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Abstract
 It is proved that the Hilbert class field of a real quadratic field ( )Q D  modulo a power m of the conductor f is 
generated by the Fourier coefficients of the Hecke eigenform for a congruence subgroup of level fD.
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Introduction
The Kronecker’s Jugendtraum is a conjecture that the maximal 

unramified abelian extension (The Hilbert class field) of any algebraic 
number field is generated by the special values of modular functions 
attached to an abelian variety. The conjecture is true for the rational 
field and imaginary quadratic fields with the modular functions being 
an exponent and the j-invariant, respectively. In the case of an arbitrary 
number field, a description of the abelian extensions is given by class 
field theory, but an explicit formula for the generators of these abelian 
extensions, in the sense sought by Kronecker, is unknown even for the 
real quadratic fields.

The problem was first studied by Hecke [1]. A description 
of abelian extensions of real quadratic number fields in terms of 
coordinates of points of finite order on abelian varieties associated 
with certain modular curves was obtained in studies of Shimura [2]. 
Stark formulated a number of conjectures on abelian extension of 
arbitrary number fields, which in the real quadratic case amount to 
specifying generators of these extensions using special values of Artin 
L-functions [3]. Based on an analogy with complex multiplication, 
Manin suggested to use the so-called “pseudo-lattices”  + θ in  
having non-trivial real multiplications to produce abelian extensions of 
real quadratic fields [4]. Similar to the case of complex multiplication, 
the endomorphism ring = O+Rf kf  of pseudo-lattice  + θ is an 
order in the real quadratic field k = (θ), where O

k
 is the ring of integers 

of k and f is the conductor of R
f
; Manin calls these pseudo-lattices with 

real multiplication.

The aim of our note is a formula for generators of the Hilbert class 
field of real quadratic fields based on a modularity and a symmetry of 
complex and real multiplication. To give an idea, let 

1 2( ) = ( ) | 1  , 0  
a b

N SL a d N c N
c d

   Γ ∈ ≡ ≡ ≡  
   

mod mod                            (1)

be a congruence subgroup of level N ≥ 1 and  be the Lobachevsky 
half-plane; let 1 1( ) := / ( )X N NΓ  be the corresponding modular curve 
and 2 1( ( ))S NΓ  the space of all cusp forms on 1( )NΓ  of weight 2. Let ( , )D f

CMε −  
be elliptic curve with complex multiplication by an order = O+Rf kf  
in the field = ( )D−k   [5]. Denote by ( , )( ) := ( ( ))ab D f

CMk k j ε −  the Hilbert 
class field of k modulo conductor f ≥ 1 and let N = fD; let 1 ( ( ))Jac X fD  
be the Jacobian of modular curve 1( )X fD . There exists an abelian sub-
variety 1 ( ( ))A Jac X fDφ ⊂ , such that its points of finite order generate 
ab(k), [2,6,7], Section 8. The ab(k) is a CM-field, i.e. a totally imaginary 
quadratic extension of the totally real field φ generated by the Fourier 
coefficients of the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ [2]. In particular, 
there exists a holomorphic map 0 ( , )

1 ( ) D f
CMX fD ε −→ , where 0

1 ( )X fD  is a 

Riemann surface such that 0
1 ( ( ))Jac X fD Aφ≅ ; we refer to the above as a 

modularity of complex multiplication.

Recall that (twisted homogeneous) coordinate ring of an elliptic 
curve ε () is isomorphic to a Sklyanin algebra, [8]; the norm-closure 
of a self-adjoint representation of the Sklyanin algebra by the linear 
operators on a Hilbert space  is isomorphic to a noncommutative 
torus θ, [9] for the definition. 

Whenever elliptic curve ( , )( ) D f
CMCε ε −≅  has complex multiplication, 

the noncommutative torus θ has real multiplication by an order 
= O+Rf kf  in the field = ( )D−k  ; moreover, it is known that f = f m 

for the minimal power m satisfying an isomorphism: 
 ( )  ( ),m ff

Cl Cl R≅R 				                 (2)

where Cl(Rf) and Cl(R
f
) are the ideal class groups of orders Rf and R

f
, 

respectively. We shall refer to (2) as a symmetry of complex and real 
multiplication. The noncommutative torus with real multiplication by 
R

f
 will be denoted by ( , )D

RM
f . 

Remark 1: The isomorphism (2) can be calculated using the well-
known formula for the class number of a non-maximal order  + fOK 
of a quadratic field = ( ) :K D

|

1= 1 ,KO

p ff
fOK

h f Dh
e p p+

  
−  
  

∏                                      	               (3)

where OK
h is the class number of the maximal order OK, ef is the index 

of the group of units of  + fOK in the group of units of OK, p is a prime 
number and D

p
 is the Legendre symbol [10,11].

The (twisted homogeneous) coordinate ring of the Riemann surface 
0
1 ( )X fD  is an AF-algebra 0φ

  linked to a holomorphic differential 
0 ( )z dzφ  on 0

1 ( )X fD , see Section 2.2, Definition 1 and Remark 5 for 
the details; the Grothendieck semigroup 0 0( )K

φ

+   is a pseudo-lattice 
1 1θ θ −+ + + n    in the number field φ, where n equals the genus 

of 0
1 ( )X fD . Moreover, a holomorphic map 0 ( , )

1 ( ) D f
CMX fD ε −→  induces the 

C*-algebra homomorphism ( , )
0

D f
RMφ

→   between the corresponding 
coordinate rings, so that the following diagram commutes:

http://dx.doi.org/10.4172/1736-4337.S2-007
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ε (− D,f )
CM  (D, f)

RM

X 0
1 ( fD ) φ0

coordinate

map

coordinate

map
But ( , )

0 ( )D
RMK + f  is a pseudo-lattice  + θ in the field k, such that 

End ( + θ ) ≅ Rf ; in other words, one can use the above diagram 
to control the arithmetic of the field φ by such of the real quadratic 
field k. Roughly speaking, this observation solves the Kronecker’s 
Jugendtraum for the real quadratic fields; namely, the following is true. 

Theorem 1. The Hilbert class field of a real quadratic field = ( )Dk   
modulo conductor f m is an extension of k by the Fourier coefficients of 
the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ , where m is the smallest positive 
integer satisfying isomorphism (2). 

Remark 2. Theorem 1 can be used to compute concrete extensions. 
For instance, theorem 1 says that for the quadratic field 15  its 
Hilbert class field is isomorphic to 1 15− +  and for 14 such a field 
modulo conductor f = 8 is isomorphic to ( )4 27 8 14− +  see section 4 
for more examples.	

 The article is organized as follows. Section 2 covers basic facts on 
real multiplication and AF-algebras of the Hecke eigenforms. Theorem 
1 is proved in Section 3. Section 4 contains numerical examples 
illustrating theorem 1.

Preliminaries
 The reader can find basics of the C*-algebras in studies of Murphy 

[12] and their K-theory in theory of Blackadar [13]. The noncommutative 
tori are covered in literature of Rieffel [9] and real multiplication in 
studies of Manin [4]. For main ideas of non-commutative algebraic 
geometry, see the survey by Stafford and van den Bergh [8]. The AF-
algebras are reviewed in studies of Effros [14]. For a general theory of 
modular forms we refer to literature of Diamond and Shurman [15].

Real multiplication

The noncommutative torus θ is a universal C*-algebra generated 
by the unitary operators u and v acting on a Hilbert space  and 
satisfying the commutation relation 2= ivu e uvπ θ , where θ is a real 
number. The C*-algebra θ is said to be stably isomorphic (Morita 
equivalent) to 'θ

 , whenever θ θ′⊗ ≅ ⊗   , where  is the C*-
algebra of all compact operators on ; the θ is stably isomorphic to 

θ′  if and only if 

= a b
c d
θθ
θ
+′
+

 for some matrix 2 ( )
a b

SL
c d

 
∈ 

 
 		               (4)

 The K-theory of θ is two-periodic and 2
0 1( ) ( )K Kθ θ≅ ≅    so 

that the Grothendieck semigroup 0 ( )K θ
+   corresponds to positive 

reals of the pseudo-lattice θ+ ⊂   . The θ is said to have real 
multiplication, if θ is a quadratic irrationality, i.e. irrational root of 
a quadratic polynomial in [x]. The real multiplication says that 
the endomorphism ring of pseudo-lattice  + θ exceeds the ring 
 corresponding to multiplication by m endomorphisms; similar 
to complex multiplication, it means that the endomorphism ring is 
isomorphic to an order = O+f kR f  of conductor f  ≥ 1 in the real 
quadratic field k = (θ ), hence the name. If D > 0 is the discriminant 
of k, then by ( , )D

RM
f  we denote torus θ with real multiplication by the 

order R
f
.

The Sklyanin algebra , , ( )Sα β γ   is a free C-algebra on four generators 
and six relations: 

1 2 2 1 3 4 4 3

1 2 2 1 3 4 4 3

1 3 3 1 4 2 2 4

1 3 3 1 4 2 2 4

1 4 4 1 2 3 3 2

1 4 4 1 2 3 3 2

= ( ),
= ,
= ( ),
= ,
= ( ),
= ,

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

α

β

γ

− +
 + −
 − +
 + −
 − +


+ −

			                 (5)

where = 0α β γ αβγ+ + + ; such an algebra corresponds to a twisted 
homogeneous coordinate ring of an elliptic curve in the complex projective 
space P3 given by the intersection of two quadric surfaces of the form 

3 2 2 2 2 2 2 2
, ,

1 1( ) = {( , , , )  | = = 0}.
1 1

u v w z P u v w z v w zα β γ
α α
β γ

ε − +
∈ + + + + +

+ −
 

Being such a ring means that the algebra , ,Sα β γ  satisfies an 
isomorphism 

, , , , ( ( )) /  ( ( )),α β γ α β γMod Tors Coh  		               (6)

where Coh is the category of quasi-coherent sheaves on , , ( )α β γε  , Mod 
the category of graded left modules over the graded ring , , ( )Sα β γ   
and Tors the full sub-category of Mod consisting of the torsion 
modules, [8]. 

If one sets * *
1 2 3 4= , = , = , =x u x u x v x v , then there exists a self-adjoint 

representation of the Sklyanin ∗-algebra ,1, 1( )Sα −   by linear operators 
on a Hilbert space , such that its norm-closure is isomorphic to θ ; 
namely, 0

,1, 1( ) /S Iθ α µ−≅   where 0
θ  is a dense sub-algebra of θ and Iµ 

is an ideal generated by the “scaled unit” relations 1 3 3 4
1= =x x x x e
µ

, where 
µ > 0 is a constant. Thus the algebra θ is a coordinate ring of elliptic 
curve E(C), such that isomorphic elliptic curves correspond to the 
stably isomorphic (Morita equivalent) noncommutative tori; this fact 
explains the modular transformation law in (4). In particular, if ε () 
has complex multiplication by an order = O+f kR f  in a quadratic field 

= ( )D−k  , then θ has real multiplication by an order = O+f kR f  
in the quadratic field = ( )Dk  , where f is the smallest integer satisfying 
an isomorphism  ( )  ( )fCl Cl R≅fR , [16]; the isomorphism is a necessary and 
sufficient condition for ( , )D

RM
f  to discern non-isomorphic elliptic curves 

( , )D f
CMε −  having the same endomorphism ring Rf . For the constraint f = 

f m, see remark 6.

AF-algebra of the Hecke eigenform

An AF-algebra (Approximately Finite C*-algebra) is defined to 
be the norm closure of an ascending sequence of finite dimensional 
C*-algebras Mn, where Mn is the C*-algebra of the n × n matrices with 
entries in . Here the index 1= ( , , )kn n n  represents the semi-simple 
matrix algebra 

1
=n n nk

M M M⊕ ⊕ . The ascending sequence mentioned 
above can be written as 1 2

1 2 ,M Mϕ ϕ→ →  where Mi are the finite 
dimensional C*-algebras and ϕi the homomorphisms between such 
algebras. The homomorphisms ϕi can be arranged into a graph as follows. 
Let 

1
=i i ik

M M M⊕ ⊕  and 
1

=i i ik
M M M′ ′ ′

⊕ ⊕  be the semi-simple C*-
algebras and :i i iM Mϕ ′→  the homomorphism. One has two sets of vertices 

1
, ,i ik

V V  and 
1

, ,i ik
V V

′ ′
  joined by brs edges whenever the summand ir

M  
contains brs copies of the summand is

M
′
 under the embedding ϕi. As i 

varies, one obtains an infinite graph called the Bratteli diagram of the AF-
algebra. The matrix = ( )rsB b  is known as a  partial multiplicity matrix; an 
infinite sequence of Bi defines a unique AF-algebra. An AF-algebra is called 
stationary if Bi = Const = B, [14], when two non-similar matrices B and B’ 
have the same characteristic polynomial, the corresponding stationary AF-
algebras will be called companion AF-algebras.

http://dx.doi.org/10.4172/1736-4337.S2-007
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Let N ≥ 1 be a natural number and consider a (finite index) 
subgroup of the modular group given by the formula: 

1 2( ) = ( ) | 1  , 0  .
a b

N SL a d N c N
c d

   Γ ∈ ≡ ≡ ≡  
   

mod mod            (7)

 Let = { =  | > 0}z x iy y+ ∈   be the upper half-plane and let 
1( )NΓ  act on  by the linear fractional transformations; consider an 

orbifold 1/ ( )NΓ . To compactify the orbifold at the cusps, one adds 
a boundary to , so that * = { }∪ ∪ ∞    and the compact Riemann 
surface *

1 1( ) = / ( )X N NΓ  is called a modular curve. The meromorphic 
functions  (z) on  that vanish at the cusps and such that 

2
0= ( ) ( ), ( ),

a baz b cz d z N
c dcz d

φ φ
 +  + ∀ ∈Γ  +   

	               (8)

are called cusp forms of weight two; the (complex linear) space of such 
forms will be denoted by 2 1( ( ))S NΓ . The formula ( ) = ( )z z dzφ ω φ  
defines an isomorphism 2 1 1( ( )) ( ( ))holS N X NΓ ≅ Ω , where 1( ( ))hol X NΩ  
is the space of all holomorphic differentials on the Riemann surface 

1( )X N . Note that 2 1 1( ( ( )) = ( ( ( )) =dim dim holS N X NΓ Ω g  , where g =g(N) 
is the genus of the surface 1( )X N . A Hecke operator, Tn, acts on 

2 1( ( ))S NΓ  by the formula = ( ) m
n m Z

T m qφ γ
∈∑ , where 2| ( , ) /

( ) =
a m n mn a

m acγ ∑ GCD  
and ( ) = ( ) m

m
z c m qφ

∈∑   is the Fourier series of the cusp form ϕ at 
2= izq e π . Further, Tn is a self-adjoint linear operator on the vector space 

2 1( ( ))S NΓ  endowed with the Petersson inner product; the algebra 
1 2:= [ , , ]N T T    is a commutative algebra. Any cusp form 2 1( ( ))S Nφ ∈ Γ  

that is an eigenvector for one (and hence all) of Tn, is referred to as 
a Hecke eigenform. The Fourier coefficients c(m) of ϕ are algebraic 
integers, and we denote by = ( ( ))K Q c mφ  an extension of the field Q by 
the Fourier coefficients of ϕ. Then φ is a real algebraic number field 
of degree 1 deg ( | )φ≤ ≤ g , where g is the genus of the surface 1( )X N  
[5], Proposition 6.6.4. Any embedding : φσ →  conjugates ϕ by 
acting on its coefficients; we write the corresponding Hecke eigenform 

( ) := ( ( )) m
m Z

z c m qσφ σ
∈∑  and call ϕ σ a conjugate of the Hecke eigenform ϕ.

Let = ( ) ( )holz dz Xω φ ∈Ω  be a holomorphic differential on a 
Riemann surface X. We shall denote by R(w) a closed form on X (the 
real part of w) and consider its periods =  ( )i

iγ
λ ℜ∫ w  against a basis γi 

in the (relative) homology group 1( , (  ( )); )H X Z ℜ w , where (  ( ))Z ℜ w  
is the set of zeros of the form R(w). Assume > 0iλ  and consider the 
vector 1 1= ( , , )nθ θ θ −  with 1 1= /i iθ λ λ+ . The Jacobi-Perron continued 
fraction of θ is given by the formula: 

1

0 10 11 0 0
= = ,lim lim i

i ii

B
I bI bθ →∞ →∞

       
       

        


 
		                (9)

where ( ) ( )
1 1= ( , , )i i T

i nb b b −

 is a vector of non-negative integers, I is the 
unit matrix and = (0, ,0,1)T

 [17]. By ϕ we shall understand the AF-
algebra given the Bratteli diagram with partial multiplicity matrices Bi. 
If 2 1( ) ( ( ))z S Nφ ∈ Γ  is a Hecke eigenform, then the corresponding AF-
algebra ϕ is stationary with the partial multiplicity matrices Bi = Const 
= B; moreover, each conjugate eigenform ϕ σ defines a companion AF-
algebra A σφ

. It is known that 0 1 1( ) nK φ φθ θ+
−≅ + + + ⊂     , where 

φ is an algebraic number field generated by the Fourier coefficients 
of ϕ, [18].

Proof of Theorem 1
Definition 1. Let 1 ( ( ))A Jac X fDφ ⊂  be an abelian variety associated 

to the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ  [15], Definition 6.6.3. By 
0
1 ( )X fD  we shall understand the Riemann surface of genus g, such that 

0
1 ( ( )) .Jac X fD Aφ≅ 				                 (10)

By 0 0
1( ) ( ( ))holz dz X fDφ ∈Ω  we denote the image of the Hecke eigenform 

1( ) ( ( ))holz dz X fDφ ∈Ω  under the holomorphic map 0
1 1( ) ( )X fD X fD→ . 

Remark 3. The surface 0
1 ( )X fD is correctly dened. Indeed, since the 

abelian variety Aφ is the product of g copies of an elliptic curve with 
the complex multiplication, there exists a holomorphic map from Aφ 
to the elliptic curve. For a Riemann surface X of genus g covering the 
elliptic curve εCM by a holomorphic map (such a surface and a map 
always exist), one gets a period map X → Aφ by closing the arrows of a 
commutative diagram Aφ → εCM ← X. It is easy to see, that the Jacobian 
of X coincides with Aφ and we set 0

1 ( ): .X fD X= .

Lemma 1. 0
1( ( )) = deg ( ( ) | )abX fD k kg  . 

Proof. By definition, abelian variety Aφ is the quotient of n by 
a lattice of periods of the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ  and all 
its conjugates ( )zσφ  on the Riemann surface 1( )X fD . These periods 
are complex algebraic numbers generating the Hilbert class field ( )abK k  
over imaginary quadratic field = ( )k Q D−  modulo conductor f, [2,6,7], 
Section 8. The number of linearly independent periods is equal to the total 
number of the conjugate eigenforms ( )zσφ , i.e. | |= = ( )dimn Aφσ  . Since 
real dimension ( ) = 2dim A nφ , we conclude that deg ( ( ) | ) = 2ab k n  
and, therefore, deg ( ( ) | ) =ab k k n . But 0

1( ) = ( ( ))dim A X fDφ g  and one gets 
0
1( ( )) = deg ( ( ) | )abX fD k kg  . Lemma 1 follows. 

Corollary 1. 0
1( ( )) = |  ( ) |fX fD Cl Rg . 

Proof. Because ( )ab k  is the Hilbert class field over k modulo 
conductor f, we must have 

 ( ( ) | )  ( ),ab
fGal k k Cl R≅ 				                   (11)

 where Gal is the Galois group of the extension ( ) |ab k k  and  ( )fCl R  
is the class group of ring Rf, [5]. But |  ( ( ) | ) |= deg ( ( ) | )ab abGal k k k k   
and by lemma 1 we have 0

1deg ( ( ) | ) = ( ( ))ab k k X fDg . In view of this 
and isomorphism (11), one gets 0

1|  ( ) | = |  ( | ) |= ( ( ))ab
fCl R Gal k X fDg . 

Corollary 1 follows. 

Lemma 2. 0
1( ( )) = deg (  | )X fD Qφg  . 

Proof. It is known that ( ) = deg (  | )dim Aφ φ   [15], Proposition 
6.6.4. But abelian variety 0

1 ( ( ))A Jac X fDφ ≅  and, therefore, 
0 0
1 1( ) = (  ( ( ))) = ( ( ))dim dimA Jac X fD X fDφ g  , hence the lemma. 

Corollary 2. deg (  | ) =|  ( ) |Clφ fR . 

Proof. From lemma 2 and corollary 1 one gets deg ( | ) =|  ( ) | .φ fCl R
In view of this and equality (2), one gets the conclusion of corollary 2. 

Lemma 3. (Basic lemma)  (  | )  ( )Gal Clφ ≅ fR . 

Proof. Let us outline the proof. In view of lemma 2 and corollaries 1-2, 
we denote by h the single integer 0

1( ( )) = |  ( ) | = |  ( ) | = deg ( | )fX fD Cl R Cl φg fR  . 
Since deg ( | ) =φ h , there exist 1{ , , }hφ φ  conjugate Hecke eigenforms 

2 1( ) ( ( ))i z S fDφ ∈ Γ  [15], Theorem 6.5.4; thus one gets h holomorphic 
forms 0 0

1{ , , }hφ φ  on the Riemann surface 0
1 ( )X fD . Let 0 0

1
{ , , }

h
A A
φ φ
  be 

the corresponding stationary AF-algebras; the 0
i

A
φ

 are  companion AF-
algebras, see Section 1.2. Recall that the characteristic polynomial for 
the partial multiplicity matrices 0

i
B
φ

 of companion AF-algebras 0
i

A
φ

 
is the same; it is a minimal polynomial of degree h and let 1{ , , }hλ λ

 
be the roots of such a polynomial, compare with studies of Effros [14], 
Corollary 6.3. Since 0det ( ) = 1

i
B
φ

, the numbers λi are algebraic units of 
the field φ. Moreover, λi are algebraically conjugate and can be taken 
for generators of the extension |φ  ; since deg ( | ) = =|  ( ) |h Clφ fR  
there exists a natural action of group  ( )Cl fR  on these generators. The 
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action extends to automorphisms of the entire field φ preserving ; 
thus one gets the Galois group of extension |φ   and an isomorphism 

 ( | )  ( )Gal Clφ ≅ fR . Let us pass to a step-by-step argument.

(i) Let 0
1:= ( ( )) =|  ( ) |=|  ( ) |fh X fD Cl R Clg fR  and let 2 1( ) ( ( ))z S fDφ ∈ Γ  

be the Hecke eigenform. It is known that there exists 1{ , , }hφ φ  
conjugate Hecke eigenforms, so that ϕ (z) is one of them [15], Theorem 
6.5.4. Let 0 0

1{ , , }hφ φ  be the corresponding forms on the Riemann 
surface 0

1 ( )X fD . 

Remark 4. The forms 0 0
1{ , , }hφ φ  can be taken for a basis in the 

space 0
1( ( ));hol X f DΩ  we leave it to the reader to verify, that abelian 

variety Aφ is isomorphic to the quotient of h by the lattice of periods 
of holomorphic differentials 0 ( )i z dzφ  on 0

1 ( ).X fD .

 (ii) Let 0
iφ

  be the AF-algebra corresponding to holomorphic 
differential 0 ( )i z dzφ  on 0

1 ( )X fD , see Section 2.2; the set 0 0
1

{ , , }
hφ φ

   
consists of the companion AF-algebras. It is known that each 0

iφ
  is a 

stationary AF-algebra, i.e. its partial multiplicity matrix is a constant; 
we shall denote such a matrix by 0

i
B
φ

.

(iii) By definition, the matrices 0
i

B
φ

 of companion AF-algebras 
iφ

  have the same characteristic polynomial ( ) [ ]p x x∈ ; the matrices 
0
i

B
φ  itself are not pairwise similar and, therefore, the AF-algebras 0

iφ
  

are not pairwise isomorphic. The total number h of such matrices is 
equal to the class number of the endomorphism ring of pseudo-lattice 

0 0 1 1( ) i i
h

i
K φφ

θ θ+
−≅ + + + ⊂     , [14]. 

Remark 5. Notice that there are {X1 ,…, Xh} pairwise non-isomorphic 
Riemann surfaces 0

1: ( )X X fD=  endowed with a holomorphic map Xi→ 
εi where, {ε1 ,…, h} are pairwise non-isomorphic elliptic curves ( , )D f

CMε −

corresponding to elements of the group Cl(Rf). Thus the companion 
AF-algebras 0 0

1
{ , , }

hφ φ
  can be viewed as coordinate rings of {X1 

,…, Xh} the latter means that 0
iφ

  discern non-isomorphic Riemann 
surfaces and 0 0 1 1( ) i i

h
i

K φφ
θ θ+

−≅ + + + ⊂      represents the moduli 
space of 0

1 ( ).X fD

(iv) The polynomial p(x) is minimal and splits in the totally real 
field φ. Indeed, matrices 2 1( ( ))S NΓ  generate the Hecke algebra N on 

2 1( ( ))S NΓ ; thus each 0
i

B
φ

 is self-adjoint and, therefore, all eigenvalues 
are real of multiplicity one; since 0

i
B
φ

 is integer, all roots of characteristic 

polynomial p(x) of 0
i

B
φ  belong to the field φ.

 (v) Let 1( ) = ( ) ( )hp x x xλ λ− − . It is easy to see that λi are algebraic 
units of the field φ because 0det ( ) = 1

i
B
φ

; note that numbers 1{ , , }hλ λ  
are algebraically conjugate. Since deg ( | ) = hφ  , the numbers λi can be 
taken for generators of the field φ, i.e. 

1= ( , , )hφ λ λ .

 (vi) Finally, let us establish an explicit formula for the isomorphism 

 ( )  ( | )Cl Gal φ→fR  				                 (12)

Since  ( | )Gal φ  is an automorphism group of the field φ 
preserving , it will suffice to define the action  of an element  ( )a Cl∈ fR  
on the generators λi of φ. Let 1{ , , }ha a  be the set of all elements of the 
group  ( )Cl fR . For an element  ( )a Cl∈ fR  define an index function α 
by the formula ( )=i ia a aα . Then the action ∗ of an element  ( )a Cl∈ fR  
on the generators λi of the field φ is given by the formula: 

( ):= ,  ( ).i a ia a Clλ λ∗ ∀ ∈ fR 			                (13)

It is easy to verify that formula (13) gives an isomorphism 
 ( )  ( | )φ→Cl GalfR  , which is independ of the choice of {ai} and {λi}. 

This argument completes the proof of lemma 3. 

Remark 6.  The class field theory says that f = f m, i.e. the extensions 
of elds k and k must ramify over the same set of prime ideals. Indeed, 
consider the commutative diagram below, where If and I

f
 are groups of 

all ideals of k and k, which are relatively prime to the principal ideals 
( f ) and (f), respectively. Since  ( ( ) | )  ( | )abGal k Gal φ≅    one gets 
an isomorphism If ≅ If, i.e. f = f m for some positive integer m.

I f Gal (φ |)

I f Gal (ab(k ) |)
Artin

homomorphism

Artin

homomorphism

Corollary 3. The Hilbert class field of real quadratic field = ( )Q Dk  
modulo conductor f ≥ 1 is isomorphic to the field k(φ) generated by the 
Fourier coefficients of the Hecke eigenform 2 1( ) ( ( ))z S fDφ ∈ Γ . 

Proof. As in the classical case of imaginary quadratic fields, notice that 
deg ( | ) = deg ( ( ) | ) =  ( )Clφ φ  fk k R ; therefore corollary 3 is an implication 
of lemma 3 and isomorphism ( | ) =  ( ( ) | ) =  ( )φ φGal Gal Cl fk k R  . 

 Theorem 1 follows from corollary 3. 

Examples
Along with the method of Stark’s units [19], theorem 1 can be used 

in the computational number theory. For the sake of clarity, we shall 
consider the simplest examples; the rest can be found in Table 1. 

Example 1. Let D = 15. The class number of quadratic field 
= ( 15)k −  is known to be 2; such a number for quadratic field 
= ( 15)k  is also equal to 2. Thus 

= 1 = 1 ( )  ( ) / 2 ,fCl Cl R≅ ≅  f  R                                     	 (14)

and isomorphism (2) is trivially satised for each power m, i.e. one 
obtains an unramied extension. By theorem 1, the Hilbert class field 
of k is generated by the Fourier coefficients of the Hecke eigenform 
ϕ(z) ∈ S2 (Γ1(15)). Using the computer programme SAGE created by 
William A. Stein, one finds an irreducible factor p(x) = x2 − 4x + 5 of 
the characteristic polynomial of the Hecke operator Tp = 2 acting on the 
space S2 (Γ1(15)). Therefore, the Fourier coefficient c(2) coincides with 
a root of equation p(x) = 0; in other words, we arrive at an extension of 
k by the polynomial p(x). The generator x of the field φ = (c(2)) is a 
root of the bi-quadratic equation [(x2)2 + 1]2 − 15 = 0; it is easy to see 
that 2 1 15.x = + − + One concludes, that the field 1 15.φ ≅ − +  is the 
Hilbert class field of quadratic field 15= k .

Example 2. Let D = 14. It is known, that for the quadratic field
= ( 14)k −  we have = 1|  ( ) | 4,fCl R =  while for the quadratic field

= 1 ( ) 1.Cl =f R it holds = 1 ( ) 1.Cl =f R However, for the ramified extensions 
one obtains the following isomorphism:  

= 23= 2
 ( )  ( ) / 4 ,fCl Cl R≅ ≅   f 
R  			                (15)

where m = 3 is the smallest integer satisfying formula (2). By theorem 
1, the Hilbert class field of k modulo f = 8 is generated by the Fourier 
coefficients of the Hecke eigenform φ(z) ∈ S2 (Γ1(2 × 4)). Using the 
SAGE, one finds that the characteristic polynomial of the Hecke 
operator Tp = 3 on S2 (Γ1(2 × 4)) has an irreducible factor p(x) = x4 + 3x2+ 
9. Thus the Fourier coecient c(3) is a root of the polynomial p(x) and one 
gets an extension of k by the polynomial p(x). In other words, generator 
x of the field Kφ = (c(3)) is a root of the polynomial equation (x4 + 
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3x2+ 9)2 − 4 × 14 = 0. The bi-quadratic equation 4 2  3  9 2 14 0x x+ + − =
has discriminant 27 8 14− +  and one finds a generator of φ to be 

4 27 8 14.− + Thus the field 4 27 8 14− +  is the Hilbert class over ( 14)  
modulo conductor f = 8. Clearly, the extension is ramified over the 
prime ideal p = (2). 

Remark 7. Table 1 above lists quadratic fields for some square-free 
discriminants 2 ≤ D ≤ 101. The conductors f and f satisfying equation 
(2) were calculated using tables for the class number of non-maximal 
orders in quadratic fields posted at www.numbertheory.org; the site is 
maintained by Keith Matthews. We focused on small conductors; the 

interested reader can compute the higher conductors using a pocket 
calculator. In contrast, computation of generator x of the Hilbert class 
field require the online program SAGE created by William A. Stein. We 
write an explicit formula for x or its minimal polynomial p(x) over k.
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D f  ( )fCl R f Hilbert class field of ( )D  
modulo conductor  f

2 1 trivial 1 ( 2)

3 1 trivial 1 ( 3)

7 1 trivial 1 ( 7)

11 1 trivial 1 ( 11)

14 2 / 4  8 ( )4 27 8 14− +

15 1 / 2  1 ( )1 15− +

19 1 trivial 1 ( 19)

21 2 / 4  8 ( )4 3 2 21− +

35 1 / 2  1 ( )17 35+

43 1 trivial 1 ( 43)

51 1 / 2  1 ( )17 51+

58 1 / 2  1 ( )1 58− +

67 1 trivial 1 ( 67)

82 1
4 3 22 4 8 16x x x x− + − +

1 4 3 22 4 8 16x x x x− + − +

91 1 / 2  1 ( )3 91− +

Table 1: Square-free discriminants 2 ≤ D ≤ 101.
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