∫ 1

0
(1−r2)− 1

2 rmn−1
(

ln 1
1−r2

)
dr

+ 1
2

∫ 1

0
s−

1
2

(
ln 1

s

)
(1−s)mn

2 −1 ds

]
=C�f,mn,
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where we used that 0≤β≤1/2 and that∣∣∣∣ d

dβ
B

(mn

2 , 1−β
)∣∣∣∣=

∫ 1

0
s−β

(
ln 1

s

)
(1−s)mn

2 −1 ds≤
∫ 1

0
s−

1
2

(
ln 1

s

)
(1−s)mn

2 −1 ds.

Taking the essential supremum in (26) with respect to t>0, we conclude for
α<1/2 that

Sm
α [�f ](x)≤Mm[�f ](x)+αC�f,mn.

Therefore for every x∈Rn we obtain

lim
α→0+

Sm
α [�f ](x)≤Mm[�f ](x),

under the assumption that fi are bounded functions. We now remove this assump-
tion on the fi. Given fi in L1

loc(Rn), define fk
i =fiχ|fi|≤k, k=1, 2, 3, .... Then

|f1
i | ≤ |f2

i | ≤ |f3
i | ≤ ...≤ |fi|,

|fk
i |↑|fi| as k→∞, and the functions fk

i are bounded. Let [%fk ]=(fk
1 , ..., f

k
m). For

each k=1, 2, 3, ... and each t>0 the monotonicity of Sm
α in each variable and the

preceding argument for bounded functions give

lim
α→0+

Sm
α [�f ](x)≥ lim

α→0+
Sm
α [%fk ](x)≥

2ω−1
mn−1

B(mn
2 , 1−α)

∫
Bmn

m∏
i=1

|fk
i (x−tyi)|

dy

(1−|y|2)α .

Ignoring the middle term and letting k→∞ we obtain

lim
α→0+

Sm
α [�f ](x)≥

2ω−1
mn−1

B(mn
2 , 1−α)

∫
Bmn

m∏
i=1

|fi(x−tyi)|
dy

(1−|y|2)α

via the Lebesgue monotone convergence theorem. Taking the essential supremum
over all t>0 yields inequality (25), and thus concludes the proof of (14). �

The proof of Theorem 3

Proof of Theorem 3. For any 0≤α<1, we prove that the estimate

(27) Sm
α (f1, ..., fm)(x)≤Sα(fk)(x)

∏
i �=k

M(fi)(x),

is valid for all fi∈L1
loc(Rn) and all x∈Rn, where Sα is defined in (2) and M is the

Hardy-Littlewood maximal operator on R
n. For any fixed t>0, we set

Sm
α,t(f1, ..., fm)(x)= cmn,α

∫
Bmn

m∏
i=1

|fi(x−tyi)|(1−|y|2)−α dy

where cmn,α=2/(ωmn−1B(mn/2, 1−α)).
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For yi∈Rn we set

y=(y1, ..., ym) and ŷk =(y1, ..., yk−1, yk+1, ..., ym).

Then for a fixed k∈{1, 2, ...,m} we have

c−1
mn,α Sm

α,t(f1, ..., fm)(x)

=
∫
Bmn

m∏
i=1

|fi(x−tyi)|(1−|y|2)−α dy

=
∫
B(m−1)n

∫
√

1−|ŷk|2Bn

m∏
i=1

|fi(x−tyi)| (1−|ŷk|2)−α

(
1−

∣∣∣ yk√
1−|ŷk|2

∣∣∣2)−α

dyk dŷk

=
∫
B(m−1)n

∏
i �=k

|fi(x−tyi)|
∫
Bn

|fk(x−t
√

1−|ŷk|2uk)| (1−|ŷ
k|2)n

2 −α

(1−|uk|2)α duk dŷk

≤
∫
B(m−1)n

∏
i �=k

|fi(x−tyi)| ess.sup
t>0

∫
Bn

|fk(x−tuk)|(1−|uk|2)−α duk dŷk

(1−|ŷk|2)α−n
2

≤ c−1
n,α Sα(fk)(x)·sup

t>0

∫
B(m−1)n

∏
i �=k

|fi(x−tyi)| dŷk

(1−|ŷk|2)α−n
2
,

with cn,α=2/(ωn−1B(n/2, 1−α)).
Next, we use the following fact concerning multilinear approximate identities:

Suppose that φ:Rˇn→C has an integrable radially decreasing majorant Φ, and let
φt(�y )=t−ˇnφ(�y/t). If ∗ denotes convolution on R

ˇn, then the estimate

(28) sup
t>0

|(⊗�f )∗φt(x)| ≤ ‖Φ‖L1(Rˇn)M
m[�f ](x)

is valid for all locally integrable functions fj on R
n, j=1, ...,ˇ. This follows by

applying [11, Corollary 2.12] to the function (x1, ..., xˇ) �→⊗�f(x1, ..., xˇ) on Rˇn

and using that the ˇn-dimensional Hardy-Littlewood maximal function of ⊗�f at
the point (x, ..., x)∈(Rn)ˇ equals Mm[�f ](x).

Returning to the previous calculation, for ŷk∈R(m−1)n we consider the function
φ(ŷk)=(1−|ŷk|2)

n
2 −α
+ . Using that n≥2 (hence n/2−α≥0), we calculate that

‖φ‖L1(R(m−1)n) =
ω(m−1)n−1

2 B

(
(m−1)n

2 ,
n

2 +1−α

)
.

Using (28) for ˇ=m−1, we can see that

sup
t>0

∫
B(m−1)n

∏
i �=k

|fi(x−tyi)| dŷk

(1−|ŷk|2)α−n
2
≤‖φ‖L1(Rˇn)M

m−1[f̂k](x),
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where [f̂k]=(f1, ..., fk−1, fk+1, fm). Using the well known fact that ωn−1= 2πn/2

Γ(n/2)

and the identity B(a, b)= Γ(a)Γ(b)
Γ(a+b) , one can verify that

cmn,α ·c−1
n,α ·‖φ‖L1 =1.

Thus we conclude that

Sm
α,t(f1, ..., fm)(x)≤Sα(fk)(x)Mm−1[f̂k](x).

Taking the essential supremum of Sm
α,t(f1, ..., fm)(x) over t>0 yields

(29) Sm
α (f1, ..., fm)(x)≤Sα(fk)(x)Mm−1[f̂k](x).

Since (29) holds for α=0, we have that

Mm
α [�f ]≤M(f1)(x)Mm−1[f̂1](x).

Therefore, consecutive applications of (29) conclude the proof of (27).
We now turn to the boundedness of Sα when m=1. It was shown in [24] that

Sα is bounded on Lp for n
n−α<p≤∞ when n≥3. We remark that this result also

holds when n=2. We now provide a sketch of a proof valid in all dimensions n≥2.
To do this, for f∈S(Rn), we express Sαf as a maximal multiplier operator

Sαf(x)= 2πα

ωn−1

Γ(1−α)
B(n2 , 1−α) sup

t>0

∣∣∣∣
∫
Rn

f̂(ξ)
Jn

2 −α(2πt|ξ|)
|tξ|n2 −α

e2πix·ξ dξ

∣∣∣∣
using the identity in [11, Appendix B.5]. To derive this we use the Bochner-Riesz
multiplier (1−|x|2)−α with a negative exponent, viewed as a kernel. Then the
Fourier transform expression for (1−|x|2)z when Re z>0 is also valid for Re z>−1
by analytic continuation. Notice that in this range of z, the kernel remains locally
integrable. Using properties of Bessel functions, the multiplier

mα(ξ)=
Jn

2 −α(2π|ξ|)
|ξ|n2 −α

is a smooth function which satisfies for all multi-indices γ

|∂γ
ξmα(ξ)| ≤ Cn,γ

|ξ|n+1
2 −α

and the exponent a= n+1
2 −α is strictly bigger than 1

2 (since n≥2 and α<1). Then
the hypotheses of [22, Theorem B] apply and we obtain that Sα is bounded on
Lp(Rn) (when restricted to Schwartz functions) for

p>
2n

n+2a−1 = n

n−α
.
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(In [22, Theorem B] there is an upper restriction on p, but as Sα is bounded on L∞

this does not apply here.) Then Sα extends to general f∈Lp(Rn) for p> n
n−α by

density, and this extension coincides with that given in Definition 1.
We now use (27) to obtain that

(30) ‖Sm
α (f1, ..., fm)‖Lp(Rn) ≤C

m∏
i=1

‖fi‖Lpi (Rn)

for all fi∈Lpi , when 1<pi≤∞ for i 
=k and n
n−α<pk≤∞. Here the constant C=

C(m,α, p1, ..., pm) doesn’t depend on the dimension n, since Sα(f)(x)≤S1(f)(x)
and ‖S1(f)(x)‖Lp(Rn)≤c ‖f‖Lp(Rn) for a constant c independent of n (see [26]).

To describe geometrically the points (1/p1, ..., 1/pm) for which we claim bound-
edness for Sm

α , consider the cube Q=[0, 1]m and let V be the set of all of its vertices
except for the vertex (1, 1, ..., 1). Then |V |=2m−1. We consider the intersection of
Q with the half-space H of Rm described by

H =
{
(t1, ..., tm) : t1+...+tm ≤ mn−α

n

}
.

Then Q∩H has 2m−1+m vertices, namely the set V union the m points

(1, ..., 1, mn−α
n , 1, ..., 1),

where mn−α
n ranges over the m slots. We claim that Sm

α satisfies strong Lp bounds
in the interior of Q∩H. To see this, we interpolate between estimates at the vertices
of Q∩H. Precisely, the interpolation works as follows: Let W be the vertices of
Q∩H that do not belong to V and let W ′ be a finite union of open balls centered
at the points of W intersected with Q∩H. We interpolate between points P=
(1/p1, ..., 1/pm) in V ∪W ′. If P∈V , then we have an estimate Lp1×...×Lpm to Lp

for Sm
α , as at least one coordinate 1/pk is 0 (i.e., pk=∞), and we apply (30) for this

k. Now if P lies in W ′, then there is a k∈{1, ...,m} such that pk>
n

n−α and pi are
near 1 for all i 
=k. Using estimate (30) again for this choice of k, we obtain that
Sm
α maps Lp1×...×Lpm to Lp at this point P . Applying the m-linear version of

the Marcinkiewicz interpolation theorem [13], we deduce the boundedness of Sm
α in

the interior of Q∩H. Similar reasoning provides weak type bounds on all the faces
of Q∩H, except possibly on the H face, on which we don’t know if there are any
bounds at all.

Finally we show the optimality of the range p> n
mn−α . We consider the ac-

tion of Sm
α on characteristic functions; specifically, let f1=...=fm=χBn . Since the

characteristic functions belong in all Lp spaces, in the definition of Sm
α [�f ] we can
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replace the essential supremum by the supremum (see Corollary 5). Therefore for
|x| sufficiently large it is enough to pick t=

√
m |x| in order to write the estimate

c−1
mn,α Sm

α (f1, ..., fm)(x)≥
∫
Bmn

m∏
i=1

|fi(x−
√
m |x| yi)|·(1−|�y |2)−α d�y

≥
∫
|�y− x√

m |x| |≤
1√

m |x|

(1−|�y |2)−α d�y

≥ 2−α

∫
|�y− x√

m |x| |≤
1√

m |x|

(1−|�y |)−α d�y(31)

since ∣∣∣�y − x√
m |x|

∣∣∣≤ 1√
m |x| ==⇒

∣∣x−√
m |x| yj

∣∣≤ 1 for all j =1, ...,m.

The point θx= x√
m|x| lies in the sphere S

mn−1. A simple geometric argument gives
that the integral in (31) expressed in polar coordinates �y=r�θ is at least

∫ 1

1− c
|x|

(1−r)−αrmn−1
∫
|�θ−θx|≤ c

|x|

dσmn−1(�θ ) dr

2α ≥ 2−α

|x|1−α

C(m,n)
|x|mn−1 = 2−αC(m,n)

|x|mn−α

for some small constants c, C (depending on n and m). We conclude the proof by
noting that the function |x|−mn+αχ|x|≥100 does not lie in Lp(Rn) for p≤ n

mn−α . �

We proved Theorem 3 working directly with Lpi functions. Alternatively, we
could have worked with a dense family of Lpi and then extend to Lpi by density.
There is no ambiguity in this extension, in view of the following proposition.

Proposition 7. Let 0<p1, ..., pm, p≤∞. Suppose that T is a subadditive op-

erator in each variable(1) that satisfies the estimate

(32) ‖T (f1, ..., fm)‖Lp ≤K‖f1‖Lp1 ...‖fm‖Lpm

for all functions fj in a dense subspace of Lpj . Then T admits a unique bounded

subadditive extension from Lp1×...×Lpm to Lp with the same bound.

Proof. For any j∈{1, ...,m}, given fj∈Lpj pick sequences akj , blj , k, l=1, 2, 3, ...
in the given dense subspace of Lpj which converge to fj in Lpj . Using the idea

(1) this means |T (..., f+g, ...)|≤|T (..., f, ...)|+T (..., g, ...)| for all f, g
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proving (23) and the subadditivity of T in each variable we obtain:∣∣T (ak1 , ak2 , ..., akm)−T (bl1, bl2, ..., blm)
∣∣≤

m∑
i=1

[∣∣T (bl1, ..., bli−1, a
k
i −bli, a

k
i+1, ..., a

k
m)

∣∣+∣∣T (ak1 , ..., aki−1, b
k
i −ali, b

l
i+1, ..., b

l
m)

∣∣].
Applying the Lp (quasi norm) and hypothesis (32) we deduce∥∥T (ak1 , ak2 , ..., akm)−T (bl1, bl2, ..., blm)

∥∥
Lp

≤CpK

m∑
i=1

‖aki −bli‖Lpi

∏
j �=i

[
‖akj ‖Lpj +‖blj‖Lpj

]
.

(33)

Taking blj=alj in (33) we conclude that the sequence
{
T (ak1 , ak2 , ..., akm)

}∞
k=1 is

Cauchy in Lp and thus it has a limit T (f1, ..., fm). This limit does not depend
on the choice of the sequences akj converging to fj , as we can choose l=k in (33)
and let k→∞. Thus T has a unique extension T . This extension is also bounded
with the same bound and is subadditive by density. �

The proofs of Corollaries 5 and 6

Next we discuss the proof of Corollary 5. The case m=1 of this result is
contained in [25, Chapter XI Section 3.5].

Proof. It suffices to prove the assertion for almost all x in a ball N B
n, as

Rn is a countable union of N Bn over N=1, 2, .... Let us fix such a ball N Bn.
It will suffice to prove the continuity of t �→Sα,t(f1, ..., fm)(x) on (0, R) for every
R>0. Fix such an R>0 as well. Then we may replace each fi by gi=fiχ(N+R)Bn

as Sα,t(f1, ..., fm)(x)=Sα,t(g1, ..., gm)(x) when x∈N B
n and 0<t<R. As gi have

compact support and lie in Lpi , they also lie in Lqi , where qi<pi are chosen so that
1
q =

∑m
i=1

1
qi
<mn−α

n . (The purpose of introducing qi<pi was to replace all infinite
indices pi by finite ones, as there is no good dense subspace of L∞.)

We pick sequences ϕk
j of smooth compactly supported functions with ϕk

j →gj
in Lqj (Rn) (since qj<∞) and consider the sequence

ess.sup
t>0

Sm
α,t(g1−ϕk

1 , ..., gm−ϕk
m), m=1, 2, 3, ....

By (15) if α<1 (or by [8] if α=1) this sequence converges to zero in Lq(Rn), thus
there is a subsequence that converges to zero a.e. This implies that there is a subset
E of Rn of measure zero such that for all x∈Rn\E we have

lim
k→∞

∥∥Sm
α,t[�g ](x)−Sm

α,t[%ϕk](x)
∥∥
L∞((0,∞),dt) =0,
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i.e., Sm
α,t[%ϕk](x)→Sm

α,t[�f ](x) uniformly in t>0. Since Sm
α,t[%ϕk](x) is continuous in t,

we conclude that Sm
α,t[�g ](x) is also continuous in t, for almost every x∈Rn. �

To prove Corollary 6, we will need a proposition analogous to [11, Theorem
2.1.14]. Let (X,μ) and (Y, ν) be σ finite measure spaces and let 0<pj≤∞, j=
1, ...,m, and 0<q<∞. Let Dj be a dense subspace of Lpj (X,μ). Suppose that for
all t>0, Tt is an m-linear operator defined on Lp1(X,μ)×...×Lpm(X,μ) with values
in the space of measurable functions defined a.e. on Y . Assume that for all fj∈Lpj ,
the function

y �−→T∗(f1, ..., fm)(y)= sup
t>0

|Tt(f1, ..., fm)(y)|

is ν-measurable on Y .
Proposition 8. Let 0<pi≤∞, 1≤i≤m, 0<q<∞ and Tt and T∗ as in the

previous discussion. Suppose that there is a constant B such that

(34) ‖T∗(f1, ..., fm)‖Lq,∞ ≤B
m∏
j=1

‖fj‖Lpj

for all fj∈Lpj (X,μ). Also suppose that for all ϕj∈Dj

(35) lim
t→0

Tt(ϕ1, ..., ϕm)=T (ϕ1, ..., ϕm)

exists and is finite ν-a.e. Then for all functions fj∈Lpj (X,μ) the limit in (35)
exists and is finite ν-a.e., and defines an m-linear operator which uniquely extends

T defined on D1×...×Dm and which is bounded from Lp1×...×Lpm to Lq,∞(X).

Proof. Given fj∈Lpj we define the oscillation of �f for y∈Y by setting

O�f (y)= lim sup
ε→0

lim sup
θ→0

∣∣Tε[�f ](y)−Tθ[�f ](y)
∣∣.

We will show that for all fj∈Lpj and all δ>0,

(36) ν
(
{y ∈Y : O�f (y)>δ}

)
=0.

Once (36) is established, we obtain that O�f (y)=0 for ν-almost all y, which implies
that Tt[�f ](y) is Cauchy for ν-almost all y, and it therefore converges ν-a.e. to some
T [�f ](y) as t→0. The operator T defined this way on Lp1(X)×...×Lpm(X) is linear
and extends T given in (35) defined on D1×...×Dm.

To approximate O�f (y) we use density. Given 0<η<1, we find ϕj∈Dj such
that ‖fj−ϕj‖Lpj <η, j=1, ...,m. Without a loss of generality, we also assume that
‖ϕi‖Lpi ≤2‖fi‖Lpi . Since Tt[!ϕ ]→T [!ϕ ] ν-a.e., it follows that O!ϕ =0 ν-a.e. Us-
ing (23), we write

Tt[�f ]−Tt[!ϕ ] =
m∑
i=1

Tt(ϕ1, ..., ϕi−1, fi−ϕi, fi+1, ..., fm)
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and from this we obtain

O�f ≤O!ϕ+
m∑
i=1

O(ϕ1,...,ϕi−1,fi−ϕi,fi+1,...,fm) ν-a.e.

Now, for any δ>0 we have

ν
(
{y ∈Y : O�f (y)>δ}

)
≤ ν

({
y ∈Y :

m∑
i=1

O(ϕ1,...,ϕi−1,fi−ϕi,fi+1,...,fm) >δ
})

≤ ν
({

y ∈Y :
m∑
i=1

2T∗(ϕ1, ..., ϕi−1, fi−ϕi, fi+1, ..., fm)>δ
})

≤
m∑
i=1

ν
({

y ∈Y : 2T∗(ϕ1, ..., ϕi−1, fi−ϕi, fi+1, ..., fm)> δ

m

})

≤
m∑
i=1

[(
2Bm

δ

)
‖ϕ1‖Lp1 ...‖ϕi−1‖Lpi−1‖fi−ϕi‖Lpi‖fi+1‖Lpi+1 ...‖fm‖Lpm

]q

≤
(
2mB

m

δ

)q
ηq

m∑
i=1

( ∏
j �=i

‖fj‖qLpj

)
.

Letting η→0, we deduce (36). We conclude that Tt[�f ] is a Cauchy sequence and
hence it converges ν-a.e. to some T [�f ] which satisfies the claimed assertions. �

We now prove Corollary 6

Proof. It suffices to prove the assertion for almost all x in a ball N B
n, as

R
n is a countable union of balls. Let us fix a ball N B

n. Then we replace the
given fi in Lpi

loc by gi=fiχ(N+1)Bn since Sα,t(f1, ..., fm)(x)=Sα,t(g1, ..., gm)(x) when
x∈N Bn and 0<t<1. As gi have compact support and lie in Lpi , they also lie in
Lqi , where qi<pi are chosen so that 1

q =
∑m

i=1
1
qi
<mn−α

n . As qi<∞, the space of
smooth functions with compact support is a dense subspace of Lqi . Now (16) is
easily shown to hold for smooth functions with compact support fi, when 0≤α≤1,
thus (35) holds with Tt=Sα,t. Moreover (34) holds by Theorem 3 if α<1 or by
[8] if α=1. By Proposition 8, for t<1, we obtain that for almost all x∈N B

n we
have

lim
t→0

Sm
α,t(f1, ..., fm)(x)= lim

t→0
Sm
α,t(g1, ..., gm)(x)=

m∏
j=1

gj(x)=
m∏
j=1

fj(x),

thus (16) holds for all gi in Lqi , in particular for our given fi in Lpi

loc. �



342 Georgios Dosidis and Loukas Grafakos

References
1. Anderson, T. and Palsson, E., Bounds for discrete multilinear spherical maximal

functions in higher dimensions, Bull. Lond. Math. Soc. 53 (2021), 855–860.
2. Anderson, T. and Palsson, E., Bounds for discrete multilinear spherical maximal

functions, Preprint, 2019. arXiv:1910.11409 [math.CA]
3. Barrionuevo, J., Grafakos, L., He, D., Honzík, P. and Oliveira, L., Bilinear

spherical maximal function, Math. Res. Lett. 25 (2018), 1369–1388.
4. Bourgain, J., Averages in the plane over convex curves and maximal operators, J.

Anal. Math. 47 (1986), 69–85.
5. Calderon, C. P., Lacunary spherical means, Ill. J. Math. 23 (1979), 476–484.
6. Carbery, A., Radial Fourier multipliers and associated maximal functions, North-

Holl. Math. Stud. 111 (1985), 49–56.
7. Cowling, M. and Mauceri, G., On maximal functions, Milan J. Math. 49 (1979),

79–87.
8. Dosidis, G., Multilinear spherical maximal function, Proc. Amer. Math. Soc. 149

(2021), 1471–1480.
9. Duoandikoetxea, J. and Vega, L., Spherical means and weighted inequalities, J.

Lond. Math. Soc. 53 (1996), 343–353.
10. Geba, D., Greenleaf, A., Iosevich, A., Palsson, E. and Sawyer, E., Restricted

convolution inequalities, multilinear operators and applications, Math. Res.
Lett. 20 (2013), 675–694.

11. Grafakos, L., Classical Fourier Analysis, 3rd ed., Graduate Texts in Mathematics
249, Springer, New York, 2014.

12. Grafakos, L., He, D. and Honzík, P., Maximal operators associated with bilinear
multipliers of limited decay, J. Anal. Math. 143 (2021), 231–251.

13. Grafakos, L., Liu, L., Lu, S. and Zhao, F., The multilinear Marcinkiewicz inter-
polation theorem revisited: The behavior of the constant, J. Funct. Anal. 262
(2012), 2289–2313.

14. Greenleaf, A., Principal curvature and harmonic-analysis, Indiana Univ. Math. J.
30 (1981), 519–537.

15. Heo, Y., Hong, S. and Yang, C. W., Improved bounds for the bilinear spherical
maximal operators, Preprint, 2019.

16. Iosevich, A. and Sawyer, E., Three problems motivated by the average decay of the
Fourier transform, Contemp. Math. 320 (2003), 205–216.

17. Jeong, E. and Lee, S., Maximal estimates for the bilinear spherical averages and the
bilinear Bochner-Riesz, J. Funct. Anal. 279 (2020), 108629, 29 pp.

18. Lerner, A., Ombrosi, S., Pérez, C., Torres, R. and Trujillo–González, R.,
New maximal functions and multiple weights for the multilinear Calderón–
Zygmund theory, Adv. Math. 220 (2009), 1222–1264.

19. Magyar, A., Stein, E. and Wainger, S., Discrete analogues in harmonic analysis:
spherical averages, Ann. Math. 155 (2002), 189–208.

20. Mockenhaupt, G., Seeger, A. and Sogge, C. D., Wave front sets, local smoothing
and Bourgain’s circular maximal theorem, Ann. Math. 136 (1992), 207–218.

21. Oberlin, D., Multilinear convolutions defined by measures on spheres, Trans. Am.
Math. Soc. 310 (1988), 821–835.

http://arxiv.org/abs/1910.11409


On families between the Hardy-Littlewood and spherical maximal functions 343

22. Rubio de Francia, J.-L., Maximal functions and Fourier transforms, Duke Math. J.
53 (1986), 395–404.

23. Schlag, W., A geometric proof of the circular maximal theorem, Duke Math. J. 93
(1998), 505–534.

24. Stein, E. M., Maximal functions: spherical means, Proc. Nat. Acad. Sci. 73 (1976),
2174–2175.

25. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Os-
cillatory Integrals, Princeton Mathematical Series 43, Springer, New Jersey,
1993.

26. Stein, E. M. and Strömberg, J. O., Behavior of maximal functions in Rn for large
n, Ark. Mat. 21 (1983), 259–269.

Georgios Dosidis
Department of Mathematics
Charles University
116 36 Praha 1
Prague
Czech Republic
dosidis@karlin.mff.cuni.cz

Loukas Grafakos
Department of Mathematics
University of Missouri
Columbia MO 65203
U.S.A.
grafakosl@missouri.edu

Received May 5, 2020
in revised form November 16, 2020

mailto:dosidis@karlin.mff.cuni.cz
mailto:grafakosl@missouri.edu

	On families between the Hardy-Littlewood and spherical maximal functions
	Introduction
	The proof of Theorem 2
	The proof of Theorem 3
	The proofs of Corollaries 5 and 6
	References


