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Abstract
In this paper, we present a relative version of the concept of lower marginal series and give some isomorphisms 

among G-marginal factor groups. Also, we conclude a generalized version of the Stalling’s theorem. Finally, we 
present a sufficient condition under which the order of the generalized Baer-invariant of a pair of finite groups divides 
the order of the generalized Baer-invariant of its factor groups. 
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Introduction
There exists a long history of interaction between Schur multipliers 

and other mathematical concepts. This basic notion started by Schur 
[1], when he introduced multipliers in order to study projective 
representations of groups. It was known later that the Schur multiplier 
had a relation with homology and cohomology of groups. In fact, if G 
is a finite group, then 2 *

2( ) ( , ) ( , )M G H G H G≅ ≅  , where M(G) is the 
Schur multiplier of G, H2(G, *) is the second cohomology of G with 
coefficient in * and H2(G, ) is the second internal homology of G [2]. 
Hopf [3] proved that 2( ) ( ) / [ , ]M G R F R F≅ ∩ . He also proved that the 
Schur multiplier of G is independent of the free presentation of G. Let 
(G, N) be a pair of groups, where N is a normal subgroup in Ellis [4] 
defined the Schur multiplier of the pair (G, N) to be the abelian group 
M(G, N) appears in the following natural exact sequence

3 3                    ( ) ( , ) ( , ) ( ) ( / )H G H G N M G N M G M G N→ → → → 	

                                  / [ , ] ( ) ( / ) 1,ab abG N G G G N→ → → →

where H3(−) denote the third homology of a group with integer 
coefficients. He also proved that if the normal subgroup N possess a 
complement in G, then for each free presentation 1 1R F G→ → → →  
of G, M(G, N) is isomorphic with the factor group ( [ , ]) / [ , ]R S F R F∩ , 
where S is a normal subgroup of F such that /S R N≅ . In particular, if N = 
G then the Schur multiplier of (G, N) will be ( ) = ( [ , ]) / [ , ].M G R F F R F∩

We assume that the reader is familiar with the notions of the verbal 
subgroup V(G), and the marginal subgroup 

V *(G), associated with a variety of groups  and a group G [5] 
for more information on varieties of groups). Let F∞ be the free group 
freely generated by the countable set X = {x1, x 2,…} and  and  be two 
varieties of groups defined by the sets of laws  and , respectively. Let 
N be a normal subgroup of a group G, then we define [NV *G] to be the 
subgroup of G generated by the elements of the following set:

1
1 2 1 2 1{ ( , ,..., ,..., ) ( , ,..., ) |1 , , ,..., ,  }.i r r rv n i r V G n Nν ν− ≤ ≤ ∈ ∈ ∈g g g g g g g g g

It is easily checked that [NV *G] is the least normal subgroup T of G 
such that N/T is contained in V *(G/T) [6].

The first to create the generalization of the Schur multiplier to any 
variety of groups was Baer [7]. It is well known fact that the recent 
concept is useful in classifying groups into isologism classes. Leedham-
Green and McKay [8] introduced the following generalized version of 
the Baer-invariant of a group with respect to two varieties  and .

Let G be an arbitrary group in  with a free presentation 
1 1,R F G→ → → →  in which F is a free group. Clearly, 

1 = ( ) = ( ) /W G W F R R  and hence (  )W F R⊆ , therefore, 

1 / (  ) / (  ) 1R W F F W F G→ → → →

is a -free presentation of the group G. We call 

/ (  ) ( / (  )) (  )( (  )) ( ) = =
[ / (  ) ( / ( ))] (  )[  ]
R W F V F W F W F R V FM G
R W F V F W F W F RV F∗ ∗

∩ ∩

the generalized Baer-invariant of the group G in  with respect to the 
variety . Now if N is a normal subgroup of the group G for a suitable 
normal subgroup S of the free group F, we have N ≅ S/R. Then we can 
define the generalized Baer-invariant of the pair of groups with respect 
to two varieties  and  as follows: 

/ (  ) [ / (  ) ( / ( ))] ( )( [ ])( ,  ) = = .
[ / ( ) ( / ( ))] ( )[ ]

R W F S W F V F W F W F R SV FM G N
R W F V F W F W F RV F

∗ ∗

∗ ∗

∩ ∩

One may check that M(G, N) is always abelian and independent 
of the free presentation of G. In particular, if  is the variety of all 
groups and N=G then the generalized Baer-invariant of the pair (G, 
N) will be 

(  )( , ) = = ( ),
[  ]

R V FM G G M G
RV F∗
∩ 

which is the usual Baer-invariant of G with respect to  [8].

It is interesting to know the connection between the Baer-invariant 
of a pair of finite groups (G, N) and its factor groups with respect to 
the Schur-Baer variety . In the next section, we show that under 
some circumstances there are some isomorphisms among G-marginal 
factor groups (Theorem 2.2). Also, a sufficient condition will be given 
such that the order of the generalized Baer-invariant of a pair of finite 
groups divides the order of the generalized Baer-invariant of the pair of 
its factor groups (Theorem 2.5).

Variety  is called a Schur-Baer variety if for any group G in which 
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the marginal factor group G / V*(G) is finite, then the verbal subgroup 
V(G) is also finite. Schur [9] proved that the variety of abelian groups 
is a Schur-Baer variety and Baer [10] showed that a variety defined by 
outer commutator words carries this property. In 2002, Moghaddam et 
al. [11] proved that for a finite group G, M(G) is finite with respect to 
a Schur-Baer variety . In the following lemma we prove similar result 
for the M(G, N) and M(G) with using another technique. 

Lemma 1.1. Let  be a Schur-Baer variety and G be a finite group in 
 with a normal subgroup N. Then there exists a group H with a normal 
subgroup K such that

* * | [ ] || ( , ) |= | [ ] | < .NV G M G N KV H ∞

In particular, | ( ) || ( ) | = | ( ) | < .V G M G V H ∞  

Proof. Let G = F / R be a free presentation for the group G and S be a 
normal subgroup of the free group F such that N ≅ S / R, then 

*
* * .

( )[ ] ( )[ ]
R FV

W F RV F W F RV F
 

⊆  
 

Let *= / ( )[ ]H F W F RV F  and *= / ( )[ ]K S W F RV F , then *| | < | | <
( )
H G

V H
∞  and 

*| [ ] | | ( ) | < .KV H V H≤ ∞  But 
* * *

*
* * *

( )[ ] ( )[ ] ( )( [ ])| [ ] |=| | = | || | .
( )[ ] ( )( [ ]) ( )[ ]

W F SV F W F SV F W F R SV FKV H
W F RV F W F R SV F W F RV F

∩
∩

Also, 
* * *

*
*

[ ] ( )[ ] ( )[ ][ ] = =
( )( [ ])

SV F R W F SV F R W F SV FNV G
R R W F R SV F

≅
∩

. Thus 

the result holds. 

Stallings’ Theorem
In the following lemma we present some exact sequences for the 

generalized Baer-invariant of a pair of groups and its factor groups. 

Lemma 2.1. Let G be a group with a free presentation 
1 1R F G→ → → →  and S, T be normal subgroups of the free group F 
such that T S⊆ , /S R N≅  and /T R K≅ . Then the following sequences 
are exact:

*

*

*

*

( )( [ ])(i) 1 ( , )                                      
( )[ ]

[ ] ( / , / ) 1;
[ ]

W F R TV F M G N
W F RV F

K NV GM G K N K
KV G

∩
→ →

∩
→ → →




 

* * *(ii) ( , ) ( / , / ) 1;
[ ] [ ] [ ]

K N NM G N M G K N K
KV G NV G NV G K

→ → → → → 

(iii) Moreover, if K is contained in V*(G), then the following 
sequence is exact:

*

* *

* *

[ ]    1 ( / , / )                                              
( )[ ] [ ]

1.
[ ] [ ]

R SV F M G K N K
W F TV F SV F

N NK
NV G NV G K

∩
→ →

∩

→ → → →



Proof. Considering the definition mentioned above we can 
conclude:

* * *

* * *

*

*

( )( [ ]) [ ] ( [ ])( / , / ) =                  = ,
( )[ ] [ ] [ ]

( )( [ ])                               ( , ) = .
( )[ ]

W F T SV F K NV G T SV F RM G K N K
W F TV F KV G TV F R

W F R SV FM G N
W F RV F

∩ ∩ ∩

∩





Now one can easily check that the sequences (i) and (ii) are exact.

 (iii) Using the assumption, we have ( )[ ]W F TV F R∗ ⊆ . Therefore, 
one can easily check that the following sequence is exact:

* *

* * *
[ ] ( )( [ ])1

( )[ ] [ ] ( )[ ]
R SV F W F T SV F

W F TV F SV F W F TV F
∩ ∩

→ →
∩

 

* *                                             / 1.
[ ] [ ]

S ST R
SV F R SV F T

→ → → →  

Let N be a normal subgroup of a group G. Then we define a series 
of normal subgroups of N as follows:

0 1 2                  = ( , ) ( , ) ( , ) ( , ) ,nN V N G V N G V N G V N G⊇ ⊇ ⊇ ⊇ ⊇ 

where *
1( , ) = [ ( , ) ]i iV N G V N G V G−  for all n ≥ 1. We call such a series the 

lower G-marginal series of N in G. One may also define the upper G-
marginal series as in studies of Moghaddam et al. [11].

We say that the normal subgroup N of G is G-nilpotent if it has 
a finite lower G-marginal series. The shortest length of such series is 
called the class of G-nilpotency of N in G. If N = G, then this is called 
lower -marginal series of G. The group G is said to be -nilpotent iff 
Vn(G) = 1, for some positive integer n [12].

Now, we want to show that under some circumstances there are 
some isomorphisms among G-marginal factor groups. By using 
Lemma 2.1, we have the following Theorem, which generalizes 7.9.1 of 
literature of Hilton and Stammbach [13].

Theorem 2.2. Let f : G → H be a group homomorphism and N be 
a normal subgroup of G and K be a normal subgroup of H such that 

( )f N K⊆ . Suppose f induces isomorphisms 0 : / /f G N H K→  and 
* *

1 : / [ ] / [ ]f N NV G K KV H→ , and that * : ( , ) ( , )f M G N M H K→   is an 
epimorphism. Then f induces isomorphisms : / ( , ) / ( , )n n nf G V N G H V K H→

  and 
: / ( , ) / ( , )n nnf N V N G K V K H→

  for all n ≥ 0. 

Proof. At first, we want to mention a point that for making it 
easier to draw the following diagrams, we would like to introduce 

= ( , )n nP V N G  and = ( , )n nQ V K H . We proceed by induction. For n = 0 
the assertion is trivial. For n = 1, consider the following diagram:

1 N/ [NV ∗G] G/ [NV ∗G] G/N 1

1 K/ [KV ∗H ] H/ [KV ∗H ] H/K 1.

f 1 f 1 f 0

By the hypothesis 1f and f0 are isomorphism, hence f1 is an 
isomorphism. Assume that n ≥ 2. By consedering Lemma 2.1(ii), we 
can conclude the following communicative diagram:

WV M (G, N ) WV M (G/Pn− 1 , N/Pn− 1) Pn− 1/P n N/ [NV ∗G] N/ [NV ∗G]Pn− 1 1

WV M (H, K ) WV M (H/Q n− 1 , K/Q n−1) Qn− 1/Q n K/ [KV ∗H ] K/ [KV ∗H ]Qn− 1 1

α 1 α 2 α 3 α 4 α 5  

Note that the naturality of the map f induces homomorphisms 
αi, i = 1,2,…,5 such that ( )∗  is commutative. By hypothesis α1 is an 
epimorphism and α4, α5 are isomorphisms. Also, by considering the 
induction hypothesis and definition of the Baer-invariant of the pair of 
groups, α2 is an isomorphism. Hence by five lemma of Rotman’s studies 
[14] α3 is an isomorphism. Now consider the following diagram and in 
the same way, fn is an isomorphism. 

 Now we obtain the following corollary. 
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1 Pn− 1/Pn N/Pn N/Pn− 1 1

1 Qn− 1/Q n K/Q n K/Q n− 1 1

α 3 f n f n− 1

By the above discussion α3 is an isomorphism and by induction of 
hypothesis 1nf − is an isomorphism, therefore, nf is an isomorphism. 
Finally, by the following diagram:

1 N/P n G/P n G/N 1

1 K/Q n H/Q n H/K 1

f n f n f 1  

And the same way, fn ia an isomorphism. 

Now we obtain the following collary. 

Corollary 2.3. Let ( , |) : ( , ) ( , )f f G N H K→  are group homomorphisms 
satisfy the hypotheses of Theorem 2.2. Suppose further that N and 
K are G-nilpotent and H-nilpotent, respectively. Then f and f | are 
isomorphisms. 

Proof. The assertion follows from Theorem 2.2 and the remark that 
there exists n ≥ 0 such that Vn(N,G) = {1} and Vn(K,H) = {1}. 

Now, we have the following theorem, which is a generalization of 
Stalling’s theorem [15]. 

Theorem 2.4. Let  be a variety of groups and f : G → H be an 
epimorphism. Let N be a G-nilpotent normal subgroup of G and K 
be a normal subgroup of H such that f (N) = K. If *ker [ ]f NV G⊆  and 
M(H, K) is trivial, then f and f | are isomorphisms. 

Proof. Put M = ker f, then * *[ ] [ ]
N K

NV G KV H
≅ , G H

N K
≅  and 

( , ) = ( , )n
n

V N G M V K H
M

 for all n ≥ 0. Now the result follows from 

Corollary 2.3. 

 Finally, a sufficient condition will be given such that the order of the 
generalized Baer-invariant of a pair of finite groups divides the order 
of the generalized Baer-invariant of the pair of its factor groups with 
respect to two varieties of groups. Let : E Gψ →  be an epimorphism 
such that ker ( )V Eψ ∗⊆ . We denote by ( ) ( )WV G∗ ∗  the intersection of all 
subgroups of the form ( ( ))V Eψ ∗ . Clearly, ( ) ( )WV G∗ ∗  is a characteristic 
subgroup of G which is contained in V *(G). In particular, if  is the 
variety of all groups and  is a variety of abelian groups then this 
subgroup is denoted by Z *(G) as in literature of Karpilovsky [2].

Now using the above concept we have the following Theorem. 

Theorem 2.5. Let K be a normal subgroup of G contained in 
( ) ( )N WV G∗ ∗∩ . Then 

| ( , ) |  | ( / , / ) | .M G N divides M G K N K 

Proof. By theorem 3.2 of Neumann [5], natural homomorphism 
( ) ( / )M G M G K→   will be a monomorphism. Now the following 

commutative diagram 

WV M (G, N ) WV M (G)

WV M (G/K, N/K ) WV M (G/K)

⊆

⊆

implies that the natural homomorphism ( , ) ( / , / )M G N M G K N K→   is 
also a monomorphism. Thus Lemma 1.2 (i) implies that M(G, K) is 
trivial. Now we have *| ( / , / )) | = | [ ] || ( , ) |,M G K N K K NV G M G N∩   which 
completes the result. 
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