
The Annals of Statistics
2024, Vol. 52, No. 1, 261–284
https://doi.org/10.1214/23-AOS2346
© Institute of Mathematical Statistics, 2024

RATES OF ESTIMATION FOR HIGH-DIMENSIONAL
MULTIREFERENCE ALIGNMENT

BY ZEHAO DOUa, ZHOU FANb AND HARRISON H. ZHOUc

Department of Statistics and Data Science, Yale University, azehao.dou@yale.edu, bzhou.fan@yale.edu,
chuibin.zhou@yale.edu

We study the continuous multireference alignment model of estimating
a periodic function on the circle from noisy and circularly-rotated observa-
tions. Motivated by analogous high-dimensional problems that arise in cryo-
electron microscopy, we establish minimax rates for estimating generic sig-
nals that are explicit in the dimension K . In a high-noise regime with noise
variance σ 2 � K , for signals with Fourier coefficients of roughly uniform
magnitude, the rate scales as σ 6 and has no further dependence on the di-
mension. This rate is achieved by a bispectrum inversion procedure, and our
analyses provide new stability bounds for bispectrum inversion that may be
of independent interest. In a low-noise regime where σ 2 � K/ logK , the rate
scales instead as Kσ 2, and we establish this rate by a sharp analysis of the
maximum likelihood estimator that marginalizes over latent rotations. A com-
plementary lower bound that interpolates between these two regimes is ob-
tained using Assouad’s hypercube lemma. We extend these analyses also to
signals whose Fourier coefficients have a slow power law decay.

1. Introduction. Multireference alignment (MRA) refers to the problem of estimating
an unknown signal from noisy samples that are subject to latent rotational transformations [4,
28]. This problem has seen renewed interest in recent years, as a simplified model for molec-
ular reconstruction in cryo-electron microscopy (cryo-EM) and related methods of molecular
imaging [7, 38]. It arises also in various other applications in structural biology and image
registration [13, 16, 30]. Recent literature has established rates of estimation for MRA in
fixed dimensions [1, 6, 20, 25], describing a rich picture of how these rates may depend on
the signal-to-noise ratio and properties of the underlying signal. However, many applications
of MRA involve high-dimensional signals, and there is currently limited understanding of
optimal rates of estimation in high-dimensional settings.

In the continuous MRA model—the focus of this work—the signal is a smooth periodic
function f on the circular domain [−π,π). We observe independent samples of f in additive
white noise, where each sample has a uniformly random latent rotation of its domain [6, 18].
The true function f is identifiable only up to rotation, and we will study its estimation under
the rotation-invariant squared-error loss

(1) L(f̂, f ) = min
α∈[−π,π)

∫ π

−π

(
f̂ (t) − f (t − α mod 2π)

)2 dt.

In the closely related discrete MRA model, the signal is instead a vector x ∈ R
K , observed

in additive Gaussian noise with cyclic permutations of its coordinates [4, 25]. The contin-
uous and discrete models are similar, in that both rotational actions are diagonalized in the
(continuous or discrete, resp.) Fourier basis, and these diagonal actions have similar forms.

A recent line of work has studied rates of estimation for MRA in “low dimensions,” treat-
ing as constant the dimension K for discrete MRA, or the maximum Fourier frequency K
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for continuous MRA. Many such results have specifically focused on a regime of high noise:
In this regime, [25] showed that the squared-error risk for estimating “generic” signals scales
with the noise standard deviation as σ 6. Bandeira et al. [6] showed that this scaling for esti-
mating a “nongeneric” signal depends on its pattern of zero and nonzero Fourier coefficients,
and derived rate-optimal upper and lower bounds over minimax classes of such signals. Rates
of estimation for MRA with nonuniform rotations were studied in [1], with a dihedral group
of both rotations and reflections in [9], with sparse signals in [20], and with down-sampled
observations in a superresolution context in [10].

It is empirically observed, for example, in [18], Section 5, that electric potential func-
tions of protein molecules in cryo-EM applications may require basis representations with
dimensions in the thousands to capture secondary structure, and even higher dimensions to
achieve near-atomic resolution. Motivated by this observation, in this paper, we extend the
above line of work to study the continuous MRA model in potentially high dimensions, in
both high-noise and low-noise regimes. Our main results are described informally as follows:
Let

θ∗ = (
θ∗

1,1, θ
∗
1,2, θ

∗
2,1, θ

∗
2,2, θ

∗
3,1, θ

∗
3,2, . . .

)
be the coefficients of f in the real Fourier basis over [−π,π), that is,

f (t) =
∞∑

k=1

1√
π

θ∗
k,1 cos kt + 1√

π
θ∗
k,2 sinkt,

and let

(2) (rk cosφk, rk sinφk) = (
θ∗
k,1, θ

∗
k,2

)
be the representation of the kth Fourier frequency in terms of the magnitude rk and phase φk .
Fixing a decay parameter β ∈ [0, 1

2), we consider a class of signals f represented by

�β = {
f : rk � k−β for k = 1, . . . ,K, rk = 0 for all k ≥ K + 1

}
,

where we bandlimit f to its first K Fourier frequencies. Our results distinguish two separate
signal-to-noise regimes for estimating f , based on the size of the entrywise noise variance
σ 2 in the Fourier basis. We establish sharp minimax rates of estimation in both regimes, for
sufficiently large sample size N , that are explicit in their dependence on the dimension K .

THEOREM (Informal). Let β ∈ [0, 1
2).

(a) (High noise) If σ 2 �K1−2β and N � K6βσ 6 logK , then

inf
f̂

sup
f ∈�β

E
[
L(f̂, f )

] � K4βσ 6

N
.

(b) (Low noise) If σ 2 � K1−2β/ logK and N �K1+2βσ 2 logK , then

inf
f̂

sup
f ∈�β

E
[
L(f̂, f )

] � Kσ 2

N
.

We refer to Theorems 2.1 and 2.2 for precise statements of these results. Our signal class
with power law decay β < 1/2 is representative of a setting where the average power per
Fourier frequency, ‖θ∗‖2/K � K−2β , is of comparable magnitude to the power r2

k at a typical
frequency k ∈ {1, . . . ,K}. Our analyses of the estimators that achieve these minimax rates
apply more generally to signals of this form (cf. Theorems 4.1 and 5.2).
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For large N , this result implies that there is a sharp transition in the minimax estima-
tion rate near the noise level σ 2 � K1−2β � ‖θ∗‖2, which separates the two signal-to-noise
regimes of the problem. Such a transition may be anticipated by the results of [3], where
σ 2 � ‖θ∗‖2 is the condition required to carry out the high-noise Taylor expansion of the chi-
squared divergence and of [29], which provided a sharp analysis of the sample complexity
in the low-noise regime for an analogous discrete MRA model (see below). As σ 2 varies in
the small parameter window from K1−2β/ logK to K1−2β between these “low-noise” and
“high-noise” regimes, our result confirms that there must be a rapid increase in the minimax
risk, from roughly the order K2−2β/N to K3−2β/N .

In the high-noise regime where σ 2 � ‖θ∗‖2, we show that the minimax rate is achieved
by a variant of a third-order method-of-moments (MoM) procedure. The scaling with σ 6

matches previous results of [25], and a notable new feature of the rate is its scaling with
the dimension K , for example, when β = 0, the rate has no explicit dependence on K . In
the MRA model, for functions having the Fourier coefficients (2), second-order moments
correspond to the power spectrum {

r2
k : k = 1, . . . ,K

}
and third-order moments to the Fourier bispectrum{

φk+l − φk − φl : k, l ∈ {1, . . . ,K} and k + l ≤ K
}
.

Method-of-moments in this context is also known as bispectrum inversion [8, 30], which
aims to estimate the Fourier phases {φk} from an estimate of the bispectrum. Results of [8,
25] imply that for signals where rk 
= 0 for every k = 1, . . . ,K , these phases are uniquely
determined by the bispectrum. Our analyses quantify the conditioning of the linear system
relating the bispectrum to the Fourier phases, which gives rise to the quantitative dependence
of the estimation rate on K . To resolve phase ambiguities before solving this linear system,
we prove also an important 	∞ stability property of bispectrum inversion (cf. Lemma 4.9),
which is of independent interest.

Our definition of the low-noise regime σ 2 � K1−2β/ logK � ‖θ∗‖2/ logK and minimax
rate in this regime are related to the work of [29], which studied instead the discrete MRA
model in the asymptotic limit K → ∞ and (σ 2 logK)/K → 1/α ∈ (0,∞), for a Bayesian
setting where θ∗ has a standard Gaussian prior. This work showed a transition in the Bayes
risk and associated sample complexity at the sharp threshold α = 2. The analysis in [29]
relied on the discreteness of the rotational model, analyzing a template matching procedure
that exactly recovers the latent rotation for each sample. For continuous MRA, this estimation
of each rotation is possible only up to a per-sample error that is independent of the sample
size N , and averaging the correspondingly rotated samples would yield an estimation bias that
does not vanish with N . Our analysis shows that direct application of third-order method-of-
moments also does not yield the optimal estimation rate across the entire low-noise regime.
We instead analyze the maximum-likelihood estimator (MLE) that marginalizes over latent
rotations, to obtain the minimax upper bound in this regime.

1.1. Further related literature. A body of work on MRA and related models focuses on
the synchronization approach, which seeks to first estimate the latent rotation of each sample
based on the relative rotational alignments between pairs of samples [35]. In the context of
cryo-EM, this is known also as the “common lines” method [36, 37]. Algorithms developed
and studied for estimating these pairwise alignments include spectral procedures [24, 35, 37],
semidefinite relaxations [4, 5, 35, 37] and iterative power method or approximate message
passing approaches [11, 26].

In high-noise regimes, synchronization-based estimation may fail to recover the latent ro-
tations, or may lead to a biased and inconsistent estimate of the underlying signal. A separate
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line of work has studied alternative method-of-moments or maximum likelihood procedures
for the MRA problem, which marginalize over the latent rotations [1, 6, 9, 12, 20, 25]. These
papers relate the rate of estimation in high noise to the order of moments needed to identify
the true signal, which may differ depending on the sparsity pattern of its Fourier coefficients
and the distribution of the latent random rotations.

Related analyses have been performed for three-dimensional rotational actions, as aris-
ing in Procrustes alignment problems [27] and cryo-EM [33]. For cryo-EM, these methods
encompass invariant-features approaches [21] and expectation-maximization algorithms [31,
32, 34]. The works [2, 3] studied method-of-moments estimators in problems with general
rotational groups, where [3] related the rates of estimation and numbers of moments needed
to identify the true signal to the structure of the invariant polynomial algebra of the group
action. In these general settings, [14, 18, 19, 22] studied also properties of the log-likelihood
function, its optimization landscape and the Fisher information matrix, relating the structure
of the invariant algebra to asymptotic rates of estimation for the MLE.

1.2. Outline. Section 2 provides a formal statement of the continuous MRA model and
of our main results. Section 3 provides some preliminaries that relate the loss function to the
Fourier magnitudes and phases. Section 4 proposes and analyzes a third-order method-of-
moments estimator, which determines the phases by inverting the Fourier bispectrum. This
estimator attains the minimax upper bound for squared-error risk in the high-noise regime.
Section 5 analyzes the maximum likelihood estimator that attains the minimax upper bound
for squared-error risk in the low-noise regime. Section 6 gives a minimax lower bound using
Assouad’s lemma, which matches the upper bounds of Sections 4 and 5 while also interpo-
lating between these two signal-to-noise regimes.

1.3. Notation. For a complex number z = reiθ ∈ C, z = re−iθ is its complex conjugate.
Arg z = θ is its principal argument in the range [−π,π). 〈u, v〉 = ∑

k ukvk is the 	2 inner-
product for real or complex vectors, and ‖u‖ = √〈u,u〉 is the 	2 norm. IK ∈ R

K×K is the
identity matrix in dimension K . NC(0, σ 2) is the complex mean-zero Gaussian distribution,
with independent real and imaginary parts having real Gaussian distribution N (0, σ 2

2 ). We
write a ∧ b = min(a, b). For a function F : Rk → R, we denote its gradient and Hessian by
∇F ∈ R

k and ∇2F ∈ R
k×k . For two distributions P and Q, DKL(P‖Q) = ∫

log( P
Q

)dP is
their Kullback–Leibler (KL) divergence.

2. Model and main results. Let S1 = [−π,π) be identified with the unit circle, with
addition modulo 2π . Let f : S1 → R be a smooth periodic function on S1. We represent
rotations of the circle by angles α ∈ A = [−π,π), and denote the function f with domain
rotated by α as

fα(t) = f (t − α mod 2π).

We study estimation of f from N i.i.d. samples of the form

fα(t)dt + σ dW(t), α ∼ Unif
([−π,π)

)
.

In each sample, α represents a different latent and uniformly random rotation of the domain
of f , and the entire rotated function fα is observed with additive continuous white noise
σ dW(t) on the circle. An equivalent Gaussian sequence formulation of the model is dis-
cussed below. We assume that σ > 0 is a fixed and known noise level. As f is identifiable
only up to rotation, we consider the rotation-invariant loss (1).

Note that we may alternatively study a model where each rotated function fα(t) is ob-
served with Gaussian noise only at a discrete set of points t ∈ S1 that are fixed or randomly
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sampled [6, 10]. We study the above continuous observation model so as to abstract away
aspects of the problem that are related to this discrete sampling.

The mean value of f over the circle is invariant to rotations, and is easily estimated by
averaging across samples. Thus, let us assume for simplicity and without loss of generality
that f has known mean 0. Passing to the Fourier domain, we assume that f is bandlimited to
K Fourier frequencies, that is, f admits the Fourier sequence representation

f (t) =
K∑

k=1

θk,1fk,1(t) + θk,2fk,2(t), fk,1(t) = 1√
π

cos kt, fk,2(t) = 1√
π

sinkt,

where {fk,1, fk,2 : k = 1, . . . ,K} are orthonormal Fourier basis functions over [−π,π), and

θ = (θ1,1, θ1,2, . . . , θK,1, θK,2) ∈ R
2K

are the Fourier coefficients of f . We assume implicitly throughout the paper that K ≥ 2, and
we are interested in applications with potentially large values of this bandlimit K .

Importantly, due to the choice of Fourier basis, the 2K-dimensional space of such ban-
dlimited functions is closed under rotations of the circle. The rotation f �→ fα induces a map
from the Fourier coefficients of f to those of fα , which we denote as θ �→ g(α) · θ for an
orthogonal matrix g(α) ∈ R

2K×2K . Explicitly, this map θ �→ g(α) · θ is given separately for
each Fourier frequency k = 1, . . . ,K by

(3)
(
θk,1
θk,2

)
�→

(
cos kα − sinkα

sinkα cos kα

)(
θk,1
θk,2

)
,

and g(α) is the block-diagonal matrix with these 2 × 2 blocks. Equivalently, writing

(θk,1, θk,2) = (rk cosφk, rk sinφk),

where rk ≥ 0 is the magnitude and φk ∈ A is the phase (identified modulo 2π ), this map is
given for each k = 1, . . . ,K by

(4) (rk, φk) �→ (rk, φk + kα).

The samples fα(t)dt + σ dW(t) represented in this Fourier sequence space take the form

(5) y(m) = g
(
α(m)) · θ + σε(m) ∈ R

2K for m = 1, . . . ,N,

where α(1), . . . , α(N) i.i.d.∼ Unif([−π,π)), ε(1), . . . , ε(N) i.i.d.∼ N (0, I2K), and these are inde-
pendent. Writing θ̂ ∈ R

2K for the Fourier coefficients of the estimated function f̂ (which
should likewise be bandlimited to K Fourier frequencies), the loss (1) is equivalent to

(6) L(θ̂, θ) = min
α∈A

∥∥θ̂ − g(α) · θ∥∥2
.

In the remainder of this paper, we will consider the problem in this sequence form.
We reserve the notation θ∗ for the Fourier coefficients of the true unknown function. Fix-

ing constants β ∈ [0, 1
2) and ¯c, c̄ > 0, we consider a parameter space of “generic” Fourier

coefficient vectors with power law decay rate β , given by

(7) �β = {
θ∗ ∈ R

2K : ¯ck
−β ≤ rk

(
θ∗) ≤ c̄k−β for all k = 1, . . . ,K

}
.

Here, “generic” refers to the quantitative lower bound for each value rk(θ
∗) that matches the

assumed upper bound up to a constant factor. This condition may be viewed as an analogue of
the genericity condition in [25] that all Fourier magnitudes are bounded above and below by
a constant, in our high-dimensional setting of interest with potentially large K and decaying
Fourier magnitudes.

Our main results are the following two theorems, which characterize the minimax rates of
estimation over �β in high-noise and low-noise regimes.
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THEOREM 2.1 (Minimax risk in high noise). Fix any β ∈ [0, 1
2) and any constant c0 > 0.

If σ 2 ≥ c0K
1−2β , then for a constant C0 > 0 depending only on β , ¯c, c̄, c0 and for any

N ≥ C0K
6βσ 6 logK ,

inf
θ̂

sup
θ∗∈�β

Eθ∗
[
L

(
θ̂ , θ∗)] � K4βσ 6

N
.

THEOREM 2.2 (Minimax risk in low noise). Fix any β ∈ [0, 1
2). There exist constants

C0,C1 > 0 depending only on β , ¯c, c̄ such that if σ 2 ≤ K1−2β

C1 logK
and N ≥ C0K

1+2βσ 2 logK ,
then

inf
θ̂

sup
θ∗∈�β

Eθ∗
[
L

(
θ̂ , θ∗)] � Kσ 2

N
.

In both statements, Eθ∗ is the expectation over N samples y(1), . . . , y(N) from the model
(5) with true parameter θ∗. The infimum inf

θ̂
is over all estimators θ̂ based on these samples,

and � denotes upper and lower bounds up to constant multiplicative factors that depend only
on β , ¯c, c̄, c0.

3. Preliminaries.

3.1. Bounds for the loss. For φ,φ′ ∈ A = [−π,π), we define the circular distance

(8)
∣∣φ − φ′∣∣

A = min
j∈Z

∣∣φ − φ′ + 2πj
∣∣.

It is direct to check that (φ,φ′) �→ |φ−φ′|A is a metric on A, satisfying the triangle inequality
and the upper bound

(9)
∣∣φ − φ′∣∣

A ≤ min
(
π,

∣∣φ − φ′∣∣).
We may express and bound the loss (6) in terms of the Fourier magnitudes and phases.

PROPOSITION 3.1. Let θ = (rk cosφk, rk sinφk)
K
k=1 and θ ′ = (r ′

k cosφ′
k, r

′
k sinφ′

k)
K
k=1.

Then

(10) L
(
θ, θ ′) =

K∑
k=1

(
rk − r ′

k

)2 + inf
α∈R

K∑
k=1

2rkr
′
k

[
1 − cos

(
φk − φ′

k + kα
)]

.

Consequently, for universal constants C,c > 0,

K∑
k=1

(
rk − r ′

k

)2 + c inf
α∈R

K∑
k=1

rkr
′
k

∣∣φk − φ′
k + kα

∣∣2
A

≤ L
(
θ, θ ′) ≤

K∑
k=1

(
rk − r ′

k

)2 + C inf
α∈R

K∑
k=1

rkr
′
k

∣∣φk − φ′
k + kα

∣∣2
A.

PROOF. For any α ∈ R, we have

∥∥θ ′ − g(α) · θ∥∥2 =
K∑

k=1

[(
r ′
k cosφ′

k − rk cos(φk + kα)
)2 + (

r ′
k sinφ′

k − rk sin(φk + kα)
)2]

=
K∑

k=1

(
rk − r ′

k

)2 + 2rkr
′
k

[
1 − cos

(
φk − φ′

k + kα
)]

.
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Taking the infimum over α gives (10). The consequent inequalities follow from the bounds
c|t |2A ≤ 1 − cos(t) ≤ C|t |2A for universal constants C,c > 0, applied with t = φk − φ′

k + kα

for each k. �

3.2. Complex representation. It will be notationally and conceptually convenient to pass
between θ ∈ R

2K and a complex representation by θ̃ ∈C
K . We use throughout

(11) Arg z ∈ [−π,π)

for the principal complex argument of z ∈ C. Recalling the kth Fourier coefficient pair
(θk,1, θk,2) = (rk cosφk, rk sinφk), we set

(12) θ̃k = θk,1 + iθk,2 = rke
iφk ∈ C.

For θ, θ ′ ∈ R
2K , note then that

(13)
〈
θ, θ ′〉 = K∑

k=1

θk,1θ
′
k,1 + θk,2θ

′
k,2 =

K∑
k=1

Re θ̃kθ̃
′
k = 〈θ̃ , θ̃ ′〉 + 〈θ̃ ′, θ̃〉

2
,

where the left-hand side is the real inner product, and the right-hand side is the complex inner
product 〈u, v〉 = ∑

k ukvk .
Similarly, we may represent the sample y(m) ∈R

2K from (5) by ỹ(m) ∈C
K where

ỹ
(m)
k = y

(m)
k,1 + iy

(m)
k,2 ∈C.

Then, recalling the form of the rotational action (4), we have

(14) ỹ
(m)
k = rke

i(φk+kα(m)) + σ ε̃
(m)
k ∈ C,

where ε̃
(m)
k = ε

(m)
k,1 + iε

(m)
k,2 ∼ NC(0,2) is complex Gaussian noise, independent across both

frequencies k = 1, . . . ,K and samples m = 1, . . . ,N .

4. Method-of-moments estimator. In this section, we analyze an estimator based on
a third-order method-of-moments idea. We prove a general risk bound that depends on the
smallest nonzero Fourier magnitude ¯r = mink rk(θ

∗) of the true signal, valid for any noise
level σ 2 > 0, and we show in particular that this achieves the minimax upper bound of The-
orem 2.1 for signals θ∗ ∈ �β in the high-noise regime.

Throughout this section, let us denote the Fourier magnitudes and phases of the true pa-
rameter as θ∗ = (rk cosφk, rk sinφk)

K
k=1 and write E for Eθ∗ . Observe from (14) that for every

k = 1, . . . ,K ,

E
[∣∣ỹ(m)

k

∣∣2] = r2
k + 2σ 2.

Then N−1 ∑N
m=1 |ỹ(m)

k |2 − 2σ 2 provides an unbiased estimate of r2
k . Furthermore, denote

(15) I = {
(k, l) : k, l ∈ {1, . . . ,K} and k + l ≤ K

}
.

Applying that {ε̃(m)
k : k = 1, . . . ,K} are independent with mean 0, and also E[(ε̃(m)

k )2] = 0
(cf. Proposition A.1 of Appendix A in the Supplementary Material [17]), for any (k, l) ∈ I
including the case k = l we have

E
[
ỹ

(m)
k+l · ỹ(m)

k · ỹ(m)
l

] = E
[
rk+le

i(φk+l+(k+l)α(m)) · rkei(−φk−kα(m)) · rlei(−φl−lα(m))]
= rk+lrkrle

i(φk+l−φk−φl).

Thus, the complex argument of N−1 ∑N
m=1 ỹ

(m)
k+l · ỹ

(m)
k · ỹ

(m)
l provides an estimate of the

Fourier bispectrum component φk+l − φk − φl modulo 2π , from which we may hope to
recover the individual phases φk .
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This motivates the following class of method-of-moments procedures:

1. For each k = 1, . . . ,K , estimate rk by

(16) r̂k =
(

1

N

N∑
m=1

∣∣ỹ(m)
k

∣∣2 − 2σ 2

)1/2

+
.

2. For each (k, l) ∈ I , compute

(17) B̂k,l = 1

N

N∑
m=1

ỹ
(m)
k+l · ỹ(m)

k · ỹ(m)
l ,

and choose a version of its complex argument �̂k,l in R such that �̂k,l − Arg B̂k,l = 0 mod
2π .

3. Estimate φ = (φk : k = 1, . . . ,K) by the least-squares estimator

(18) φ̂ = arg min
φ∈RK

∑
(k,l)∈I

(
�̂k,l − (φk+l − φk − φl)

)2
.

Then estimate θ by θ̂ = (r̂k cos φ̂k, r̂k sin φ̂k)
K
k=1.

Here, (18) is defined using the squared difference over R rather than over the periodic
domain A. Hence, the final estimate θ̂ depends on the specific choice of argument �̂k,l in
Step 2, which we have left ambiguous above. We proceed by first studying in Section 4.1
an “oracle” version of this estimator, where �̂k,l is chosen in Step 2 using knowledge of
the true phases φ1, . . . , φK as the unique version of the argument of B̂k,l for which �̂k,l −
(φk+l − φk − φl) ∈ [−π,π). This choice satisfies an exact distributional symmetry in sign.
We leverage this symmetry to provide a risk bound for this oracle procedure.

To develop an actual estimator based on this oracle idea, we propose in Section 4.2 a
method of mimicking this oracle using a pilot estimate of φ1, . . . , φK that is obtained by
first minimizing an 	∞-type optimization objective. We prove an 	∞-stability bound for bis-
pectrum inversion, which implies that the resulting choice of �̂k,l coincides with the oracle

choice with high probability as long as N � σ 6

¯r
6 logK . Consequently, this estimator attains the

same estimation rate without oracle knowledge. We summarize these results as the following
theorem.

THEOREM 4.1. Let θ̂ ∈ {θ̂oracle, θ̂opt} be the above method-of-moments estimator, where
�̂k,l is chosen either using the oracle of Section 4.1 or the optimization procedure of Sec-
tion 4.2. Suppose rk ≥ ¯r > 0 for each k = 1, . . . ,K . There exist universal constants C,C0 > 0
such that if N ≥ C0(

σ 6

¯r
6 logK + σ 3

¯r
3 (logK)3/2), then

(19) E
[
L

(
θ̂ , θ∗)] ≤ CK

(
σ 2

N
+ σ 4

N¯r
2

)
+ C‖θ∗‖2

K

(
Kσ 2

N¯r
2 + σ 6

N¯r
6

)
.

We remark that for signals where ‖θ∗‖2/K � ¯r
2, as is the case for our signal class �β of

interest, this risk bound reduces to

E
[
L

(
θ̂ , θ∗)] ≤ C

N

(
Kσ 2 + Kσ 4

¯r
2 + σ 6

¯r
4

)
.
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4.1. The oracle procedure. Let us identify each entry of the true Fourier phase vector as
a real value φk ∈ [−π,π), and set

(20) �k,l = φk+l − φk − φl ∈ R.

We emphasize that this arithmetic is carried out in R, not modulo 2π . We consider an oracle
version of the above method-of-moments procedure, where �̂oracle

k,l ∈ [�k,l − π,�k,l + π) is

chosen in Step 2 as the unique version of the complex argument of B̂k,l that belongs to this
range. Recalling the complex representation of θ in (12) and defining

(21) Bk,l = θ̃k+l · θ̃k · θ̃l = rk+lrkrle
i(φk+l−φk−φl) ∈ C,

note that this means, for the principal argument specified in (11),

(22) �̂oracle
k,l − �k,l = Arg(B̂k,l/Bk,l) ∈ [−π,π).

We will write �̂oracle = �̂oracle(φ) if we wish to make explicit the dependence of this defini-
tion on the phase vector φ of the true signal. We denote by φ̂oracle the resulting least-squares
estimate of φ in (18), and by θ̂oracle the corresponding estimate of θ .

In the remainder of this subsection, we describe an argument showing that Theorem 4.1
holds for θ̂oracle, deferring detailed proofs to Appendix A in the Supplementary Material [17].
We divide the argument into the analysis of Step 1 of the MoM procedure for estimating the
Fourier magnitudes {rk}Kk=1, Step 2 for estimating the bispectrum components {�k,l}(k,l)∈I
and Step 3 for recovering the phases {φk}Kk=1 from the bispectrum.

Estimating rk . Standard Gaussian and chi-squared tail bounds show the following guaran-
tee for estimating the Fourier magnitudes rk via r̂k , defined in (16).

LEMMA 4.2. For each k = 1, . . . ,K and a universal constant c > 0,

P
[
r̂k ≥ rk(1 + s)

] ≤ 2 exp
(
−cNs2

(
r2
k

σ 2 ∧ r4
k

σ 4

))
for all s ≥ 0,(23)

P
[
r̂k ≤ rk(1 − s)

] ≤ 2 exp
(
−cNs2

(
r2
k

σ 2 ∧ r4
k

σ 4

))
for all s ∈ [0,1).(24)

Integrating these tail bounds yields the following immediate corollary.

COROLLARY 4.3. For each k = 1, . . . ,K and a universal constant C > 0,

E
[
(r̂k − rk)

2] ≤ C

(
σ 2

N
+ σ 4

Nr2
k

)
.

Estimating �k,l . Applying a concentration inequality for cubic polynomials in indepen-
dent Gaussian random variables, derived from [23], we obtain the following tail bounds for
estimating Bk,l by B̂k,l in Step 2, and for estimating the bispectrum component �k,l by the
oracle estimator �̂oracle

k,l .

LEMMA 4.4. Consider any (k, l) ∈ I and suppose rk+l, rk, rl ≥ ¯r . Then for universal
constants C,c > 0 and any s > 0,

(25) P
[|B̂k,l/Bk,l − 1| ≥ s

] ≤ C exp
(
−c

(
Ns2

¯r
2

σ 2 ∧ Ns2

¯r
6

σ 6 ∧ (Ns)2/3

¯r
2

σ 2

))
.

Furthermore, for universal constants C,c > 0 and any s ∈ (0, π/2),

(26) P
[∣∣�̂oracle

k,l − �k,l

∣∣ ≥ s
] ≤ C exp

(
−c

(
Ns2

¯r
2

σ 2 ∧ Ns2

¯r
6

σ 6 ∧ (Ns)2/3

¯r
2

σ 2

))
.
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COROLLARY 4.5. Consider any (k, l) ∈ I and suppose rk+l, rk, rk ≥ ¯r . Then for a uni-
versal constant C > 0,

E
[(

�̂oracle
k,l − �k,l

)2] ≤ C

(
σ 2

N¯r
2 + σ 6

N¯r
6

)
.

A key property of the oracle estimator �̂oracle
k,l is an exact distributional symmetry in sign,

(27) �̂oracle
k,l − �k,l

L= −�̂oracle
k,l + �k,l.

This implies that E[�̂oracle
k,l − �k,l] = 0, and hence E[(�̂oracle

k,l − �k,l)(�̂
oracle
x,y − �x,y)] = 0

when these bispectral components do not have any overlapping index, as stated in part (a) of
the following lemma.

For �k,l and �x,y that have an overlapping index, the corresponding estimates �̂oracle
k,l

and �̂oracle
x,y are not independent. Our proof of Theorem 4.1 requires a sharper bound

on the expected product of their errors than what is naively obtained from the preced-
ing Corollary 4.5 and Cauchy–Schwarz. Indeed, applying the representation (22) and a
first-order Taylor approximation Arg z = Im Ln z ≈ Im(z − 1) around z = 1, we obtain
E[(�̂oracle

k,l −�k,l)(�̂
oracle
x,y −�x,y)] ≈ E[Im(B̂k,l/Bk,l − 1) Im(B̂x,y/Bx,y − 1)], and it is eas-

ily checked that this latter expectation is of size O(σ 2/N¯r
2), exhibiting a cancellation of

the O(σ 6/N¯r
6) error. However, a naive bound for the error of this Taylor approximation

remains of size O(σ 6/N¯r
6). Part (b) of the following lemma establishes a sharp bound for

E[(�̂oracle
k,l − �k,l)(�̂

oracle
x,y − �x,y)] by carrying out the Taylor expansion to a higher order

J � N¯r
6/σ 6 with a remainder that is exponentially small in N¯r

6/σ 6, and exhibiting a similar
cancellation in expectation for all terms of the Taylor expansion up to this order J .

LEMMA 4.6. Let (k, l), (x, y) ∈ I and suppose rk, rl, rk+l, rx, ry, rx+y ≥ ¯r . For some
universal constants C,c > 0,

(a) If {k, l, k + l} is disjoint from {x, y, x + y}, then

E
[(

�̂oracle
k,l − �k,l

)(
�̂oracle

x,y − �x,y

)] = 0.

(b) If {k, l, k + l} ∩ {x, y, x + y} has cardinality 1, then

(28)
∣∣E[(

�̂oracle
k,l − �k,l

)(
�̂oracle

x,y − �x,y

)]∣∣ ≤ C

(
σ 2

N¯r
2 + e

−c(
N¯r

6

σ6 ∧N2/3
¯r

2

σ2 )
)
.

(c) For any (k, l), (x, y) ∈ I ,

∣∣E[(
�̂oracle

k,l − �k,l

)(
�̂oracle

x,y − �x,y

)]∣∣ ≤ C

(
σ 2

N¯r
2 + σ 6

N¯r
6

)
.

Estimating φk . We now translate the preceding bounds for estimating the Fourier bispec-
trum {�k,l} to estimating the phases {φk} using the least squares procedure (18).

Define the matrix M ∈ R
I×K with rows indexed by the bispectrum index set I from (15),

such that the linear system (20) may be expressed as � = Mφ. That is, row (k, l) of M is
given by ek+l − ek − el where ek ∈ R

K is the kth standard basis vector. Then (18) is given
explicitly by

(29) φ̂ = M†�̂,

where M† is the Moore–Penrose pseudo-inverse.
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Recall that a rotation of the circular domain of f induces the map (4), which does not
change the bispectral components �k,l . This is reflected by the property that (1,2,3, . . . ,K)

belongs to the kernel of M . The following lemma shows that this is the unique vector in the
kernel. Furthermore, M is well conditioned on the subspace orthogonal to this kernel, with
all remaining K − 1 singular values on the same order of

√
K .

LEMMA 4.7. M has rank exactly K − 1, and the kernel of M is the span of
(1,2,3, . . . ,K) ∈ R

K . All K − 1 nonzero eigenvalues of M�M ∈ R
K×K are integers in

the interval [K + 1,2K + 1].

This yields the following corollary for estimation of the Fourier phases {φk}, up to a global
rotation that is represented by an additive shift in the direction of (1,2,3, . . . ,K).

COROLLARY 4.8. Suppose rk ≥ ¯r for each k = 1, . . . ,K . Then for universal constants
C,c > 0,

(30) E

[
inf
α∈R

K∑
k=1

r2
k

∣∣φ̂oracle
k − φk + kα

∣∣2
A

]
≤ C‖θ∗‖2

K

(
Kσ 2

N¯r
2 + σ 6

N¯r
6 + Ke

−c(
N¯r

6

σ6 ∧N2/3
¯r

2

σ2 )
)
.

PROOF. By adding a multiple of (1,2,3, . . . ,K) to φ and absorbing this shift into α, we
may assume without loss of generality that φ is orthogonal to (1,2,3, . . . ,K). Under this
assumption, we will then upper bound the left-hand side by choosing α = 0. Since � = Mφ,
this implies M†� = M†Mφ = φ, the last equality holding because Lemma 4.7 implies that
M†M is the projection orthogonal to (1,2,3, . . . ,K). Set D = diag(r2

k )Kk=1 ∈ R
K×K . Then

applying TrAB ≤ TrB · ‖A‖op for positive semidefinite A, B , where ‖ · ‖op is the 	2 → 	2
operator norm,

E

[
K∑

k=1

r2
k

∣∣φ̂oracle
k − φk

∣∣2
A

]
≤ E

[(
φ̂oracle − φ

)�
D

(
φ̂oracle − φ

)]

= E
[(

�̂oracle − �
)�

M†�DM†(
�̂oracle − �

)]
= TrM†�DM†

E
[(

�̂oracle − �
)(

�̂oracle − �
)�]

≤ Tr
(
M†�DM†) · ∥∥E[(

�̂oracle − �
)(

�̂oracle − �
)�]∥∥

op

≤ TrD · ∥∥M†M†�∥∥
op · ∥∥E[(

�̂oracle − �
)(

�̂oracle − �
)�]∥∥

op.

Here, TrD = ∑K
k=1 r2

k = ‖θ∗‖2, and Lemma 4.7 implies ‖M†M†�‖op = ‖(M�M)†‖op ≤
1/(K + 1).

We have ‖A‖op ≤ ‖A‖∞ for positive semidefinite A, where ‖A‖∞ is the 	∞ → 	∞ op-
erator norm given by the maximum absolute row sum. For a universal constant C > 0 and
each (k, l) ∈ I , there are at most C pairs (x, y) ∈ I for which {k, l, k + l} ∩ {x, y, x + y}
has cardinality 2 or 3, and at most CK pairs (x, y) ∈ I for which {k, l, k + l} ∩ {x, y, x + y}
has cardinality 1. Applying Lemma 4.6(b) for those pairs for which this cardinality is 1,
Lemma 4.6(c) for those pairs for which this cardinality is 2 or 3, and Lemma 4.6(a) for all
remaining pairs, we obtain for different universal constants C,c > 0 that

∥∥E[(
�̂oracle − �

)(
�̂oracle − �

)�]∥∥∞ ≤ C

(
Kσ 2

N¯r
2 + σ 6

N¯r
6 + Ke

−c(
N¯r

6

σ6 ∧N2/3
¯r

2

σ2 )
)
.

Combining the above concludes the proof. �
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Let us remark that using Lemma 4.6(b) in place of Lemma 4.6(c) for the pairs where
{k, l, k + l} and {x, y, x + y} overlap in one index is important for removing a factor of K in
the σ 6/(N¯r

6) component of the error, which will be the leading contribution to the overall
estimation error in the high-noise regime.

Theorem 4.1 for θ̂oracle now follows from the loss upper bound in Proposition 3.1 in terms
of the separate estimation errors for magnitude and phase, together with Corollaries 4.3 and
4.8.

4.2. Mimicking the oracle. We now consider the method-of-moments procedure where
the choice of �̂k,l in Step 2 is determined instead by the following method: Compute a “pilot”
estimate of φ as any minimizer of the 	∞-type objective

(31) φ̃ = arg min
φ∈AK

max
(k,l)∈I

∣∣Arg B̂k,l − (φk+l − φk − φl)
∣∣
A,

where a minimizer exists because A is compact under | · |A. Identify each entry φ̃k ∈ [−π,π)

of this estimate as a real value, and set �̃k,l = φ̃k+l − φ̃k − φ̃l where arithmetic is again carried
out in R, not modulo 2π . Then choose �̂

opt
k,l ∈ [�̃k,l − π, �̃k,l + π) as the unique version of

the complex argument of B̂k,l belonging to this range. Let φ̂opt be the resulting least-squares
estimate of φ in (18), and let θ̂opt be the corresponding estimate of θ .

We prove Theorem 4.1 for θ̂opt by showing that, with high probability, �̂opt = �̂oracle(φ′)
for some phase vector φ′ that is equivalent to φ. By “equivalent,” we mean that φ and φ′
represent the same Fourier phases up to rotation of the circular domain, that is, there exists
α ∈ R for which

(32)
∣∣φ′

k − φk + kα
∣∣
A = 0 for each k = 1, . . . ,K.

Then using �̂opt achieves the same loss as using �̂oracle(φ). The main additional ingredient
in the proof is a deterministic 	∞-stability bound for recovery of the Fourier phases from the
bispectrum, stated in the following result.

LEMMA 4.9. Fix any δ ∈ (0, π/3) and φ,φ′ ∈ R
K . Denote �k,l = φk+l − φk − φl and

�′
k,l = φ′

k+l − φ′
k − φ′

l . If ∣∣�k,l − �′
k,l

∣∣
A ≤ δ for all (k, l) ∈ I,

then there exists some α ∈ R such that∣∣φk − φ′
k − kα

∣∣
A ≤ δ for all k = 1, . . . ,K.

This guarantees that, if φ̃ yields a bispectrum �̃ which is elementwise close to the true
bispectrum � in the circular distance modulo 2π , then φ̃ must also be elementwise close
to φ up to a rotation of the circular domain. In other words, this is an 	∞ → 	∞ operator-
norm bound for the matrix M† from (29), where the 	∞ norms are defined using the circular
distance per coordinate and modulo the equivalence relation (32).

The above guarantee is sufficient to show that if each quantity Arg B̂k,l estimates the true
bispectral component �k,l up to a small constant error in the circular distance | · |A, then its
version �̂

opt
k,l that is chosen using φ̃ must coincide exactly with the oracle choice �̂oracle

k,l (φ′),
based on a phase vector φ′ that is equivalent to the true phase vector φ.

COROLLARY 4.10. Let B̂k,l be as defined in (17), and suppose φ ∈R
K is such that

(33)
∣∣Arg B̂k,l − (φk+l − φk − φl)

∣∣
A < π/12 for every (k, l) ∈ I.

Then there exists φ′ equivalent to φ such that �̂opt = �̂oracle(φ′).
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PROOF. By the definition of the optimization procedure which defines φ̃ in (31),

(34) max
(k,l)∈I

∣∣Arg B̂k,l − (φ̃k+l − φ̃k − φ̃l)
∣∣
A ≤ max

(k,l)∈I
∣∣Arg B̂k,l − (φk+l − φk − φl)

∣∣
A.

By assumption, the right-hand side is at most π/12. Then by the triangle inequality for | · |A,
for every (k, l) ∈ I , we have |(φ̃k+l − φ̃k − φ̃l) − (φk+l − φk − φl)|A < π/6. Applying
Lemma 4.9, we obtain for some α ∈ R and all k = 1, . . . ,K that |φ̃k − φk − kα|A < π/6.
This means that there exists φ′ equivalent to φ for which, for the usual absolute value,∣∣φ̃k − φ′

k

∣∣ < π/6 for all k = 1, . . . ,K.

Then denoting �′
k,l = φ′

k+l − φ′
k − φ′

l , by the triangle inequality, |�̃k,l − �′
k,l| < π/2 for all

(k, l) ∈ I . Since φ′ is equivalent to φ, also∣∣Arg B̂k,l − (
φ′

k+l − φ′
k − φ′

l

)∣∣
A = ∣∣Arg B̂k,l − (φk+l − φk − φl)

∣∣
A < π/12.

So, by the definition of �̂oracle(φ′), we have |�̂oracle
k,l (φ′) − �′

k,l| < π/12 for the usual ab-

solute value. Then |�̂oracle
k,l (φ′) − �̃k,l| < π/2 + π/12 < π for all (k, l) ∈ I , meaning that

�̂oracle(φ′) = �̂opt. �

The tail bounds of Lemma 4.4 may be used to show that the event (33) holds with high
probability. On this event, the loss of θ̂opt matches exactly that of θ̂oracle. Combining with a
crude bound for the loss on the complementary event, which has exponentially small proba-
bility in N , we obtain Theorem 4.1 for θ̂opt.

REMARK 4.11. We study this two-stage estimation procedure primarily to enable a the-
oretical analysis of its risk. One may alternatively consider a more direct procedure where the
least-squares objective (18) is defined using the squared distance |�̂k,l − (φk+l − φk − φl)|2A
over the periodic domain A, which would avoid the need to identify a version of �̂k,l . How-
ever, analyzing the risk of such a procedure may require an 	2-analogue of the stability guar-
antee of Lemma 4.9, which seems more challenging to obtain. Here, stability in the 	∞ sense
allows us to circumvent this issue by first estimating the oracle choices of �̂k,l using the
	∞-objective (31).

Finally, let us check that this estimation guarantee in Theorem 4.1 coincides with our stated
minimax rate in Theorem 2.1 when restricted to parameters θ∗ ∈ �β and to the high-noise
regime.

PROOF OF THEOREM 2.1, UPPER BOUND. For θ∗ ∈ �β , we have ¯r
2 ≥ cK−2β and

‖θ∗‖2 ≤ CK1−2β , for (β-dependent) constants C,c > 0. Thus, the risk bound of Theorem 4.1
reduces to

E
[
L

(
θ̂opt, θ∗)] ≤ C

N

(
Kσ 2 + K1+2βσ 4 + K4βσ 6) ≤ C′K4βσ 6

N

for constants C,C′ > 0, the last inequality holding in the high-noise setting σ 2 ≥ c0K
1−2β .

In this setting, there is a constant c > 0 for which

σ 6

¯r
6 logK ≥ cσ 3

¯r
3 (logK)3/2.

Then the required condition for N in Theorem 4.1 is implied by N ≥ C ′
0K

6βσ 6 logK for a
sufficiently large constant C′

0 > 0, and this yields the minimax upper bound of Theorem 2.1.
�
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We remark that Theorem 4.1 gives an estimation guarantee not just in the high-noise
regime, but for any noise level σ 2. In a regime of very low noise σ 2 � K−2β , it also im-
plies the upper bound of Theorem 2.2.

PROOF OF THEOREM 2.2, UPPER BOUND, FOR σ 2 ≤ K−2β . For σ 2 ≤ K−2β , the risk
bound of Theorem 4.1 reduces instead to

E
[
L

(
θ̂opt, θ∗)] ≤ C

N

(
Kσ 2 + K1+2βσ 4 + K4βσ 6) ≤ C′Kσ 2

N
.

The required condition for N is implied by N ≥ C′
0K

1+2βσ 2 logK for a sufficiently large
constant C′

0 > 0, and this yields the minimax upper bound of Theorem 2.2. �

In high dimensions K and the noise regime K−2β � σ 2 � K1−2β/ logK , (19) exhibits
the rate K1+2βσ 4/N , which is larger than the minimax rate Kσ 2/N . This arises from esti-
mating the Fourier magnitudes {rk} without using phase information. In this regime, the above
method-of-moments procedure becomes suboptimal. We will instead analyze in Section 5 the
maximum likelihood estimator, to establish the minimax rate over the entire low-noise regime
described by Theorem 2.2.

REMARK 4.12. This proof of the minimax upper bound is information-theoretic in na-
ture, in that the pilot estimate used to mimic the oracle may require exponential time in K

to compute. We describe in Appendix A.5 in the Supplementary Material [17] an alternative
“frequency marching” method, as discussed also in [8], Section IV, which provides a compu-
tationally efficient alternative to mimic the oracle at the expense of a larger requirement for
the sample size N .

This method sets φ̃1 = 0 and, for each k = 2, . . . ,K , sets

φ̃k = Arg B̂1,k−1 + φ̃k−1 mod 2π

to define a pilot estimator φ̃ for φ. We show that, resolving the phase ambiguity of �̂ using
this pilot estimate and then reestimating φ̂ by least squares, the resulting procedure achieves
the same risk as described in Theorem 4.1 under a requirement for N that is larger by a factor
of K2.

5. Maximum likelihood estimator. The method-of-moments procedure analyzed in the
preceding section is not rate-optimal over the full low-noise regime described by Theo-
rem 2.2. Motivated by this observation, and by the more common use of likelihood-based
approaches in practice [31, 34], in this section we analyze the maximum likelihood estimator
(MLE) in the setting of Theorem 2.2.

Define the log-likelihood function

(35) l(θ, y) = logpθ(y) := log
[

1

2π

∫ π

−π

(
1√

2πσ 2

)2K

exp
(
−‖y − g(α) · θ‖2

2σ 2

)
dα

]
,

where pθ(y) denotes the Gaussian mixture density that marginalizes over the unknown rota-
tion. Then the MLE is given by

θ̂MLE = arg min
θ∈R2K

RN(θ), RN(θ) = − 1

N

N∑
m=1

l
(
θ, y(m)),

where RN(θ) denotes the negative empirical log-likelihood.
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For the results of this section, we isolate the following general condition for the Fourier
magnitudes of θ∗.

ASSUMPTION 5.1. There exists a constant cgen > 0 such that for any B ⊆ {1, . . . ,K}
with |B| ≥ K/2, ∑

k∈B

rk
(
θ∗)2 ≥ cgen

∥∥θ∗∥∥2
.

It is clear that this condition holds for our signal class �β of interest. Our main result is
then the following general risk bound for θ̂MLE in the low-noise setting of Theorem 2.2.

THEOREM 5.2. Suppose Assumption 5.1 holds. Then there exist constants C,C0,C1 > 0

depending only on cgen such that if σ 2 ≤ K
C1 logK

and N ≥ C0K(1 + Kσ 2

‖θ∗‖2 ) log(K + ‖θ∗‖2

σ 2 ),
then

Eθ∗
[
L

(
θ̂MLE, θ∗)] ≤ CKσ 2

N
.

For σ 2 ≥ K−2β , this requirement for N reduces to that of Theorem 2.2, up to a modified
constant C0 > 0. Combined with the argument for σ 2 ≤ K−2β in Section 4.2, this immedi-
ately implies the minimax upper bound of Theorem 2.2.

In the remainder of this section, we prove Theorem 5.2. The proof applies a classical
idea of second-order Taylor expansion for the log-likelihood function. Observe first that the
negative log-likelihood RN(θ) satisfies the rotational invariance RN(θ) = RN(g(α) · θ) for
all α ∈ A. Thus, θ̂MLE is defined only up to rotation, and all rotations of θ̂MLE incur the same
loss. To fix this rotation and ease notation in the analysis, let us denote by θ̂MLE the rotation
of the MLE such that

(36)
∥∥θ̂MLE − θ∗∥∥2 = min

α∈A
∥∥g(α) · θ̂MLE − θ∗∥∥2 = L

(
θ̂MLE, θ∗)

,

where θ∗ is the true parameter. Since θ̂MLE minimizes RN(θ), we have 0 ≥ RN(θ̂MLE) −
RN(θ∗). Then Taylor expansion (for this rotation of θ̂MLE that satisfies (36)) gives

0 ≥ RN

(
θ̂MLE) − RN

(
θ∗)

= ∇RN

(
θ∗)�(

θ̂MLE − θ∗) + 1

2

(
θ̂MLE − θ∗)�∇2RN(θ̃)

(
θ̂MLE − θ∗)

,
(37)

where θ̃ ∈ R
2K is on the line segment between θ∗ and θ̂MLE. Heuristically, Theorem 5.2 will

follow from the bounds

∣∣∇RN

(
θ∗)�(

θ̂MLE − θ∗)∣∣ �
√

K

Nσ 2 · ∥∥θ̂MLE − θ∗∥∥,(38)

(
θ̂MLE − θ∗)�∇2RN(θ̃)

(
θ̂MLE − θ∗)

� 1

σ 2 · ∥∥θ̂MLE − θ∗∥∥2
.(39)

Applying these to (37) and rearranging yields the desired result ‖θ̂MLE − θ∗‖2 � Kσ 2/N .
The bulk of the proof lies in establishing an appropriate version of (39). This requires

a delicate argument for large K , as naive uniform concentration and Lipschitz bounds for
∇2RN(θ) ∈ R

2K×2K fail to establish (39) in the full ranges of σ 2 and N that are specified by
Theorem 5.2. In the remainder of this section, we describe the components of this argument,
deferring detailed proofs to Appendix B in the Supplementary Material [17].
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5.1. Gradient and Hessian of the log-likelihood. To simplify the model, observe that
each sample y(m) satisfies the equality in law

y(m) = g
(
α(m)) · θ∗ + σε(m) L= g

(
α(m)) · (

θ∗ + σε(m)).
Furthermore, g(α(m))−1g(α) = g(α −α(m)) where, if α ∼ Unif([−π,π)) is a uniformly ran-
dom rotation, then α − α(m) is also uniformly random for any fixed α(m). Applying these
observations to the form (35) of the log-likelihood function, we obtain the equality in law for
the negative log-likelihood process

(40)
{
RN(θ) : θ ∈R

2K} L=
{
− 1

N

N∑
m=1

l
(
θ, θ∗ + σε(m)) : θ ∈ R

2K

}
.

That is to say, having defined the log-likelihood function to marginalize over a uniformly
random latent rotation, the distribution of {RN(θ) : θ ∈ R

2K} is the same under the model
y(m) = g(α(m)) · θ∗ + σε(m) ∼ pθ∗ as under a model y(m) = θ∗ + σε(m) without latent rota-
tions. Thus, in the analysis, we will henceforth assume the simpler model

(41) y(m) = θ∗ + σε(m) for m = 1, . . . ,N, ε(1), . . . , ε(N) i.i.d.∼ N (0, I2K).

Under this model (41), expanding the square in the exponent of (35), RN(θ) may be written
as

RN(θ) = 1

N

N∑
m=1

K log 2πσ 2 + ‖θ‖2

2σ 2 + ‖θ∗ + σε(m)‖2

2σ 2

− log
[

1

2π

∫ π

−π
exp

(〈θ∗ + σε(m), g(α) · θ〉
σ 2

)
dα

]
.

(42)

Given θ, ε ∈R
2K , define Pθ,ε to be the tilted probability law over angles α ∈ A with density

(43)
dPθ,ε(α)

dα
= exp

(〈θ∗ + σε, g(α) · θ〉
σ 2

)/∫ π

−π
exp

( 〈θ∗ + σε, g(α) · θ〉
σ 2

)
dα.

Then direct computation shows that the gradient and Hessian of RN(θ) take the forms

∇RN(θ) = θ

σ 2 − 1

N

N∑
m=1

1

σ 2Eα∼P
θ,ε(m)

[
g(α)−1(

θ∗ + σε(m))],(44)

∇2RN(θ) = 1

σ 2 I − 1

N

N∑
m=1

1

σ 4 Covα∼P
θ,ε(m)

[
g(α)−1(

θ∗ + σε(m))],(45)

where the expectation and covariance are over the random rotation α ∼ Pθ,ε(m) (conditional
on ε(m)) following the above law.

5.2. Tail bound. As a first step of the proof, we fix a small constant δ1 ∈ (0,1) to be
determined, and define the domain

(46) B(δ1) = {
θ : ∥∥θ − θ∗∥∥ ≤ δ1

∥∥θ∗∥∥} ⊂R
2K.

We first establish the following lemma, which shows that θ̂MLE belongs to this domain B(δ1)

with high probability, and provides also an upper bound for the fourth moment of θ̂MLE.
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LEMMA 5.3. Suppose that Assumption 5.1 holds. Fix any constant δ1 > 0, and define
B(δ1) by (46). Then there exist constants C0,C1,C

′, c′ > 0 depending only on cgen, δ1 such

that if σ 2 ≤ ‖θ∗‖2

C1 logK
and N ≥ C0K , then

P
[
θ̂MLE ∈ B(δ1)

] ≥ 1 − e−c′N(logK)2/K,(47)

E
[∥∥θ̂MLE∥∥4] ≤ C′∥∥θ∗∥∥4

.(48)

To show this lemma, define the population negative log-likelihood R(θ) = Eθ∗[RN(θ)],
where the equality in law (40) allows us to evaluate the expectation under the simplified
model (41). Then the KL-divergence between pθ∗ and pθ is given by

(49) DKL(pθ∗‖pθ) = R(θ) − R
(
θ∗) = Eθ∗

[
RN(θ)

] −Eθ∗
[
RN

(
θ∗)]

.

Recalling the form (42) for the negative log-likelihood RN(θ), we have

(50) DKL(pθ∗‖pθ) = ‖θ‖2 − ‖θ∗‖2

2σ 2 + I − II,

where

I = E log
1

2π

∫ π

−π
exp

( 〈θ∗ + σε, g(α) · θ∗〉
σ 2

)
dα,

II = E log
1

2π

∫ π

−π
exp

( 〈θ∗ + σε, g(α) · θ〉
σ 2

)
dα

and both expectations are over ε ∼ N (0, I2K).
For sufficiently small |α|, we may apply a quadratic Taylor expansion of 〈θ∗, g(α) · θ∗〉 =∑
k rk(θ

∗)2 cos kα around α = 0, to write

(51)
〈
θ∗, g(α) · θ∗〉 − ∥∥θ∗∥∥2 ≈ −

K∑
k=1

rk
(
θ∗)2 · k2α2

2
� −K2∥∥θ∗∥∥2

α2,

where this last approximation holds under Assumption 5.1. Then
∫

exp(θ∗, g(α) · θ∗/σ 2)dα

in I may be approximated by a Gaussian integral over α ∈ R. Upper bounding II by the
supremum over α, and applying a standard covering net argument to control the suprema of
the Gaussian processes 〈ε, g(α) · θ∗〉 and 〈ε, g(α) · θ〉, we obtain the following lower bound
on the KL-divergence.

LEMMA 5.4. Suppose Assumption 5.1 holds, and σ 2 ≤ ‖θ∗‖2. Then there are constants
C2,C3 > 0 depending only on cgen such that for any θ ∈ R

2K ,

DKL(pθ∗‖pθ) ≥ minα∈A ‖θ∗ − g(α) · θ‖2

2σ 2 − 1

2
log

(
C2K

2‖θ∗‖2

σ 2

)

− C3(‖θ∗‖ + ‖θ‖)
σ

·
√

logK.

Comparing this with the rate of uniform concentration of the negative log-likelihood
RN(θ) around its mean R(θ) (cf. Lemma B.3), we obtain an exponential tail bound for the
probability of the event ∥∥θ∗ − θ̂MLE∥∥ ∈ [

nδ1
∥∥θ∗∥∥, (n + 1)δ1

∥∥θ∗∥∥]
for each integer n ≥ 1. Summing this bound over all n ≥ 1 yields Lemma 5.3.
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5.3. Lower bound for the information matrix. In light of Lemma 5.3, to show (39) with
high probability, it suffices to establish a version of the lower bound

(52) ∇2RN(θ) � 1

σ 2 · I uniformly over θ ∈ B(δ1).

Denote the tangent vector to the rotational orbit {g(α) · θ∗ : α ∈ A} at θ∗ by

(53) u∗ = d

dα
g(α) · θ∗

∣∣∣∣
α=0

= g′(0) · θ∗.

From the rotational invariance of R(θ), it is easy to see that the expected (Fisher) information
matrix E[∇2RN(θ∗)] = ∇2R(θ∗) must be singular, with u∗ belonging to its kernel. Thus, we
cannot expect the bound (52) to hold in all directions of R2K , but only in those directions
orthogonal to u∗. This will suffice to show (39), because we will check that choosing θ̂MLE

to satisfy (36) also ensures θ̂MLE − θ∗ is orthogonal to u∗. The statement (52) restricted to
directions orthogonal to u∗ is formalized in the following lemma.

LEMMA 5.5. Suppose Assumption 5.1 holds. Fix any constant η > 0. There exist con-

stants C0,C1, δ1, c > 0 depending only on cgen, η such that if σ 2 ≤ ‖θ∗‖2

C1 logK
and N ≥

C0K(1 + Kσ 2

‖θ∗‖2 ) log(K + ‖θ∗‖2

σ 2 ), then with probability at least 1 − e
− cN

(1+Kσ2/‖θ∗‖2)2 , the fol-

lowing holds: For every θ ∈ B(δ1) and every unit vector v ∈ R
2K satisfying 〈u∗, v〉 = 0,

v�∇2RN(θ)v ≥ 1 − η

σ 2 .

From the form of ∇2RN(θ) in (45), observe that

(54) v�∇2RN(θ)v = 1

σ 2 − 1

Nσ 4

N∑
m=1

Varα∼P
θ,ε(m)

[
v�g(α)−1(

θ∗ + σε(m))].
The proof of Lemma 5.5 is based on a refinement of the argument in the preceding section,
to approximate the distribution Pθ,ε in the above variance by a Gaussian law over α. Here,
applying a separate bound to control the Gaussian process supα〈ε, g(α) · θ〉 will be too loose
to obtain the lemma. We instead perform a Taylor expansion of 〈θ∗ + σε, g(α) · θ〉 around
its (random, ε-dependent) mode

α0 = arg max
α

〈
θ∗ + σε, g(α) · θ 〉

,

and combine this with the condition θ ∈ B(δ1) to obtain a quadratic approximation

〈θ∗ + σε, g(α) · θ〉
σ 2 − constant � −K2‖θ∗‖2

σ 2 (α − α0)
2,

where the constant is independent of α. Thus, Pθ,ε for any θ ∈ B(δ1) may be approximated

by a Gaussian law with mean α0 and variance on the order of σ 2

K2‖θ∗‖2 . Applying a Taylor

expansion also of v�g(α)−1(θ∗ + σε) around α = α0, and approximating the variance over
α ∼ Pθ,ε by the variance with respect to this Gaussian law, we obtain a bound

Varα∼Pθ,ε

[
v�g(α)−1(

θ∗ + σε
)] ≤ ησ 2

for a small constant η > 0, which is sufficient to show Lemma 5.5.
These Taylor expansion arguments may be formalized on a high-probability event for ε,

where this event is dependent on θ and v. More precisely, let

θ̃ = (θ1, . . . , θK) ∈ C
K, ṽ = (v1, . . . , vK) ∈ C

K, ε̃ = (ε1, . . . , εK) ∈ C
K
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denote the complex representations of θ , v, ε as defined in Section 3.2. For each θ ∈ B(δ1) and
unit test vector v ∈ R

2K with 〈u∗, v〉 = 0, we define a (θ, v)-dependent domain E(θ, v, δ1) ⊂
R

2K by the four conditions

sup
α∈A

∣∣〈ε, g(α) · θ 〉∣∣ ≤ δ1‖θ∗‖2

σ
,

sup
α∈A

∣∣〈ε, g(α) · v〉∣∣ ≤ ‖θ∗‖
σ

,

sup
α,α′∈[−π,π)

1

α2

∣∣∣∣∣Re
K∑

k=1

εke
ikα′(

eikα − 1 − ikα
)
θk

∣∣∣∣∣ ≤ δ1K
2‖θ∗‖2

σ
,

sup
α,α′∈[−π,π)

1

|α − α′|
∣∣∣∣∣Re

K∑
k=1

εk

(
eikα − eikα′)

vk

∣∣∣∣∣ ≤ δ1K‖θ∗‖
σ

.

The following deterministic lemma holds on the event that ε ∈ E(θ, v, δ1).

LEMMA 5.6. Suppose Assumption 5.1 holds. Fix any η > 0. There exist constants

C1, δ1 > 0 depending only on cgen, η such that if σ 2 ≤ ‖θ∗‖2

C1 logK
, then the following holds:

For any θ ∈ B(δ1), any unit vector v ∈ R
2K satisfying 〈u∗, v〉 = 0, and any (deterministic)

ε ∈ E(θ, v, δ1),

Varα∼Pθ,ε

[
v�g(α)−1(

θ∗ + σε
)] ≤ ησ 2.(55)

Each of the four conditions defining E(θ, v, δ1) involves the supremum of a Gaussian
process, which may be bounded using a standard covering net argument. We remark that
each of these conditions is defined with the right-hand side being a factor ‖θ∗‖/σ larger than
the mean value of the left-hand side, so that their failure probabilities are exponentially small
in ‖θ∗‖2/σ 2. This is summarized in the following result.

LEMMA 5.7. Suppose Assumption 5.1 holds. Fix any constant δ1 > 0, any θ ∈ B(δ1),
and any unit vector v satisfying 〈u∗, v〉 = 0. For some constants C1, c > 0 depending only on

cgen, δ1, if σ 2 ≤ ‖θ∗‖2

C1 logK
, then

Pε∼N (0,I )

[
ε /∈ E(θ, v, δ1)

] ≤ e−c‖θ∗‖2/σ 2
.

Finally, we combine Lemmas 5.6 and 5.7 to conclude the proof of Lemma 5.5: We may
write the second term of (54) as

1

Nσ 4

N∑
m=1

Varα∼P
θ,ε(m)

[
v�g(α)−1(

θ∗ + σε(m))] · 1{
ε(m) ∈ E(θ, v, δ1)

}

+ 1

Nσ 4

N∑
m=1

Varα∼P
θ,ε(m)

[
v�g(α)−1(

θ∗ + σε(m))] · 1{
ε(m) /∈ E(θ, v, δ1)

}
.

The first sum is bounded by Lemma 5.6, while the second sum is sparse by Lemma 5.7 and
may be controlled using a Chernoff bound for binomial random variables. Taking a union
bound over a covering net of pairs (θ, v) shows Lemma 5.5.
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5.4. Proof of Theorem 5.2. We now combine the preceding lemmas to conclude the proof
of Theorem 5.2. Let C0,C1, δ1 > 0 be such that the conclusions of Lemma 5.5 hold for
η = 1/2. Define the event

E =
{
θ̂MLE ∈ B(δ1) and sup

θ∈B(δ1)

sup
v:‖v‖=1,〈u∗,v〉=0

v�∇2RN(θ)v ≥ 1

2σ 2

}
.

When E holds, we have also θ̃ ∈ B(δ1) in the Taylor expansion (37). Recall our choice of
rotation (36) for θ̂MLE. Then the first-order condition for (36) gives

0 = d

dα

∥∥θ̂MLE − g(α) · θ∗∥∥2∣∣
α=0 = −2

〈
u∗, θ̂MLE − θ∗〉

,

so that 〈u∗, θ̂MLE − θ∗〉 = 0. Then (37) and the definition of E imply

0 ≥ 1{E}
(
∇RN

(
θ∗)�(

θ̂MLE − θ∗) + 1

4σ 2

∥∥θ̂MLE − θ∗∥∥2
)
.

Rearranging, we get

1{E}∥∥θ̂MLE−θ∗∥∥2 ≤ −1{E}·4σ 2 ·∇RN

(
θ∗)�(

θ̂MLE−θ∗) ≤ 4σ 2 ·∥∥∇RN

(
θ∗)∥∥ ·∥∥θ̂MLE−θ∗∥∥.

Dividing by ‖θ̂MLE − θ∗‖, squaring both sides, and taking expectation yields

(56) E
[
1{E}∥∥θ̂MLE − θ∗∥∥2] ≤ 16σ 4

E
[∥∥∇RN

(
θ∗)∥∥2]

.

From (44), we have

∇RN

(
θ∗) = 1

N

N∑
m=1

(
θ∗

σ 2 − 1

σ 2Eα∼P
θ∗,ε(m)

[
g(α)−1(

θ∗ + σε(m))]).

These summands (the per-sample score vectors) are independent random vectors with mean
0, by the first-order condition for θ∗ minimizing R(θ). So,

E
[∥∥∇RN

(
θ∗)∥∥2] = 1

N
Eε∼N (0,I )

[∥∥∥∥ θ∗

σ 2 − 1

σ 2Eα∼Pθ,ε

[
g(α)−1(

θ∗ + σε
)]∥∥∥∥2]

= 1

Nσ 4Eε∼N (0,I )

[∥∥Eα∼Pθ,ε

[
g(α)−1(

θ∗ + σε
)]∥∥2 − ∥∥θ∗∥∥2]

≤ 1

Nσ 4Eε∼N (0,I )

[∥∥θ∗ + σε
∥∥2 − ∥∥θ∗∥∥2] = 2K

Nσ 2 .

Combining with (56),

E
[
1{E}∥∥θ̂MLE − θ∗∥∥2] ≤ 32Kσ 2

N
.

By Lemmas 5.3 and 5.5, P[Ec] ≤ e
− cN

(1+Kσ2/‖θ∗‖2)2 for some constant c > 0. Then applying
also (48), for some constant C > 0,

E
[
1

{
Ec}∥∥θ̂MLE − θ∗∥∥2] ≤

√
E

[∥∥θ̂MLE − θ∗∥∥4] ·
√
P

[
Ec

] ≤ C
∥∥θ∗∥∥2 · e− cN

2(1+Kσ2/‖θ∗‖2)2 .

Under the given assumption N ≥ C0K(1 + Kσ 2

‖θ∗‖2 ) log(K + ‖θ∗‖2

σ 2 ) for sufficiently large C0 >

0, this implies also N ≥ C ′
0K(1+ Kσ 2

‖θ∗‖2 ) logN for a large constant C′
0 > 0. (This is verified in

the proof of Lemma 5.5, cf. (S55) of Appendix B in the Supplementary Material [17].) Then

E
[
1

{
Ec}∥∥θ̂MLE − θ∗∥∥2] ≤ C

∥∥θ∗∥∥2 · e− cN

2(1+Kσ2/‖θ∗‖2)2 ≤ C′σ 2

N
.

Combining the above two risk bounds on E and Ec yields Theorem 5.2.
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6. Minimax lower bounds. In this section, we show the minimax lower bounds of The-
orems 2.1 and 2.2. The lower bounds will be implied by estimation of the Fourier phases
φk(θ

∗) only, even when the Fourier magnitudes rk(θ
∗) are known. Fix any β ∈ [0, 1

2), and
consider the parameter space

Pβ = {
θ∗ ∈ R

2K : rk(θ∗) = k−β for all k = 1, . . . ,K
}
.

The main result of this section is the following minimax lower bound over Pβ , which is valid
for any noise level σ 2 > 0 and interpolates between the low-noise and high-noise regimes.

LEMMA 6.1. Fix any β ∈ [0, 1
2). Then for some β-dependent constants C,c > 0 and any

σ 2 > 0,

(57) inf
θ̂

sup
θ∗∈Pβ

Eθ∗
[
L

(
θ∗, θ̂

)] ≥ c · min
(

1

N
· max

(
Kσ 2,

K4βσ 6

eCK1−2β/σ 2

)
, K1−2β

)
.

Let us check that this implies the minimax lower bounds of Theorems 2.1 and 2.2.

PROOF OF THEOREMS 2.1 AND 2.2, LOWER BOUNDS. By rescaling, we may assume
without loss of generality that ¯c ≤ 1 ≤ c̄, and hence Pβ ⊂ �β . Assuming σ 2 ≥ c0K

1−2β ,
choosing the second argument of max(·) in (57) gives

inf
θ̂

sup
θ∗∈�β

Eθ∗
[
L

(
θ∗, θ̂

)] ≥ inf
θ̂

sup
θ∗∈Pβ

Eθ∗
[
L

(
θ∗, θ̂

)] ≥ c · min
(

K4βσ 6

N
, K1−2β

)

for a constant c > 0 depending on c0. When N ≥ C0K
6βσ 6 logK for sufficiently large C0 >

0, we have K4βσ 6/N < K1−2β , so this gives the lower bound of Theorem 2.1. For any
σ 2 > 0, choosing the first argument of max(·) in (57) also gives

inf
θ̂

sup
θ∗∈�β

Eθ∗
[
L

(
θ∗, θ̂

)] ≥ inf
θ̂

sup
θ∗∈Pβ

Eθ∗
[
L

(
θ∗, θ̂

)] ≥ c · min
(

Kσ 2

N
, K1−2β

)
.

When N ≥ C0K
1+2βσ 2 logK for sufficiently large C0 > 0, we have Kσ 2/N < K1−2β , so

this gives the lower bound of Theorem 2.2. �

Finally, we describe the arguments that show Lemma 6.1, deferring detailed proofs to Ap-
pendix C in the Supplementary Material [17]. Denote pθ(y) as the Gaussian mixture density
of y, as in (35). The proof will apply Assouad’s hypercube construction together with an
upper bound on the KL-divergence DKL(pθ‖pθ ′). For the low-noise regime of Theorem 2.2,
a tight upper bound is provided by (58) below, which is immediate from the data process-
ing inequality. For the high-noise regime of Theorem 2.1, we apply an argument from [6]
for bounding the χ2-divergence, and track carefully the dependence of this argument on the
dimension K .

LEMMA 6.2. For any θ, θ ′ ∈ R
2K ,

(58) DKL(pθ‖pθ ′) ≤ ‖θ − θ ′‖2

2σ 2 .
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Furthermore, let θ = (rk cosφk, rk sinφk)
K
k=1 and θ ′ = (r ′

k cosφ′
k, r

′
k sinφ′

k)
K
k=1. Denote R2 =

max(
∑K

k=1 r2
k ,

∑K
k=1 r ′

k
2
) and r̄ = max(maxK

k=1 rk,maxK
k=1 r ′

k). Then also

DKL(pθ‖pθ ′) ≤ eR2/2σ 2

4σ 4

K∑
k=1

(
r2
k − r ′

k
2)2

+ 3r̄2R2e3R2/2σ 2

2σ 6 · inf
α∈R

K∑
k=1

[(
rk − r ′

k

)2 + rkr
′
k

(
φk − φ′

k + kα
)2]

.

(59)

The upper bound (59) is sufficient to prove Lemma 6.1 in the setting β = 0, where the
argument is as follows: We restrict attention to a discrete space of 2K parameters θτ ∈ P0,
indexed by the hypercube τ ∈ {0,1}K , where all Fourier magnitudes are equal to 1 and the
Fourier phases φτ = (φτ

1 , . . . , φτ
K) are given by

φτ
k = τk · φ.

Here, the value φ ∈ R is chosen maximally while ensuring that DKL(pθτ ‖p
θτ ′ ) ≤ H(τ, τ ′)/N

by the bounds of Lemma 6.2, where H(τ, τ ′) is the Hamming distance on the hypercube.
Applying Proposition 3.1, we may show that the loss between such parameters is also lower
bounded in terms of Hamming distance as L(θτ , θτ ′

) � r2φ2 · H(τ, τ ′). Assouad’s lemma
(see, e.g., [15], Lemma 2) then implies a minimax lower bound over the discrete parameter
space {θτ : τ ∈ {0,1}K}, which in turn implies the lower bound of Lemma 6.1 over P0. For
more general decay parameters β ∈ [0, 1

2), we apply a variation of this argument where the
parameters θτ are defined such that only the Fourier phases φτ

k for k > K/2 are nonzero.
We establish a modified version of (59) for the corresponding vectors θτ , where r̄ may be
replaced by the maximum of (rk, r

′
k) over k > K/2. The remainder of the proof is then similar

to the β = 0 setting.
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REFERENCES

[1] ABBE, E., BENDORY, T., LEEB, W., PEREIRA, J. M., SHARON, N. and SINGER, A. (2019). Multireference
alignment is easier with an aperiodic translation distribution. IEEE Trans. Inf. Theory 65 3565–3584.
MR3959006 https://doi.org/10.1109/TIT.2018.2889674

[2] ABBE, E., PEREIRA, J. M. and SINGER, A. (2018). Estimation in the group action channel. In 2018 IEEE
International Symposium on Information Theory (ISIT) 561–565. IEEE, New York.

[3] BANDEIRA, A. S., BLUM-SMITH, B., KILEEL, J., NILES-WEED, J., PERRY, A. and WEIN, A. S. (2023).
Estimation under group actions: Recovering orbits from invariants. Appl. Comput. Harmon. Anal. 66
236–319. MR4609472 https://doi.org/10.1016/j.acha.2023.06.001

[4] BANDEIRA, A. S., CHARIKAR, M., SINGER, A. and ZHU, A. (2014). Multireference alignment using
semidefinite programming. In ITCS’14—Proceedings of the 2014 Conference on Innovations in Theo-
retical Computer Science 459–470. ACM, New York. MR3359498

https://doi.org/10.1214/23-AOS2346SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=3959006
https://doi.org/10.1109/TIT.2018.2889674
https://mathscinet.ams.org/mathscinet-getitem?mr=4609472
https://doi.org/10.1016/j.acha.2023.06.001
https://mathscinet.ams.org/mathscinet-getitem?mr=3359498


HIGH-DIMENSIONAL MRA 283

[5] BANDEIRA, A. S., CHEN, Y. and SINGER, A. (2015). Non-unique games over compact groups and orien-
tation estimation in cryo-EM. Preprint. Available at arXiv:1505.03840.

[6] BANDEIRA, A. S., NILES-WEED, J. and RIGOLLET, P. (2019). Optimal rates of estimation for multi-
reference alignment. Math. Stat. Learn. 2 25–75. MR4073147 https://doi.org/10.4171/msl/11

[7] BENDORY, T., BARTESAGHI, A. and SINGER, A. (2020). Single-particle cryo-electron microscopy: Math-
ematical theory, computational challenges, and opportunities. IEEE Signal Process. Mag. 37 58–76.
https://doi.org/10.1109/msp.2019.2957822

[8] BENDORY, T., BOUMAL, N., MA, C., ZHAO, Z. and SINGER, A. (2018). Bispectrum inversion with
application to multireference alignment. IEEE Trans. Signal Process. 66 1037–1050. MR3771661
https://doi.org/10.1109/TSP.2017.2775591

[9] BENDORY, T., EDIDIN, D., LEEB, W. and SHARON, N. (2022). Dihedral multi-reference alignment. IEEE
Trans. Inf. Theory 68 3489–3499. MR4433234 https://doi.org/10.1109/tit.2022.3146488

[10] BENDORY, T., JAFFE, A., LEEB, W., SHARON, N. and SINGER, A. (2022). Super-resolution multi-
reference alignment. Inf. Inference 11 533–555. MR4440674 https://doi.org/10.1093/imaiai/iaab003

[11] BOUMAL, N. (2016). Nonconvex phase synchronization. SIAM J. Optim. 26 2355–2377. MR3566919
https://doi.org/10.1137/16M105808X

[12] BOUMAL, N., BENDORY, T., LEDERMAN, R. R. and SINGER, A. (2018). Heterogeneous multireference
alignment: A single pass approach. In 2018 52nd Annual Conference on Information Sciences and
Systems (CISS) 1–6. IEEE, New York.

[13] BROWN, L. G. (1992). A survey of image registration techniques. ACM Comput. Surv. 24 325–376.
[14] BRUNEL, V.-E. (2019). Learning rates for Gaussian mixtures under group action. In Conference on Learn-

ing Theory 471–491. PMLR.
[15] CAI, T. T. and ZHOU, H. H. (2012). Optimal rates of convergence for sparse covariance matrix estimation.

Ann. Statist. 40 2389–2420. MR3097607 https://doi.org/10.1214/12-AOS998
[16] DIAMOND, R. (1992). On the multiple simultaneous superposition of molecular structures by rigid body

transformations. Protein Sci. 1 1279–1287. https://doi.org/10.1002/pro.5560011006
[17] DOU, Z., FAN, Z. and ZHOU, H. (2024). Supplement to “Rates of estimation for high-dimensional mul-

tireference alignment.” https://doi.org/10.1214/23-AOS2346SUPP
[18] FAN, Z., LEDERMAN, R. R., SUN, Y., WANG, T. and XU, S. (2021). Maximum likelihood for high-noise

group orbit estimation and single-particle cryo-EM. Preprint. Available at arXiv:2107.01305.
[19] FAN, Z., SUN, Y., WANG, T. and WU, Y. (2023). Likelihood landscape and maximum likelihood estimation

for the discrete orbit recovery model. Comm. Pure Appl. Math. 76 1208–1302. MR4582297
[20] GHOSH, S. and RIGOLLET, P. (2021). Multi-reference alignment for sparse signals, uniform uncertainty

principles and the beltway problem. Preprint. Available at arXiv:2106.12996.
[21] KAM, Z. (1980). The reconstruction of structure from electron micrographs of randomly oriented particles.

J. Theoret. Biol. 82 15–39. https://doi.org/10.1016/0022-5193(80)90088-0
[22] KATSEVICH, A. E. and BANDEIRA, A. S. (2023). Likelihood maximization and moment matching in low

SNR Gaussian mixture models. Comm. Pure Appl. Math. 76 788–842. MR4569606 https://doi.org/10.
1002/cpa.22051

[23] LATAŁA, R. (2006). Estimates of moments and tails of Gaussian chaoses. Ann. Probab. 34 2315–2331.
MR2294983 https://doi.org/10.1214/009117906000000421

[24] LING, S. (2022). Near-optimal performance bounds for orthogonal and permutation group synchronization
via spectral methods. Appl. Comput. Harmon. Anal. 60 20–52. MR4387245 https://doi.org/10.1016/j.
acha.2022.02.003

[25] PERRY, A., WEED, J., BANDEIRA, A. S., RIGOLLET, P. and SINGER, A. (2019). The sample complexity
of multireference alignment. SIAM J. Math. Data Sci. 1 497–517. MR4002723 https://doi.org/10.1137/
18M1214317

[26] PERRY, A., WEIN, A. S., BANDEIRA, A. S. and MOITRA, A. (2018). Message-passing algorithms for
synchronization problems over compact groups. Comm. Pure Appl. Math. 71 2275–2322. MR3862091
https://doi.org/10.1002/cpa.21750

[27] PUMIR, T., SINGER, A. and BOUMAL, N. (2021). The generalized orthogonal Procrustes problem in the
high noise regime. Inf. Inference 10 921–954. MR4312088 https://doi.org/10.1093/imaiai/iaaa035

[28] RITOV, Y. (1989). Estimating a signal with noisy nuisance parameters. Biometrika 76 31–37. MR0991420
https://doi.org/10.1093/biomet/76.1.31

[29] ROMANOV, E., BENDORY, T. and ORDENTLICH, O. (2021). Multi-reference alignment in high dimen-
sions: Sample complexity and phase transition. SIAM J. Math. Data Sci. 3 494–523. MR4245326
https://doi.org/10.1137/20M1354994

[30] SADLER, B. M. and GIANNAKIS, G. B. (1992). Shift-and rotation-invariant object reconstruction using the
bispectrum. J. Opt. Soc. Amer. A 9 57–69.

http://arxiv.org/abs/1505.03840
https://mathscinet.ams.org/mathscinet-getitem?mr=4073147
https://doi.org/10.4171/msl/11
https://doi.org/10.1109/msp.2019.2957822
https://mathscinet.ams.org/mathscinet-getitem?mr=3771661
https://doi.org/10.1109/TSP.2017.2775591
https://mathscinet.ams.org/mathscinet-getitem?mr=4433234
https://doi.org/10.1109/tit.2022.3146488
https://mathscinet.ams.org/mathscinet-getitem?mr=4440674
https://doi.org/10.1093/imaiai/iaab003
https://mathscinet.ams.org/mathscinet-getitem?mr=3566919
https://doi.org/10.1137/16M105808X
https://mathscinet.ams.org/mathscinet-getitem?mr=3097607
https://doi.org/10.1214/12-AOS998
https://doi.org/10.1002/pro.5560011006
https://doi.org/10.1214/23-AOS2346SUPP
http://arxiv.org/abs/2107.01305
https://mathscinet.ams.org/mathscinet-getitem?mr=4582297
http://arxiv.org/abs/2106.12996
https://doi.org/10.1016/0022-5193(80)90088-0
https://mathscinet.ams.org/mathscinet-getitem?mr=4569606
https://doi.org/10.1002/cpa.22051
https://mathscinet.ams.org/mathscinet-getitem?mr=2294983
https://doi.org/10.1214/009117906000000421
https://mathscinet.ams.org/mathscinet-getitem?mr=4387245
https://doi.org/10.1016/j.acha.2022.02.003
https://mathscinet.ams.org/mathscinet-getitem?mr=4002723
https://doi.org/10.1137/18M1214317
https://mathscinet.ams.org/mathscinet-getitem?mr=3862091
https://doi.org/10.1002/cpa.21750
https://mathscinet.ams.org/mathscinet-getitem?mr=4312088
https://doi.org/10.1093/imaiai/iaaa035
https://mathscinet.ams.org/mathscinet-getitem?mr=0991420
https://doi.org/10.1093/biomet/76.1.31
https://mathscinet.ams.org/mathscinet-getitem?mr=4245326
https://doi.org/10.1137/20M1354994
https://doi.org/10.1002/cpa.22051
https://doi.org/10.1016/j.acha.2022.02.003
https://doi.org/10.1137/18M1214317


284 Z. DOU, Z. FAN AND H. H. ZHOU

[31] SCHERES, S. H. W. (2012). RELION: Implementation of a Bayesian approach to cryo-EM structure deter-
mination. J. Struct. Biol. 180 519–530. https://doi.org/10.1016/j.jsb.2012.09.006

[32] SCHERES, S. H. W., VALLE, M., NUÑEZ, R., SORZANO, C. O. S., MARABINI, R., HERMAN, G. T.
and CARAZO, J.-M. (2005). Maximum-likelihood multi-reference refinement for electron microscopy
images. J. Mol. Biol. 348 139–149. https://doi.org/10.1016/j.jmb.2005.02.031

[33] SHARON, N., KILEEL, J., KHOO, Y., LANDA, B. and SINGER, A. (2020). Method of moments for 3D
single particle ab initio modeling with non-uniform distribution of viewing angles. Inverse Probl. 36
044003, 40 pp. MR4072349 https://doi.org/10.1088/1361-6420/ab6139

[34] SIGWORTH, F. J. (1998). A maximum-likelihood approach to single-particle image refinement. J. Struct.
Biol. 122 328–339. https://doi.org/10.1006/jsbi.1998.4014

[35] SINGER, A. (2011). Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput.
Harmon. Anal. 30 20–36. MR2737931 https://doi.org/10.1016/j.acha.2010.02.001

[36] SINGER, A., COIFMAN, R. R., SIGWORTH, F. J., CHESTER, D. W. and SHKOLNISKY, Y. (2010). Detect-
ing consistent common lines in cryo-EM by voting. J. Struct. Biol. 169 312–322. https://doi.org/10.
1016/j.jsb.2009.11.003

[37] SINGER, A. and SHKOLNISKY, Y. (2011). Three-dimensional structure determination from common
lines in cryo-EM by eigenvectors and semidefinite programming. SIAM J. Imaging Sci. 4 543–572.
MR2810897 https://doi.org/10.1137/090767777

[38] SINGER, A. and SIGWORTH, F. J. (2020). Computational methods for single-particle elec-
tron cryomicroscopy. Annu. Rev. Biomed. Data Sci. 3 163–190. https://doi.org/10.1146/
annurev-biodatasci-021020-093826

https://doi.org/10.1016/j.jsb.2012.09.006
https://doi.org/10.1016/j.jmb.2005.02.031
https://mathscinet.ams.org/mathscinet-getitem?mr=4072349
https://doi.org/10.1088/1361-6420/ab6139
https://doi.org/10.1006/jsbi.1998.4014
https://mathscinet.ams.org/mathscinet-getitem?mr=2737931
https://doi.org/10.1016/j.acha.2010.02.001
https://doi.org/10.1016/j.jsb.2009.11.003
https://mathscinet.ams.org/mathscinet-getitem?mr=2810897
https://doi.org/10.1137/090767777
https://doi.org/10.1146/annurev-biodatasci-021020-093826
https://doi.org/10.1016/j.jsb.2009.11.003
https://doi.org/10.1146/annurev-biodatasci-021020-093826

	Introduction
	Further related literature
	Outline
	Notation

	Model and main results
	Preliminaries
	Bounds for the loss
	Complex representation

	Method-of-moments estimator
	The oracle procedure
	Mimicking the oracle

	Maximum likelihood estimator
	Gradient and Hessian of the log-likelihood
	Tail bound
	Lower bound for the information matrix
	Proof of Theorem 5.2

	Minimax lower bounds
	Acknowledgments
	Funding
	Supplementary Material
	References

