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Abstract
In this paper, we prove that equation 2 2 3( ) = 0t x xx t x x

E f a b≡ − + − −u u u u u u uu  is self-adjoint and quasi self-adjoint, 
then we construct conservation laws for this equation using its symmetries. We investigate a symmetry classification 
of this nonlinear third order partial differential equation, where f is smooth function on u and a, b are arbitrary constans. 
We find Three special cases of this equation, using the Lie group method. 

Keywords: Lie symmetry analysis; Self-adjoint; Quasi self-adjoint; 
Conservation laws; Camassa-Holm equation;  Degas peris-Procesi 
equation; Fornberg whitham equation; BBM equation

Introduction
 A new procedure for constructing conservation laws was developed 

by Ibragimov [1]. For Camassa-Holm equation are calculated in studies 
of Ibragimov, Khamitova and Valenti [2]. In this paper, we study the 
following third-order nonlinear equation 

2 2 3 = 0,t x xx t x x
E f a b≡ − + − −u u u u u uu 		                (1)

and we show that this equation is self-adjoint and quasi self-adjont. 
Therefore we find Lie symmetries and conservation laws. There are three 
cases to consider: 1) b ≠ 0, a = arbitrary constant, 2) b = 0, a ≠ 0, and 
3) b = 0, a = 0. Clarkson, Mansfield and Priestly [3] are concerned with 
symmetry reductions of the non-linear third order partial differential 
equation given by 2 3 2( ) = 0t x xx t x x

u ∈ β− + − − −u k u u uu u u , where ∈, k, and β 
are arbitrary constants. Symmetry classification and conservation laws 
for higher order Camassa-Holm equation are calculated in framework 
of Nadjafikhah and Shirvani-Sh [4].

The special cases of (1) are:  

Camassa-Holm (CH) equation 2 3 2( 3 ) = 2t x xx t x x
− + + +u u k u u uu u u , 

k-arbitrary (real), describing the unidirectional propagation of shallow 
water waves over a flat bottom (let f = k + 3u, a = 2, b = 1 in (1). 

Degas peris-Procesi (DP) equation 2 3 2( 4 ) = 3t x xx t x x
− + + +u u k u u uu u u , 

k-arbitrary (real), is another equation of this class (let f = k + 4u, a = 3, 
b = 1  in (1). 

Fornberg Whitham (FW) equation 2 3 2(1 ) = 3t x xx t x x
− + + +u u u u uu u u , is 

another equation of this class (let f = 1 + u, a = 3, b = 1 in (1)). 

BBM equation 2 ( ) = 0t x xx t
− + +u u u uu , is another equation of this 

class (let f = 1 + u, a = 0, b = 0 in (1)). 

Preliminaries
In this section, we recall the procedure in literature of Ibragimov 

[1]. Let us introduce the formal Lagrangian 

L ≡ vE,	                                                                                     (2)

 where v = v(t, x) is a new dependent variable.

We define the adjoint equation by * = 0LE
u

δ
δ

≡ . Here 

= , , = 1,2,i i j i j k
i ij ijk

D D D D D D i j kδ
δ

∂ ∂ ∂ ∂
− + − +

∂ ∂ ∂ ∂


u u u u u

is the variational derivative and Di is the operator of total diferentiation.

An equation E = 0 is said to be self-adjoint [5] if the equation 
obtained from the adjoint equation by substitution v = u is identical 
with the original equation.

An equation E = 0 is said to be quasi- self-adjoint [5] if there 
exists a function = ( )ϕv u , ( ) 0'ϕ ≠u  such that *

= ( )| =E Eϕ λv u  with 
an undetermined coefficient λ. Eq.(1) is said to have a nonlocal 
conservation law if there exits a vector C = (C1, C2) satisfying the 
equation 

1 2( ) ( ) = 0,t xD C D C+ 				                  (3)

on any solution of the system of differential equations comprising (E) 
and the adjoint equation (E*). We say that orginal equation has a local 
conservation law if (3) is satisfied on any solution of Eq.(1). In studies 
of Ibragimov [1], the conserved vector associated with the Lie point 
symmetry 1 2= ( , , ) ( , , ) ( , , )x t uξ ξ φ∂ + ∂ + ∂v x t u x t u x t u  is obtained by the 
following formula : 

= [ ( ) ( )]i i
j j k

i ij ijk

L L LC L W D D Dξ ∂ ∂ ∂
+ − +

∂ ∂ ∂u u u

( )[ ( )] ( ) ,j k j k
ij ijk ijk

L L LD W D D D W∂ ∂ ∂
+ − +

∂ ∂ ∂u u u
  		               (4)

where i, j, k = 1,2 and = i
iW uφ ξ− . (Here ∂x means 

x
∂
∂

).

We recall the general procedure for determining symmetries for an 
arbitrary system of partial differential equations [6]. Let us consider the 
general system of a nonlinear system of partial differential equations of 
order n, containing p independent and q dependent variables is given 
as follows 

( )( , ) = 0, = 1, , ,n lν ν∆ x u 			                 (5)
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involving 1= ( , , )p
x x x , 1= ( , , )q

u u u  and the derivatives of u 
with respect to x up to n, where u (n) represents all the derivatives 
of u of all orders from 0 to n. We consider a one-parameter Lie 
group of transformations acting on the variables of system (5): 

2= ( , ) ( )i i
i O∈ ξ ∈+ +x x x u , 2= ( , ) ( )j j

j O∈ φ ∈+ +u u x u , where i=1,⋅⋅⋅, 
p, j = 1,⋅⋅⋅, q. ξ i, φ j are the infinitesimal of the transformations for 
the independent and dependent variables, respectively, and ∈ is the 
transformation parameter. We consider the general vector field 
v as the infinitesimal generator associated with the above group 

=1 =1
= ( , ) ( , ) .p qi j

i ji jx u
ξ φ∂ + ∂∑ ∑v x u x u  A symmetry of a differential 

equation is a transformation, which maps solutions of the equation to 
other solutions. The invariance of the system (5) under the infinitesimal 
transformation leads to the invariance conditions. (Theorem 2.36 of 
studies of Olver [6], Theorem 6.5 of literature of Olver [7]). 

[ ( , )] = 0, ( , ) = 0, = 1, , ,n n n
ν ν ν∆ ∆ v x u x u r 		                (6)

where vn is called the nth order prolongation of the infinitesimal 
generator given by ( )

=1
= ( , )qn j n

jk uj k k
φ+ ∂∑ ∑v v x u , where k = (i1,⋅⋅⋅iα), 1 

≤ iα ≤ p, 1 ≤ α ≤ n, and the sum is over all k’s of order 0 < #k ≤ n. If #k 
= α, the coeficent j

kφ  of juk
∂ , will depend only on α’th and lower order 

derivatives of u and ,=1 =1
( , ) = ( ( ))p pk n i j i j

j k j i k ii i
x u D u uφ φ ξ ξ− +∑ ∑ , where 

:= /j j i
iu u x∂ ∂  and , := /j j i

k i ku u x∂ ∂ . 

Adjoint Equation and Classical Symmetry Method
Formal Lagrangian for Eq. (1) is 

2 2 3= = [ ].t x xx t x x
L E f a b− + − −v v u u u u u uu 		              (7)

Therefore, the adjoint equation E* to Eq. (1) is 

2 2= 3 3 .x t x x xx x x xx xxx xxtx x
f + + + + + +v v au v au v bu v bu v buv v 	                (8)

Upon setting v = u it becomes 

2 2 2 3= 2 6 .t x x xx t x x x
f− − + +u u u au u bu u buu

Hence, Eq. (1) is self-adjoint if and only if it has the form 

a = 2b.	                                                                                      (9)

Consider again Eq. (1), and substitute 

= ( ), = ,'
t tϕ ϕv u v u

2
2= , = ,' ' ''

x x xx xx
ϕ ϕ ϕ+v u v u u

3
3 2= 3 ,' '' '''

xxx x xx x
ϕ ϕ ϕ+ +v u u u u

2
2 2= 2 ,' '' ''' ''

xxt t x t x xtx t x
v ϕ ϕ ϕ ϕ+ + +u u u u u u u

in the adjoint equation (8), then 
3

2 22 6' ' ' '' '
x t x x xx x

fϕ ϕ ϕ ϕ ϕ− − − − +u u a u u a u b u u

3 3
3 23 3'' ' '' '''

x x xx x
ϕ ϕ ϕ ϕ+ + + +b u b uu b uu u b uu

2
2 2 2' '' ''' ''

t x t x xtx t x
ϕ ϕ ϕ ϕ+ + + +u u u u u u u

2 2 3= ( ).t x xx t x x
fλ − + − −u u u au u buu

Hence, Eq. (1) is quasi self-adjoint if and only if it has the form 

a = 2b, v = −λu + ε                                                                              (10)

In this section, we will perfom Lie group method for Eq. (1) on 
(x1 = x, x2 = t, u1 = u), 2( , ) = ( , , ) ( ( , , ), ( , , ), ( , , )) ( )O∈ ξ τ φ ∈+ +

 x t,u x t u x t u x t u x t u , 

where ε ≤ 1 the group parameter and 1 =ξ ξ , 2 =ξ τ  and 1 =φ φ  are 
the infinitesimals of the transformations for the independent and 
dependent variables respectively. The associated vector fields is of the 
form = ( , , ) ( , , ) ( , , )x t uξ τ φ∂ + ∂ + ∂v x t u x t u x t u  and the third porolongation 
of v is the vector field 

2(3)

2
= ,x t x xt ttt

u u u xt tttx t x
v v u uφ φ φ φ φ+ ∂ + ∂ + ∂ + ∂ + + ∂

with coefficent 
2 2

,
=1 =1

= ( ) ,k i j i
k i k i

i i
Dφ φ ξ ξ− +∑ ∑u u 			                 (11)

where Dk is the total derivative with respect to independent variables. 
The invariance condition (6) for Eq. (1) is given by, 

(3)
2 2 3[ ] = 0,t x xx t x x

− + − −v u u u f au u auu 			              (12)

whenever E = 0. The condition (12) is equvalent to 
2 3 2

3 2( ) = 0,t x x x x t
xx x

φ φ φ φ φ φ− + − − − −bu f au au bu 		            (13)

whenever E = 0. Substituting (11) into (13), yields the determining 
equations. There are three cases to consider: 

a and b ≠ 0 are arbitrary constants

In this case, complete set of determining equation is: 

= 0,uξ 				                                 (14)

= 0,uτ 				                                    (15)

= 0,xτ 					                    (16)

2 = 0,
u
φ 					                     (17)

2 3 = 0,u t xux
φ φ τ ξ+ + −a a a a 				                 (18)

2 2 = 0,uxx
ξ φ− 					                   (19)

23 3 2 = 0,ux x xt utx
φ φ ξ ξ φ+ − + +bu a b u 			                 (20)

22 = 0,x ux
ξ φ− 					                  (21)

2 3 = 0,t x t xux
ξ φ φ τ ξ− − − +b bu bu 			                 (22)

2 2 = 0,uxx
ξ φ−a u a 				                   (23)

2 3 2 2 2= 2 3 ,u x t t xtux t x ux x ux
ξ ξ φ φ ξ τ φ ξ φ φ+ + + + + + + +bu f f f f a bu 	               (24)

3 2 = 0.t xx x t
φ φ φ φ− + + −bu f 				                 (25)

With substituting (14) – (17) into (18) – (23) we have 

1 1 2
1= ( ), = , = ( ).'φ α τ ξ α+ − +c t c t c t
b

		               (26)

With substituting (26) into (24) – (25) we have 

= 1 ( 1),K− + +f bu 				                 (27)

where c1, c2 and K are arbitrary constants. With substituting (27) into 
determining system, we have 

1
1 2 1 3

( 1)= , = , = ,c bu c t c c t c
b

φ τ ξ− +
+ − +

where ci, i = 1,2,3 are arbitrary constants. 

Theorem 3.1.1. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case are: 

1 2 3
( 1)= , = , = .x t u t x

+
− ∂ + ∂ − ∂ ∂ ∂

bu
v t t v v

b
We want to construct the conservation law associated with the 

symmetry 

1
( 1)= .x t u

+
− ∂ + ∂ − ∂

bu
v t t

b
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We have 
1= .t xW − − − +u tu tu
b

				               (28)

The right-hand side of (4) is written 
1 2 2= ( ( )) ( )( ) ( ) ,x x x xC W D D W D D W− + −v v v v

2 2
2= [ ( ) ( ) 2 ( )]x x x t xx

C W D D D D− + − −vf avu avu buv v 	            (29)

( )[ ( ) ( )] ( )[ ( )]x x x t t xD W D D D W D+ − + + +avu buv v v

22 ( )[ ] ( )[ ].x t xD D W D W− −v buv

We eliminate the term ξ iL since the Lagrangian L is equal to zero 
on solution of Eq.(1). Substituting in (29), the expression (7) for L and 
(28) for W, we obtain 

1 1 1=C − − − + + + + −t x xx xx t xx x xxuv v tu v tu v uv v tu v tu v
b b

2 2 2 3 ,
x x x t x

− − + + + −x x xt x xu v tu v tv u u v tu v tu v 		             (30)

and 
2

2= ( 2 )xx xtx
C − − − −u vf bvu buv v

1
2( ( 2 ))xx xtx

−− − − −b vf bvu buv v

2( 2 )t xx xtx
b− − − −tu vf bvu uv v

2( 2 ) ( )x xx xt x x x tx
+ − − − − − +tu vf bvu buv v u buv bvu v

2( )( ) ( )( ) 2xt x
− − + + − + −x x t x x t t xtu buv bvu v tu buv bvu v u v

2 2 2 3x x x xt xt x x t x
− + + + + −tu v u v tu v buvu tbuvu tbuvu

2 2 24 2 2 2 .xt xt x x t
+ + − −u v tu v u v u v 			               (31)

We can eliminate ut by using Eq.(1) and then substitute in (30) and 
(31) the expression v = u, therefore arrive at the conserved vector with 
the following components: 

1
2 3 2

1= ( (2 )x xx x x t
C −

+ − +t bu u buu u f u ub
b

2 3 2 2(2 )x x xx x x t x
− + − + −t bu u buu u f u u b tu ub 		               (32)

2 2
3 2 2 22 ),xt x xx x t x x

+ + − + − + + −tu u b tu ub tu ub u b uu b u b u u

2 1= ( 2 2 ) ( ( 2 2 ))C −− − − − − −xx xt xx xtu uf buu u b uf buu u

2 3 2(2 )( 2 2 )
x x x t

− + − + − −x x xx xtt bu u buu u f u uf buu u

( 2 2 ) ( ) ( )+ − − − −x xx xt x t xt ttu uf buu u u u tu u

2 2 3 2( )( ) 2(2 )t xx x x x t
+ − + − +x xtu u bu u buu u f u u

2 2 2
2 2 2 3 4x xtt x x t x

− + + + + − +xt xt xtu u u tu u bu u tbu u tbu u u u

2 2 22 2 2 .
xt x x t

+ − −tu u uu u u

Where = 1 ( 1).K b− + +f u  

a is an arbitrary nonzero constant and b = 0.

In this case Eq.(1) is not self adjoint because a ≠ 2b. Complete set 
of determining equation is: 

= 0,uuφ 					                  (33)

= 0,uξ 					                 (34)

= 0,tξ 					                (35)

= 0,uτ 					                  (36)

= 0,xτ 					                  (37)

23 = ,x t uux
ξ φ τ φ+ −a a a a 				                 (38)

= 0,ut xaφ φ+ 					                   (39)

22 = 0,ux x
φ ξ− + 					                  (40)

22 = 0,x ux
ξ φ− 					                  (41)

2 2 = 0,uxx
ξ φ−a a 					                 (42)

2 2= 2 ,t u uxt xux x
f f f fτ φ φ φ ξ φ+ + + +a 			                 (43)

2= .t x x t
fφ φ φ+ 					                 (44)

Now, by considering Eq. (33) – (42) it is not to hard to find that the 
components ξ, τ and φ of infinitesimal generators become 

2
1 1

2 1 2 12
( ) ( )= ( ), = ( ) , = .F F F Fφ τ ξ− + − +

d t d tx
u t t c c

dt a dt
	               (45)

To find complete solution of the above system, we consider Eq. (43) 
and l = dim Spam{f u, f,1}. Three general cases are possible:  

3.2.i) l = 1, then f = constant;  

3.2.ii) l = 2, then fu = αf + β ;  

3.3.iii) l = 3, then αfu + βf + γ ≠ 0, α ≠ 0. 

Case 3.2.i). With substituting f = constant in determining system 
(33)-(44), we have φ = c1, τ = c2, ξ = c3, where ci, i = 1,2,3 are arbitrary 
constants. 

Theorem 3.2.1. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case are: 

1 2 3= , = , = .x t u∂ ∂ ∂v v v

Case 3.2.ii). With integrating from fu = αf + β with respect to u, 
we obtain 

= ,uf Ceαβ
α
−

+ 					                 (46)

where C is an integrating constant. With substituting (46) into Eq. 
(43)-(44) and Eq. (45), we have 

1
1 1 2

( )= , = , = .
uC et

C

αα βξ τ φ
α

−−
−

c
c c 		               (47)

Theorem 3.2.2. Infinitesimal generator of every one parameter Lie 
group of point symmetries in this case is: 

2= .
u

x t u
C

C

αα β
α

−−
∂ − ∂ + ∂

e
v t 			                 (48)

Case 3.2.iii). The Eq. (43) leads to φ = 0, τ = c1, ξ = c2. 

Theorem 3.2.3. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case are: 

1 2= , = .t x∂ ∂v v

b = 0, a = 0.

Complete set of determining equation is 

= 0,uξ 					                  (49)

http://dx.doi.org/10.4172/1736-4337.S2-004
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= 0,tξ 					                (50)

= 0,uτ 					                   (51)

= 0,xτ 					                  (52)

= 0,utφ 					                (53)

= 0,uuφ 					                   (54)

2 = 2 ,xux
φ ξ 					                  (55)

22 = ,ux x
φ ξ 					                     (56)

2= ,t x x t
φ φ φ+ f 					                   (57)

= 0.t x uτ ξ φ+ +f f f 				                  (58)

To find a complete solution of the above system we consider Eq. 
(58) and with assumption f / fu ≠ 0 we rewrite: 

= ( ).t x
u

φ τ ξ−
+

f
f

				                                 (59)

Two general cases are possible: 
3.3. ) = , 3.3. ) = ( ),

u u

i iif f
c h u

f f

where c is constant. 

Case 3.3.i).

With integrating from f / fu ≠ c with respect to u, we have 

/= ,u cLef 					                     (60)

where L is an integrating constant. Then the Eq. (58) reduce to 

= ( ).t xφ τ ξ− +c 					                    (61)

With substituting Eq. (61) into determining equation, we have 

1 2 3 2= , = , = ,ξ τ φ+ −c c t c cc 			              (62)

where ci, i = 1,2,3 are arbitrary constants. 

Theorem 3.3.1. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case are: 

1 2 3= , = , = .t u t x∂ − ∂ ∂ ∂v t c v v

We want to construct the conservation law associated with the 
symmetry 

1 = .t u∂ − ∂v t c

We have 

= .W − − tc tu 					                   (63)

The right-hand side of (4) is written 
1 2= ( ) ( ( ))[ ] ( )[ ],xx x x xC W D W D W− + −v v v v 		                (64)
2 = [ 2 ] ( )[ ] ( )[ ] 2 ( )[ ].x t t x tC W D W D W D D W− + + −xt xvf v v v v 	              (65)

Substituting in (64) and (65), the expression (7) for L and (63) for 
W, we obtain 

1 = ,xx tC − + − + − +xx t x tx txxcv cv tvu tv u tv u tvu 		                 (66)
2 = 2C − − + −t x xt xt tcvf u v cv tu v

2 22 2 2 .
t xt

− − + + +x t tx t xttv u tvfu vu tu v tu v 		                (67)

We can eliminate ut by using Eq. (1) and obtain 
1

2= ,
x t

C − + + + − −xx x xx xx x x txcv cv tvfu tv u tfv u tv u 		             (68)

2 2
2 2 2= 2x xx t t x t

C − + + − − − +x x xt xt t xu v fu v cv tu v tv u tvfu tvf u

22 2 2 2 .tx xt
+ + − + −xt xxt x xtvu tu v cvf tv u tfu v 		               (69)

Now, we substitute in (68) and (??) the expression v = u, therefore 
arrive at the conserved vector with the following components: 

1
2 2 2 2= ,xx x x t x

C − + + + − −x x txcu cu tufu tu u tfu u tu u 		            (70)

2 2
2 2= 2 2x x xt xt t x xt xxtx t t

C cuf u u fu cu tu u tu u tu u− − + + − − +

2
2 22 2 2 ,x xt x txx t xt

ftu u tufu tuf u uu tu u− − + + + 		               (71)

where /= .u cLef  

Case 3.3.ii). By considering Eq. (49) − (54), we find that the 
components ξ , τ and φ are ξ = ξ(x), τ = τ (t) and = ( ) ( , )A Bφ +x u x t . By 
considering Eq. (55) and (56) we have 

1 2 3= exp 2 exp 2 ,c c cξ + − +x x

1 2 4( ) = exp 2 exp 2 .A − − +x c x c x c

By considering Eq. (57) we have 
2

1 2 5 6= (2 exp 2 2 exp 2 ) ,τ + − + +ft c x c x c t c

where ci, i = 1..6 are arbitrary constants.

From the following identity: 

( ) ( , ) = ( ),t x
u

A B τ ξ−
+ +

f
x u x t

f
we find that c1 = c2 = 0 and 5= ( / )uφ − f f c . Hence we have two 

particular cases: 

= , = ( ),
u u

K K≠
f f

u u g u
f f

where K is an arbitrary nonzero constant. For the first case, we have 

3 5 6 5= , = , = ,Kξ τ φ+ −c c t c uc

and for the second case, we have 

3 6= , = , = 0.ξ τ φc c

Theorem 3.2. Infinitesimal generators of every one parameter Lie 
group of point symmetries in this case, when / =u Kf f u  are 

1 2 3= , = , = ,x t t u∂ ∂ ∂ − ∂v v v t u

and when / = ( )u K≠f f u g u  are 

1 2= , = ,x t∂ ∂v v

where K is an arbitrary nonzero constant. 

To construct the conservation law associated with the symmetry 
= t u∂ − ∂v t u , we find that = tW − −u tu . Therefore, we have the 

conserved vector with the following components: 
1 2=C − + − + +xx xxt x xx xxtu uu tuu tfuu tu u

2 ,
x

− − − + +x xx x xt xx xxttfu u u tu u uu tuu

2 2 2= 2 2 2xC − − + + + −xxt xt xxt xt xt xu f tufu tuf u uu tu u ftu u

24 2 2 2 2 ,x− − + + − + −x t xt t xt ttx xxt x tt xu u tu u u u tu u u u fu u u

where / = ( ).u K≠f f u g u  
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