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This paper is concerned with offline reinforcement learning (RL), which
learns using precollected data without further exploration. Effective offline
RL would be able to accommodate distribution shift and limited data cover-
age. However, prior results either suffer from suboptimal sample complexities
or incur high burn-in cost to reach sample optimality, thus posing an impedi-
ment to efficient offline RL in sample-starved applications.

We demonstrate that the model-based (or “plug-in”) approach achieves
minimax-optimal sample complexity without any burn-in cost for tabular
Markov decision processes (MDPs). Concretely, consider a γ -discounted
infinite-horizon (resp., finite-horizon) MDP with S states and effective hori-
zon 1

1−γ
(resp., horizon H ), and suppose the distribution shift of data is re-

flected by some single-policy clipped concentrability coefficient C�
clipped. We

prove that model-based offline RL yields ε-accuracy with a sample complex-
ity of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SC�
clipped

(1 − γ )3ε2 (infinite-horizon MDPs),

H 4SC�
clipped

ε2 (finite-horizon MDPs),

up to log factor, which is minimax optimal for the entire ε-range. The pro-
posed algorithms are “pessimistic” variants of value iteration with Bernstein-
style penalties, and do not require sophisticated variance reduction. Our anal-
ysis framework is established upon delicate leave-one-out decoupling argu-
ments in conjunction with careful self-bounding techniques tailored to MDPs.

1. Introduction. Reinforcement learning (RL) has recently achieved superhuman per-
formance in the gaming frontier, such as the game of Go (Silver et al. (2017)), under the
premise that vast amounts of training data can be obtained. However, limited capability
of online data collection in other real-world applications—for example, clinical trials and
online advertising, where real-time data acquisition is expensive, high-stakes and/or time-
consuming—presents a fundamental bottleneck for carrying such RL success over to broader
scenarios. To circumvent this bottleneck, one plausible strategy is to make more effective
use of data collected previously, given that such historical data might contain useful infor-
mation that readily transfers to new tasks (for instance, the state transitions in a historical
task might sometimes resemble what happens in new tasks). The potential of this data-driven
approach has been explored and recognized in a diverse array of contexts, including but not
limited to robotic manipulation (Ebert et al. (2018)), autonomous driving (Diehl et al. (2021))
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and healthcare (Tang and Wiens (2021)); see Levine et al. (2020), Prudencio, Maximo and
Colombini (2022) for overviews of recent development. Nowadays, the subfield of reinforce-
ment learning using historical data, without further exploration of the environment, is com-
monly referred to as offline RL or batch RL (Lange, Gabel and Riedmiller (2012), Levine et
al. (2020)). A desired offline RL algorithm would achieve the target statistical accuracy using
as few samples as possible.

1.1. Challenges: Distribution shift and limited data coverage. In contrast to online ex-
ploratory RL, offline RL has to deal with several critical issues resulting from the absence of
active exploration. Below we single out two representative issues surrounding offline RL.

• Distribution shift. For the most part, the historical data is generated by a certain behavior
policy that departs from the optimal one. A key challenge in offline RL thus stems from
the shift of data distributions: how to leverage past data to the most effect, even though the
distribution induced by the target policy differs from what we have available.

• Limited data coverage. Ideally, if the data set contained sufficiently many data samples for
every state-action pair, then there would be hope to simultaneously learn the performance
of every policy. Such a uniform coverage requirement, however, is oftentimes not only
unrealistic (given that we can no longer change the past data) but also unnecessary (given
that we might only be interested in identifying a single optimal policy).

Whether one can effectively cope with distribution shift and insufficient data coverage
becomes a major factor that governs the feasibility and statistical efficiency of offline RL.

In order to address the aforementioned issues, a recent strand of works put forward the
principle of pessimism or conservatism (e.g., Buckman, Gelada and Bellemare (2020), Chen
et al. (2021), Jin, Yang and Wang (2021), Kumar et al. (2020), Rashidinejad et al. (2022),
Xie et al. (2021), Zanette, Wainwright and Brunskill (2021)). This is reminiscent of the op-
timism principle in the face of uncertainty for online exploration (Azar, Osband and Munos
(2017), Jaksch, Ortner and Auer (2010), Lai and Robbins (1985)), but works for drastically
different reasons (to be detailed momentarily). One plausible idea of the pessimism principle,
which has been incorporated into both model-based and model-free approaches, is to penal-
ize value estimation of those state-action pairs that have been poorly covered. Informally
speaking, insufficient coverage of a state-action pair inevitably results in low confidence and
high uncertainty in the associated value estimation, and it is hence advisable to act cautiously
by tuning down the corresponding value estimate. Proper use of pessimism amid uncertainty
brings several provable benefits (Rashidinejad et al. (2022), Xie et al. (2021)): (i) it allows for
a reduced sample size that adapts to the degree of distribution shift; (ii) as opposed to uniform
data coverage, it only requires coverage of the part of the state-action space reachable by the
target policy. Details to follow momentarily.

1.2. Inadequacy of prior works. In the present paper, we evaluate and compare the sta-
tistical performance of offline RL algorithms mainly through the lens of sample complexity,
namely the number of samples needed for an algorithm to output, with probability approach-
ing one, a policy whose resultant value function is at most ε away from optimal (called
“ε-accuracy” throughout). An ultimate goal is to design an offline RL algorithm to achieve
the smallest possible sample complexity.

Despite extensive recent activities, however, existing statistical guarantees for the above
paradigm remained highly inadequate, as we shall elaborate on below. For concreteness, our
discussions focus on two widely-studied Markov decision processes (MDPs) with S states
and A actions (Bertsekas (2017)): (a) γ -discounted infinite-horizon MDPs, with effective
horizon 1

1−γ
; (b) finite-horizon MDPs with horizon length H and nonstationary transition
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kernels. We shall bear in mind that all of these salient problem parameters (i.e., S, A, 1
1−γ

, H )
could be enormous in modern RL applications. In addition, previous works have isolated an
important parameter C� ≥ 1—called the single-policy concentrability coefficient (Rashidine-
jad et al. (2022), Xie et al. (2021))—that measures the mismatch of distributions induced by
the target policy against the behavior policy; see Sections 2.1 and 3.1 for precise definitions.
Naturally, the statistical performance of desirable algorithms would degrade gracefully as
the distribution mismatch worsens (i.e., as C� increases). In the sequel, we shall discuss two
dinstinctive RL paradigms—model-based RL and model-free RL—separately. Throughout
this paper, the standard notation Õ(·) indicates the order of a function with all log terms in
S, A, 1

1−γ
, H , 1

ε
and 1

δ
(with 1 − δ the target success probability) hidden.

Model-based offline RL. Model-based algorithms—which can be interpreted as a “plug-
in” statistical approach—start by computing an empirical model for the unknown MDP, and
output a policy that is (near)-optimal in accordance with the empirical MDP. When coupled
with the pessimism principle, the model-based approach has been shown to enjoy the follow-
ing sample complexity bounds:

• By incorporating Hoeffding-style lower confidence bounds into value iteration, Rashidine-
jad et al. (2022), Xie et al. (2021) demonstrated that a sample complexity of⎧⎪⎪⎪⎨⎪⎪⎪⎩

Õ

(
SC�

(1 − γ )5ε2

)
for infinite-horizon MDPs,

Õ

(
H 6SC�

ε2

)
for finite-horizon MDPs,

(1)

suffices to yield ε-accuracy. Such a sample complexity bound, however, is a large factor
of 1

(1−γ )2 (resp. H 2) above the minimax lower limit derived for infinite-horizon (resp.,
finite-horizon) MDPs (Rashidinejad et al. (2022), Xie et al. (2021), Yin and Wang (2021)).

• In an attempt to optimize the sample complexity, Xie et al. (2021) leveraged the idea of
variance reduction—a powerful strategy originating from the stochastic optimization lit-
erature (Johnson and Zhang (2013))—in model-based RL and obtained a strengthened
sample complexity of

Õ

(
H 4SC�

ε2 + H 6.5SC�

ε

)
(2)

for finite-horizon MDPs. This sample complexity bound approaches the minimax lower
limit (i.e., the order of H 4SC�

ε2 ) once the sample size exceeds the order of

(burn-in cost) H 9SC�;(3)

in other words, an enormous burn-in sample size is needed to attain sample optimality.

Model-free offline RL. The model-free approach forms a contrastingly different class of
RL algorithms, which bypasses the model estimation stage and directly learns the optimal
values. Noteworthily, Q-learning and its variants (Watkins and Dayan (1992)), which apply
stochastic approximation (Robbins and Monro (1951)) based on the Bellman optimality con-
dition, are among the most widely used model-free paradigms. The principle of pessimism
amid uncertainty has recently been integrated into model-free algorithms as well, with the
state-of-the-art statistical guarantees listed below (Shi et al. (2022), Yan et al. (2023)).

• When Q-learning is implemented in conjunction with Hoeffding-style lower confidence
bounds, it has been shown to achieve the same sample complexity as (1), which is subop-
timal by a factor of either 1

(1−γ )2 or H 2.
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• A variance-reduced variant of pessimistic Q-learning allows for further sample size bene-
fits, achieving a sample complexity of⎧⎪⎪⎨⎪⎪⎩

Õ

(
SC�

(1 − γ )3ε2 + SC�

(1 − γ )4ε

)
for infinite-horizon MDPs,

Õ

(
H 4SC�

ε2 + H 5SC�

ε

)
for finite-horizon MDPs,

(4)

for any target accuracy level ε. This means that the algorithm is guaranteed to be sample-
optimal only after the total sample size exceeds the order of

(burn-in cost)

⎧⎪⎨⎪⎩
SC�

(1 − γ )5 for infinite-horizon MDPs,

H 6SC� for finite-horizon MDPs,
(5)

which again manifests itself as a significant burn-in cost for long-horizon problems.

Summary. As elucidated above, existing algorithms either suffer from suboptimal sample
complexities, or require sophisticated techniques like variance reduction to approach mini-
max optimality. Even when variance reduction is employed, prior algorithms incur an enor-
mous burn-in cost in order to work optimally, thus posing an impediment to achieving sam-
ple efficiency in data-starved applications. Table 1 summarizes quantitatively the previous
results, whereas Figure 1 illustrates the gaps between the state-of-the-art upper bounds and
the minimax lower bounds (as derived by Rashidinejad et al. (2022), Xie et al. (2021)). All
this motivates the studies of the following natural questions:

Can we develop an offline RL algorithm that achieves near-optimal sample complexity
without burn-in cost? If so, can we accomplish this goal by means of a simple algorithm
without resorting to sophisticated schemes like variance reduction?

This paper answers these questions affirmatively by studying the model-based approach.

1.3. Main contributions. In this paper, we settle the sample complexity of model-based
offline RL by studying a pessimistic variant of value iteration—called VI-LCB—applied to
some empirical MDP. Encouragingly, for both discounted infinite-horizon and finite-horizon
MDPs, the model-based algorithms provably achieve minimax-optimal sample complexities
for any given target accuracy level ε, namely any ε ∈ (0, 1

1−γ
] for discounted infinite-horizon

MDPs and ε ∈ (0,H ] for finite-horizon MDPs.
More precisely, we introduce a slightly modified version C�

clipped of the concentrability
coefficient C�, which always satisfies C�

clipped ≤ C� and shall be termed the single-policy
clipped concentrability coefficient (see Sections 2.1 and 3.1 for more details as well as the
advantages of this coefficient). The introduction of this new parameter leads to slightly im-
proved sample complexity compared to the one based on C�. The main contributions are
summarized as follows:

• For γ -discounted infinite-horizon MDPs, we demonstrate that with high probability, VI-
LCB with Bernstein-style penalty finds an ε-optimal policy with a sample complexity of

(6) Õ

(
SC�

clipped

(1 − γ )3ε2

)
for any given accuracy level ε ∈ (0, 1

1−γ
] (see Theorem 1). Our algorithm reuses all sam-

ples across all iterations in order to achieve data efficiency, and our analysis builds upon a
novel leave-one-out argument to decouple complicated statistical dependency across itera-
tions. The above sample complexity (6) remains valid if C�

clipped is replaced by C�.



MODEL-BASED OFFLINE REINFORCEMENT LEARNING 237

TABLE 1
Comparisons with prior results (up to log terms) regarding finding an ε-optimal policy in offline RL. The ε-range

stands for the range of accuracy level ε for which the derived sample complexity is optimal. Here, one always
has C�

clipped ≤ C�; and the parameter db
min := 1

mins,a,h{db
h(s,a):db

h(s,a)>0} employed in Yin and Wang (2021) could

be exceedingly small, with db
h the occupancy distribution of the data set. While multiple algorithms are referred

to as VI-LCB in the table, they correspond to different variants of VI-LCB. Our results are the first to achieve
sample optimality for the full ε-range

Horizon Algorithm Sample complexity ε-range to attain sample optimality Type

Infinite VI-LCB SC�

(1−γ )5ε2 – model-based
(Rashidinejad et al. (2022))

Q-LCB SC�

(1−γ )5ε2 – model-free
(Yan et al. (2023))

VR-Q-LCB SC�

(1−γ )3ε2 + SC�

(1−γ )4ε
(0,1 − γ ] model-free

(Yan et al. (2023))

VI-LCB
SC�

clipped

(1−γ )3ε2 (≤ SC�

(1−γ )3ε2 ) (0, 1
1−γ

] model-based
(this paper: Theorem 1)

lower bound
SC�

clipped

(1−γ )3ε2 – –
(this paper: Theorem 2)

Finite VI-LCB H 6SC�

ε2 – model-based
(Xie et al. (2021))

VPVI H 5SC�

ε2 – model-based
(Yin and Wang (2021))

PEVI-Adv H 4SC�

ε2 + H 6.5SC�

ε (0, 1
H 2.5 ] model-based

(Xie et al. (2021))

LCB-Q-Advantage H 4SC�

ε2 + H 5SC�

ε (0, 1
H

] model-free
(Shi et al. (2022))

APVI/LCBVI H 4SC�

ε2 + H 4

db
minε

(0, SC�db
min] model-based

(Yin and Wang (2021))

VI-LCB
H 4SC�

clipped

ε2 (≤ H 4SC�

ε2 ) (0,H ] model-based
(this paper: Theorem 3)

lower bound
H 4SC�

clipped

ε2 – –
(this paper: Theorem 4)

• For finite-horizon MDPs with nonstationary transition kernels, we propose a variant of VI-
LCB that adopts the Bernstein-style penalty to enforce pessimism. We prove that for any
given ε ∈ (0,H ], the proposed algorithm yields an ε-optimal policy using

(7) Õ

(
H 4SC�

clipped

ε2

)
samples with high probability (see Theorem 3). A key ingredient in the algorithm design
is a twofold subsampling trick that helps decouple statistical dependency along the sample
rollouts. Note that the above result (7) continues to hold if one replaces C�

clipped with C�.
• To assess the tightness and optimality of our results, we further develop minimax lower

bounds in Theorems 2 and 4, which match the above upper bounds (modulo log terms).

Remarkably, our algorithms do not require sophisticated variance reduction schemes, as long
as suitable confidence bounds are adopted. Detailed theoretical comparisons with prior art
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FIG. 1. An illustration of prior works, where (a) is about discounted infinite-horizon MDPs and (b) is about
finite-horizon MDPs. To facilitate comparisons, we replace C�

clipped with C� in our results when drawing the plots

given that C�
clipped ≤ C�. The shaded regions indicate the state-of-the-art achievability results. Our work manages

to close the gaps between the prior achievable regions and the minimax lower bounds.

can be found in Table 1 and Figure 1. Finally, we conduct a series of numerical experiments
to evaluate the performance of the proposed algorithms.

Statistical contributions: Solving the most sample-hungry regime. The offline RL prob-
lem considered herein is statistical in nature, in that it seeks to learn from precollected data
in the face of uncertainty. As far we know, our theory is the first to identify an offline algo-
rithm that provably attains the highest possible statistical efficiency (i.e., minimax optimality)
for the entire ε-range, which in turn makes clear that no burn-in phase is needed to achieve
optimal statistical accuracy, shown in Theorem 1 to Theorem 4. Achieving this requires de-
veloping a new suite of statistical theory that works all the way to the most data-hungry
regime. It is noteworthy that the existing statistical toolbox—not merely for offline RL, but
for online RL as well (see Section 5)—is only guaranteed to work when the total sample size
already exceeds a fairly large threshold, a (often unnecessary) requirement that substantially
simplifies statistical analysis. In this sense, the regime we aim to solve is reminiscent of the
subfield of high-dimensional statistics (Donoho (2000), Wainwright (2019a)) that helps ex-
tend the frontier of classical statistics to the sample-starved regime, for which an enriched
statistical toolbox is needed.

Let us single out two statistical techniques developed in this work that may of independent
interest for achieving statistical efficiency. First, we have introduced a new model construc-
tion approach with twofold subsampling in Section 3.3 that permits the reuse of all samples
across all iterations—compared with the previous H -fold subsampling scheme—which is an
essential feature in sample-starved applications to achieve tight finite-sample guarantees. In
addition, we have proposed a refined measure for the distribution coverage of offline data set,
as discussed around Definition 2, which tightly determines the sample size requirement of
solving offline RL problems.

1.4. Notation. Throughout this paper, we adopt the convention that 0/0 = 0. We use
�(S) to indicate the probability simplex over the set S , and denote by [H ] the set {1, . . . ,H }
for any positive integer H . We use 1(·) to represent the indicator function. For any vector
x = [x(s, a)](s,a)∈S×A ∈ R

SA, we overload the notation by letting x2 = [x(s, a)2](s,a)∈S×A.
For two vectors a = [ai]1≤i≤n and b = [bi]1≤i≤n, a ◦b = [aibi]1≤i≤n denotes their Hadamard
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product, and a ≥ b (resp., a ≤ b) means ai ≥ bi (resp., ai ≤ bi ) for all i. Following the con-
vention in RL, the norm ‖ · ‖1 of a matrix P = [Pij ] is defined to be ‖P‖1 := maxi

∑
j |Pij |.

For any probability vector q ∈ R
1×S (which is a row vector) and any vector V ∈ R

S , define

Varq(V ) := q(V ◦ V ) − (qV )2 ∈ R(8)

with qV = ∑
i qiVi , which corresponds to the variance of V w.r.t. the distribution q . The

standard notation O(·) is adopted to represent the orderwise scaling of a function.

2. Algorithm and theory: Discounted infinite-horizon MDPs. We begin by studying
offline RL in discounted infinite-horizon MDPs. In the following, we shall first introduce the
models and assumptions, followed by algorithm design and main results.

2.1. Models and assumptions. Consider a discounted infinite-horizon MDP represented
by a tuple M = {S,A,P , γ, r}. The key components of M are: (i) S = {1,2, . . . , S}: a
finite state space of size S; (ii) A = {1,2, . . . ,A}: an action space of size A; (iii) P : S ×
A → �(S): the transition probability kernel of the MDP (i.e., P(·|s, a) denotes the transition
probability from state s when action a is executed); (iv) γ ∈ [0,1): the discount factor, so that

1
1−γ

represents the effective horizon; (v) r : S×A → [0,1]: the deterministic reward function
(namely, r(s, a) is the immediate reward received when the current state-action pair is (s, a)).
Without loss of generality, the immediate rewards are normalized so that they are contained
within the interval [0,1]. Throughout this section, we introduce the convenient notation

Ps,a := P(·|s, a) ∈ R
1×S.(9)

Policy, value function and Q-function. A stationary policy π : S → �(A) is a possibly
randomized action selection rule; that is, π(a|s) represents the probability of choosing a in
state s. When π is a deterministic policy, we abuse the notation by letting π(s) represent
the action chosen by the policy π in state s. A sample trajectory induced by the MDP under
policy π can be written as {(st , at )}t≥0, with st (resp., at ) denoting the state (resp., action)
of the trajectory at time t . To proceed, we shall also introduce the value function V π and
Q-value function Qπ associated with policy π . Specifically, the value function V π : S → R

of policy π is defined as the expected discounted cumulative reward as follows:

∀s ∈ S : V π(s) := E

[ ∞∑
t=0

γ t r(st , at )
∣∣∣s0 = s;π

]
,(10)

where the expectation is taken over the sample trajectory {(st , at )}t≥0 generated in a way
that at ∼ π(·|st ) and st+1 ∼ P(·|st , at ) for all t ≥ 0. Given that all immediate rewards lie
within [0,1], it is easily verified that 0 ≤ V π(s) ≤ 1

1−γ
for any policy π . The Q-function (or

action-state function) of policy π can be defined analogously as follows:

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[ ∞∑
t=0

γ t r(st , at )
∣∣∣s0 = s, a0 = a;π

]
,(11)

which differs from (10) in that it is also conditioned on a0 = a.
Let ρ ∈ �(S) be a given state distribution. If the initial state is randomly drawn from ρ,

then we can define the following weighted value function of policy π :

V π(ρ) := E
s∼ρ

[
V π(s)

]
.(12)



240 G. LI ET AL.

We also introduce the discounted occupancy distributions associated with π as follows:

∀s ∈ S : dπ(s;ρ) := (1 − γ )

∞∑
t=0

γ t
P(st = s|s0 ∼ ρ;π),(13)

∀(s, a) ∈ S ×A : dπ(s, a;ρ) := (1 − γ )

∞∑
t=0

γ t
P(st = s, at = a|s0 ∼ ρ;π),(14)

where we consider the randomness over a sample trajectory that starts from an initial state
s0 ∼ ρ and that follows policy π (i.e., at ∼ π(·|st ) and st+1 ∼ P(·|st , at ) for all t ≥ 0).

It is known that there exists at least one deterministic policy—denoted by π�—that simul-
taneously maximizes V π(s) and Qπ(s, a) for all state-action pairs (s, a) ∈ S ×A (Bertsekas
(2017)). We use the following shorthand notation to represent respectively the resulting opti-
mal value and optimal Q-function:

∀(s, a) ∈ S ×A : V �(s) := V π�

(s) and Q�(s, a) := Qπ�

(s, a).(15)

Correspondingly, the discounted occupancy distributions associated with π� is denoted by

∀(s, a) ∈ S ×A : d�(s) := dπ�

(s;ρ), d�(s, a)

:= dπ�

(s, a;ρ) = d�(s)1
(
a = π�(s)

)
,

(16)

where the last equality is valid since π� is assumed to be deterministic.

Offline/batch data. Let us work with an independent sampling model as studied in
Rashidinejad et al. (2022). To be precise, imagine that we observe a batch data set D =
{(si, ai, s

′
i)}1≤i≤N containing N sample transitions. These samples are independently gener-

ated based on a distribution db ∈ �(S ×A) and the transition kernel P of the MDP, namely

(si, ai)
ind.∼ db and s′

i

ind.∼ P(·|si, ai), 1 ≤ i ≤ N.(17)

In addition, it is assumed that the learner is aware of the reward function.
To capture the distribution shift between the desired occupancy measure and the data dis-

tribution, we introduce a key quantity previously introduced in Rashidinejad et al. (2022).

DEFINITION 1 (Single-policy concentrability for infinite-horizon MDPs). The single-
policy concentrability coefficient of a batch data set D is defined as

C� := max
(s,a)∈S×A

d�(s, a)

db(s, a)
.(18)

Clearly, one necessarily has C� ≥ 1.

In words, C� measures the distribution mismatch in terms of the maximum density ratio.
The data set can be viewed as expert data when C� approaches 1, meaning that the data set is
close to the target policy in terms of the induced distributions. This coefficient C� is referred
to as the “single-policy” concentrability coefficient since it concerns a single policy π�; this
is clearly a much weaker assumption compared to the all-policy concentrability assumption
(as adopted in, e.g., Chen and Jiang (2019), Munos (2007), Xie and Jiang (2021)), the latter
of which assumes a uniform density-ratio bound over all policies and requires the data set to
be highly exploratory.

In the current paper, we also introduce a slightly improved version of C� as follows.
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DEFINITION 2 (Single-policy clipped concentrability for infinite-horizon MDPs). The
single-policy clipped concentrability coefficient of a batch data set D is defined as

C�
clipped := max

(s,a)∈S×A

min{d�(s, a), 1
S
}

db(s, a)
.(19)

REMARK 1. A direct comparison of conditions (18) and (19) implies that

(20) C�
clipped ≤ C�

for any given batch data set D. As we shall see later, while our sample complexity upper
bounds will be mainly stated in terms of C�

clipped, all of them remain valid if C�
clipped is replaced

with C�. Additionally, in contrast to C� that is always lower bounded by 1, we have a smaller
lower bound as follows (directly from the definition (19))

C�
clipped ≥ 1/S,(21)

which is nearly tight.1 This attribute could lead to sample size saving, detailed shortly.

Let us take a moment to further interpret the coefficient in Definition 2, which says that

db(s, a) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

C�
clipped

d�(s, a) if d�(s, a) ≤ 1/S,

1

C�
clippedS

if d�(s, a) > 1/S,

(22)

holds for any pair (s, a). Consider, for instance, the case where C�
clipped = O(1): if a state-

action pair is infrequently (or rarely) visited by the optimal policy, then it is fine for the
associated density in the batch data to be very small (e.g., a density proportional to that of the
optimal policy); by contrast, if a state-action pair is visited fairly often by the optimal policy,
then Definition 2 might only require db(s, a) to exceed the order of 1/S. In other words, the
required level of db(s, a) is clipped at the level 1

C�
clippedS

regardless of the value of d�(s, a).

Goal. Armed with the batch data set D, the objective of offline RL in this case is to
find a policy π̂ that attains near-optimal value functions—with respect to a given test state
distribution ρ ∈ �(S)—in a sample-efficient manner. To be precise, for a prescribed accuracy
level ε, we seek to identify an ε-optimal policy π̂ satisfying

V �(ρ) − V π̂ (ρ) ≤ ε(23)

with high probability, using a batch data set D (cf. (17)) containing as few samples as pos-
sible. Particular emphasis is placed on achieving minimal sample complexity for the entire
range of accuracy levels (namely for any ε ∈ (0, 1

1−γ
]).

1As a concrete example, suppose that

d�(s) =

⎧⎪⎪⎨⎪⎪⎩
1 − S − 1

S3 if s = 1,

1

S3 else,
and db(s, a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − S − 1

S2 if a = π�(s) and s = 1,

1

S2 if a = π�(s) and s �= 1,

0 else.

Then it can be easily verified that C�
clipped = 1

S−1+ 1
S

. Nonetheless, caution should be exercised that an exceedingly

small C�
clipped requires highly compressible structure of d�, and the real-world data often do not fall within this

benign range of C�
clipped.
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2.2. Algorithm: VI-LCB for infinite-horizon MDPs. In this subsection, we introduce a
model-based offline RL algorithm that incorporates lower concentration bounds in value es-
timation. The algorithm, called VI-LCB, applies value iteration (based on some pessimistic
Bellman operator) to the empirical MDP, with the key ingredients described below.

The empirical MDP. Recall that we are given N independent sample transitions
{(si, ai, s

′
i)}Ni=1 in the data set D. For any given state-action pair (s, a), we denote by

N(s, a) :=
N∑

i=1

1
(
(si, ai) = (s, a)

)
(24)

the number of samples transitions from (s, a). We then construct an empirical transition ma-
trix P̂ such that: for each (s, a, s′) ∈ S ×A× S ,

P̂
(
s′|s, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

N(s, a)

N∑
i=1

1
{(

si, ai, s
′
i

) = (
s, a, s′)} if N(s, a) > 0,

1

S
else.

(25)

The pessimistic Bellman operator. Our algorithm is developed based on finding the fixed
point of some variant of the classical Bellman operator. Let us first introduce this key operator
and eludicate how the pessimism principle is enforced. Recall that the Bellman operator
T (·) : RSA →R

SA w.r.t. the transition kernel P is defined such that for any vector Q ∈R
SA,

T (Q)(s, a) := r(s, a) + γPs,aV for all (s, a) ∈ S ×A,(26)

where V = [V (s)]s∈S with V (s) := maxa Q(s, a). We propose to penalize the original Bell-
man operator w.r.t. the empirical kernel P̂ as follows:

T̂pe(Q)(s, a) := max
{
r(s, a) + γ P̂s,aV − b(s, a;V ),0

}
for all (s, a) ∈ S ×A,

(27)

where b(s, a;V ) denotes the penalty term employed to enforce pessimism amid uncertainty.
As one can anticipate, the fixed point of T̂pe(·) relies heavily upon the choice of the penalty
terms {bh(s, a;V )}, often derived based on certain concentration bounds. In this paper, we
focus on the following Bernstein-style penalty to exploit the importance of variance statistics:

b(s, a;V ) := min
{

max
{√√√√cb log N

(1−γ )δ

N(s, a)
VarP̂s,a

(V ),
2cb log N

(1−γ )δ

(1 − γ )N(s, a)

}
,

1

1 − γ

}

+ 5

N

(28)

for every (s, a) ∈ S × A, where cb > 0 is some numerical constant (e.g., cb = 144), and
δ ∈ (0,1) is some given quantity (1 − δ is the target success probability). Here, for any vector
V ∈ R

S , we recall that VarP̂s,a
(V ) is the variance of V w.r.t. the distribution P̂s,a (see (8)).

We isolate several useful properties below, whose proof is deferred to Appendix B.2 in the
Supplementary Material (Li et al. (2024)).

LEMMA 1. For any γ ∈ [1
2 ,1), the operator T̂pe(·) (cf. (27)) with the Bernstein-style

penalty (28) is a γ -contraction w.r.t. ‖ · ‖∞, that is,∥∥T̂pe(Q1) − T̂pe(Q2)
∥∥∞ ≤ γ ‖Q1 − Q2‖∞(29)
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for any Q1,Q2 ∈ R
S×A obeying Q1(s, a),Q2(s, a) ∈ [0, 1

1−γ
] for all (s, a) ∈ S × A. In

addition, there exists a unique fixed point Q̂�
pe of the operator T̂pe(·), which also obeys 0 ≤

Q̂�
pe(s, a) ≤ 1

1−γ
for all (s, a) ∈ S ×A.

In words, even though T̂pe(·) integrates the penalty terms, it still preserves the γ -
contraction property and admits a unique fixed point, thus resembling the classical Bellman
operator (26).

The VI-LCB algorithm. We are now positioned to introduce the VI-LCB algorithm,
which can be regarded as classical value iteration applied in conjunction with pessimism.
Specifically, the algorithm applies the Bernstein-style pessimistic operator T̂pe (cf. (27)) iter-
atively in order to find its fixed point:

Q̂τ (s, a) = T̂pe(Q̂τ−1)(s, a)

= max
{
r(s, a) + γ P̂s,aV̂τ−1 − b(s, a; V̂τ−1),0

}
, τ = 1,2, . . .

(30)

We shall initialize it to Q̂0 = 0, implement (30) for τmax iterations and output Q̂ = Q̂τmax as
the final Q-estimate. The final policy estimate π̂ is chosen on the basis of Q̂ as follows:

π̂(s) ∈ arg max
a

Q̂(s, a) for all s ∈ S,(31)

with the whole algorithm summarized in Algorithm 1.
Let us pause to explain the rationale of the pessimism principle on a high level. If a pair

(s, a) has been insufficiently visited in D (i.e., N(s, a) is small), then the resulting Q-estimate
Q̂τ (s, a) could suffer from high uncertainty and become unreliable, which might in turn
mislead value estimation. By enforcing suitable penalization b(s, a; V̂τ−1) based on certain
lower confidence bounds, we can suppress the negative influence of such poorly visited state-
action pairs. Fortunately, suppressing these state-action pairs might not result in significant
bias in value estimation when C�

clipped is small; for instance, when the behavior policy πb

resembles π�, the poorly visited state-action pairs correspond primarily to suboptimal actions
(as they are not selected by π�), making it acceptable to neglect these pairs.

In view of the γ -contraction property in Lemma 1, the iterates {Q̂τ }τ≥0 converge linearly
to the fixed point Q̂�

pe, as asserted below. Its proof is deferred to Appendix B.3 in the Supple-
mentary Material (Li et al. (2024)).

Algorithm 1: Offline value iteration with LCB (VI-LCB) for infinite-horizon MDPs

1 input: data set D; reward function r ; target success probability 1 − δ; max iteration
number τmax.

2 initialization: Q̂0 = 0, V̂0 = 0.
3 construct the empirical transition kernel P̂ according to (25).
4 for τ = 1,2, . . . , τmax do
5 for s ∈ S , a ∈ A do
6 compute the penalty term b(s, a; V̂τ−1) according to (28).
7 set Q̂τ (s, a) = max{r(s, a) + γ P̂s,aV̂τ−1 − b(s, a; V̂τ−1),0}.
8 for s ∈ S do
9 set V̂τ (s) = maxa Q̂τ (s, a).

10 output: π̂ s.t. π̂(s) ∈ arg maxa Q̂τmax(s, a) for any s ∈ S .
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LEMMA 2. Suppose Q̂0 = 0. Then the iterates of Algorithm 1 obey

Q̂τ ≤ Q̂�
pe and

∥∥Q̂τ − Q̂�
pe

∥∥∞ ≤ γ τ

1 − γ
for all τ ≥ 0,(32)

where Q̂�
pe is the unique fixed point of T̂pe. Thus, by choosing τmax ≥ log N

1−γ

log(1/γ )
one fulfills∥∥Q̂τmax − Q̂�

pe

∥∥∞ ≤ 1/N.(33)

Algorithmic comparison with Rashidinejad et al. (2022). VI-LCB has been studied in
Rashidinejad et al. (2022). The difference between our version and theirs is twofold:

• Sample reuse vs. Õ( 1
1−γ

)-fold sample splitting. Our algorithm reuses the same set of sam-
ples across all iterations, which is in sharp contrast to Rashidinejad et al. (2022) that em-
ploys fresh samples in each of the Õ( 1

1−γ
) iterations. This results in considerably better

usage of available information.
• Bernstein-style vs. Hoeffding-style penalty. Our algorithm adopts the Bernstein-type

penalty, as opposed to the Hoeffding-style penalty in Rashidinejad et al. (2022). This
choice leads to more effective exploitation of the variance structure across time.

Pessimism vs. optimism in the face of uncertainty. The careful reader might also notice
the similarity between the pessimism principle and the optimism principle utilized in online
RL. A well-developed paradigm that balances exploration and exploitation in online RL is op-
timistic exploration based on uncertainty quantification (Lai and Robbins (1985)). The earlier
work Jaksch, Ortner and Auer (2010) put forward an algorithm called UCRL2 that computes
an optimistic policy with the aid of Hoeffding-style confidence regions for the transition ker-
nel. Later on, Azar, Osband and Munos (2017) proposed to build upper confidence bounds
(UCB) for the optimal values instead, which leads to improved sample complexity; see, for
example, He, Zhou and Gu (2021), Wang et al. (2019) for the application of this strategy to
discounted infinite-horizon MDPs. Note, however, that the rationales behind optimism and
pessimism are markedly different. In offline RL (which does not allow further data collec-
tion), the uncertainty estimates are employed to identify, and then rule out, poorly-visited
actions; this stands in sharp contrast to the online counterpart where poorly-visited actions
might be more favored during exploration.

2.3. Performance guarantees. When the Bernstein-style concentration bound (28) is
adopted, Algorithm 1 yields ε-accuracy with a minimal number of samples, as stated below.

THEOREM 1. Suppose γ ∈ [1
2 ,1), and consider any 0 < δ < 1 and ε ∈ (0, 1

1−γ
]. Suppose

that the total number of iterations exceeds τmax ≥ 1
1−γ

log N
1−γ

. With probability at least
1 − 2δ, the policy π̂ returned by Algorithm 1 obeys

V �(ρ) − V π̂ (ρ) ≤ ε,(34)

provided that cb (cf. the Bernstein-style penalty term in (28)) is some sufficiently large nu-
merical constant and the total sample size exceeds

N ≥ c1SC�
clipped log NS

(1−γ )δ

(1 − γ )3ε2(35)

for some large enough numerical constant c1 > 0, where C�
clipped is introduced in Definition 2.

Also, the above result continues to hold if C�
clipped is replaced with C� (see Definition 1).
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REMARK 2. Regarding the numerical constants in Theorem 1, a conservative yet con-
crete sufficient condition is cb ≥ 144 and c1 = 21,000cb, which we shall rigorize in the proof.

The proof of this theorem is postponed to Section A in the Supplementary Material (Li
et al. (2024)). In general, the total sample size characterized by Theorem 1 could be far
smaller than the ambient dimension (i.e., S2A) of the transition kernel P , thus precluding
one from estimating P in a reliable fashion. As a crucial insight from Theorem 1, the model-
based (or plug-in) approach enables reliable offline learning even when model estimation is
completely off.

Before discussing key implications of Theorem 1, we develop matching minimax lower
bounds that confirm the efficacy of our algorithm, whose proof can be found in Appendix E.2
in the Supplementary Material (Li et al. (2024)).

THEOREM 2. For any (γ, S,C�
clipped, ε) obeying γ ∈ [2

3 ,1), S ≥ 2, C�
clipped ≥ 8γ

S
and

ε ≤ 1
42(1−γ )

, one can construct two MDPs M0, M1, an initial state distribution ρ and a batch
data set with N independent samples and single-policy clipped concentrability coefficient
C�

clipped such that

inf
π̂

max
{
P0

(
V �(ρ) − V π̂ (ρ) > ε

)
,P1

(
V �(ρ) − V π̂ (ρ) > ε

)} ≥ 1

8
,

provided that

N ≤ c2SC�
clipped

(1 − γ )3ε2

for some numerical constant c2 > 0. Here, the infimum is over all estimator π̂ , and P0 (resp.,
P1) denotes the probability when the MDP is M0 (resp., M1).

REMARK 3. As a more concrete (yet highly conservative) condition for c2, Theorem 2
is valid when c2 = 1/25,088.

Implications. In the following, we take a moment to interpret the above two theorems
and single out several key implications about the proposed model-based algorithm:

• Optimal sample complexities. In the presence of the Bernstein-style penalty, the total num-
ber of samples needed for our algorithm to yield ε-accuracy is

(36) Õ

(
SC�

clipped

(1 − γ )3ε2

)
.

This taken together with the minimax lower bound asserted in Theorem 2 confirms the
optimality of the proposed model-based approach (up to some logarithmic factor). In com-
parison, the sample complexity derived in Rashidinejad et al. (2022) exhibits a worse de-
pendency on the effective horizon (i.e., 1

(1−γ )5 ). Theorem 2 also enhances the lower bound

developed in Rashidinejad et al. (2022) to accommodate the scenario where C�
clipped can be

much smaller than C�, that is, C�
clipped = O(1/S).

• No burn-in cost. The fact that the sample size bound (35) holds for the full ε-range (i.e.,
any given ε ∈ (0, 1

1−γ
]) means that there is no burn-in cost required to achieve sample

optimality. This not only drastically improves upon, but in fact eliminates, the burn-in cost
of the best-known sample-optimal result (cf. (5)), the latter of which required a burn-in
cost at least on the order of SC�

(1−γ )5 . Accomplishing this requires one to tackle the sample-
hungry regime, which is statistically challenging to cope with.
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• No need of sample splitting. It is noteworthy that prior works typically required sample
splitting. For instance, Rashidinejad et al. (2022) analyzed the VI-LCB algorithm with
fresh samples employed in each iteration, which effectively split the data into Õ( 1

1−γ
)

disjoint subsets. In contrast, the algorithm studied herein permits the reuse of all samples
across all iterations. This is an important feature in sample-starved applications to effec-
tively maximize information utilization, and is a crucial factor that assists in improving the
sample complexity compared to Rashidinejad et al. (2022).

• Sample size saving when C�
clipped < 1. In view of Theorem 1, the sample complexity of the

proposed algorithm can be as low as

Õ

(
1

(1 − γ )3ε2

)
when C�

clipped is on the order of 1/S. This might seem somewhat surprising at first glance,

given that the minimax sample complexity for policy evaluation is at least Õ( S
(1−γ )3ε2 )

even in the presence of a simulator (Gheshlaghi Azar, Munos and Kappen (2013)). To
elucidate this, we note that the condition C�

clipped = O(1/S) implicitly imposes special—
in fact, highly compressible —structure on the MDP that enables sample size reduction.
As we shall see from the lower bound construction in Theorem 2, the case with C�

clipped =
O(1/S) might require d�(s, a) to concentrate on one or a small number of important states,
with exceedingly small probability assigned to the remaining ones. If this occurs, then it
often suffices to focus on what happens on these important states, thus requiring much
fewer samples.

Comparisons with prior statistical analysis. Before concluding this section, we highlight
the innovations of our statistical analysis compared to past theory when it comes to discounted
infinite-horizon MDPs. To begin with, our sample size improvement over Rashidinejad et al.
(2022) stems from the two algorithmic differences mentioned in Section 2.2: the sample-
reuse feature allows one to improve a factor of 1

1−γ
, while the use of Bernstein-style penalty

yields an additional gain of 1
1−γ

. In addition, while the design of data-driven Bernstein-style
bounds has been extensively studied in online RL in discounted MDPs (e.g., He, Zhou and Gu
(2021), Zhang, Zhou and Ji (2021)), all of these past results were either sample-suboptimal, or
required a huge burn-in sample size (e.g., S3A2

(1−γ )4 in He, Zhou and Gu (2021)). In other words,
sample optimality was not previously achieved in the most data-hungry regime. In compar-
ison, our theory ensures optimality of our algorithm even for the most sample-constrained
scenario, which relies on much more delicate statistical tools. In a nutshell, our statistical
analysis is built upon at least two ideas: (i) a leave-one-out analysis framework that allows to
decouple complicated statistical dependency across iterations without losing statistical tight-
ness; (ii) a delicate self-bounding trick that allows us to simultaneously control multiple cru-
cial statistical quantities (e.g., empirical variance) in the most sample-starved regime.

3. Algorithm and theory: Episodic finite-horizon MDPs. In this section, we turn at-
tention to the studies of offline RL for episodic finite-horizon MDPs.

3.1. Models and assumptions. Consider the setting of a finite-horizon Markov decision
process, as denoted by M = {S,A,H,P, r}. It consists of the following key components:
(i) S = {1, . . . , S}: a state space of size S; (ii) A = {1, . . . ,A}: an action space of size A;
(iii) H : the horizon length; (iv) P = {Ph}1≤h≤H , with Ph : S × A → �(S) denoting the
probability transition kernel at step h (namely, Ph(·|s, a) stands for the transition probability
of the MDP at step h when the current state-action pair is (s, a)); (v) r = {rh}1≤h≤H , with
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rh : S × A → [0,1] denoting the reward function at step h (namely rh(s, a) indicates the
immediate reward gained at step h when the current state-action pair is (s, a)). It is assumed
without loss of generality that the immediate rewards fall within the interval [0,1] and are
deterministic. Conveniently, we introduce the following S-dimensional row vector:

(37) Ph,s,a := Ph(·|s, a), ∀(s, a,h) ∈ S ×A× [H ].
A (possibly randomized) policy π = {πh}1≤h≤H with πh : S → �(A) is an action selec-

tion rule, such that πh(a|s) specifies the probability of choosing action a when in state s and
step h. When π is a deterministic policy, we overload the notation and let πh(s) represent the
action selected by π in state s at step h. We can generate a sample trajectory {(sh, ah)}1≤h≤H

by implementing policy π in the MDP M, where sh and ah denote the state and the ac-
tion in step h, respectively. We then introduce the value function V π = {V π

h }1≤h≤H and
the Q-function Qπ = {Qπ

h }1≤h≤H associated with policy π ; specifically, the value function
Vh : S → R of policy π at step h is defined to the be the expected cumulative reward from
step h on as a result of policy π , namely

∀s ∈ S : V π
h (s) := E

[
H∑

t=h

rt (st , at )
∣∣∣sh = s;π

]
,(38)

where the expectation is taken over the randomness over the sample trajectory {(st , at )}Ht=h

when policy π is implemented (i.e., at ∼ πt(·|st ) and st+1 ∼ Pt(·|st , at ) for all t ≥ h). Corre-
spondingly, the Q-function of policy π at step h is defined to be

∀(s, a) ∈ S ×A : Qπ
h (s, a) := E

[
H∑

t=h

rt (st , at )
∣∣∣sh = s, ah = a;π

]
(39)

when conditioned on the state-action (s, a) at step h. If the initial state is drawn from a
distribution ρ ∈ �(S), we find it convenient to define the weighted value function of π :

(40) V π
1 (ρ) := E

s∼ρ

[
V π

1 (s)
]
.

We also introduce the following occupancy distributions associated with policy π at step h:

dπ
h (s;ρ) := P(sh = s|s1 ∼ ρ;π),(41a)

dπ
h (s, a;ρ) := P(sh = s, ah = a|s1 ∼ ρ;π) = dπ

h (s;ρ)π(a|s),(41b)

which are conditioned on the initial state distribution s1 ∼ ρ and the event that all actions are
selected according to π . In particular, it is self-evident that

(42) dπ
1 (s;ρ) = ρ(s) for any policy π and any state s ∈ S.

It is well known that there exists at least one deterministic policy that simultaneously
maximizes the value function and the Q-function for all (s, a,h) ∈ S ×A × [H ] (Bertsekas
(2017)). In light of this, we shall denote by π� = {π�

h}1≤h≤H an optimal deterministic policy
throughout this paper; this allows us to employ π�

h(s) to indicate the corresponding optimal
action chosen in state s at step h. The resulting optimal value function and optimal Q-function
are denoted respectively by V � = {V �

h }1≤h≤H and Q� = {Q�
h}1≤h≤H :

∀(s, a,h) ∈ S ×A× [H ] : V �
h := V π�

h and Q�
h := Qπ�

h .

Further, we adopt the following notation for convenience: for any (s, a,h) ∈ S ×A× [H ],
(43) d�

h(s) := dπ�

h (s;ρ) and d�
h(s, a) := dπ�

h (s, a;ρ) = d�
h(s)1

{
a = π�(s)

}
,

where the last identity holds given that π� is assumed to be deterministic.
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Offline/batch data. Suppose we have access to a batch data set (or historical data set) D,
which comprises a collection of K i.i.d. sample trajectories generated by a behavior policy
πb = {πb

h}1≤h≤H . The kth sample trajectory (1 ≤ k ≤ K) consists of a data sequence(
sk

1 , ak
1, sk

2 , ak
2, . . . , sk

H , ak
H , sk

H+1
)
,(44)

which is generated by the MDP M under the behavior policy πb in the following manner:

sk
1 ∼ ρb, ak

h ∼ πb
h

(·|sk
h

)
and sk

h+1 ∼ Ph

(·|sk
h, ak

h

)
, 1 ≤ h ≤ H.(45)

Here and throughout, ρb stands for some predetermined initial state distribution associated
with the batch data set. In addition to the above data set (cf. (44) for all 1 ≤ k ≤ K), the
learner also has access to the reward function. For notational simplicity, we introduce the
following shorthand notation for the occupancy distribution w.r.t. the behavior policy πb:

(46) ∀(s, a,h) ∈ S ×A× [H ] : db
h(s) := dπb

h

(
s;ρb)

anddb
h(s, a) := dπb

h

(
s, a;ρb)

.

In particular, it is easily seen that db
1 (s) = ρb(s) for all s ∈ S . Note that the initial state

distribution ρb of the batch data set might not coincide with the test state distribution ρ.
Akin to Definition 1, prior works (e.g., Xie et al. (2021)) have introduced the following

concentrability coefficient to capture the distribution shift between the desired distribution
and the one induced by the behavior policy.

DEFINITION 3 (Single-policy concentrability for finite-horizon MDPs). The single-
policy concentrability coefficient of a batch data set D is defined as

C� := max
(s,a,h)∈S×A×[H ]

d�
h(s, a)

db
h(s, a)

,(47)

which clearly satisfies C� ≥ 1.

Similar to the discounted infinite-horizon counterpart, C� employs the largest density ratio
(using the occupancy distributions defined above) to measure the distribution mismatch; it
concerns the behavior policy versus a single policy π�, and does not require uniform coverage
of the state-action space (namely, it suffices to cover the part reachable by π�). As before, we
further introduce a slightly modified version of C� as follows.

DEFINITION 4 (Single-policy clipped concentrability for finite-horizon MDPs). The
single-policy clipped concentrability coefficient of a batch data set D is defined as

C�
clipped := max

(s,a,h)∈S×A×[H ]
min{d�

h(s, a), 1
S
}

db
h(s, a)

.(48)

From the definition above, it holds trivially that

C�
clipped ≤ C� and C�

clipped ≥ 1/S.(49)

As we shall see shortly, while all sample complexity upper bounds developed herein remain
valid if we replace C�

clipped with C�, the use of C�
clipped might yield some sample size reduction

when C�
clipped drops below 1.

Goal. With the above batch data set D in hand, our aim is to compute, in a sample-
efficient fashion, a policy π̂ that results in near-optimal values w.r.t. a given test state distri-
bution ρ ∈ �(S). Formally speaking, the current paper focuses on achieving

V �
1 (ρ) − V π̂

1 (ρ) ≤ ε

with high probability using as few samples as possible, where ε stands for the target accuracy
level. We seek to achieve sample optimality for the full ε-range, that is, for any ε ∈ (0,H ].
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3.2. A model-based offline RL algorithm: VI-LCB. Suppose for the moment that we have
a data set D0 containing N sample transitions {(si, ai, hi, s

′
i)}Ni=1, where (si, ai, hi, s

′
i) de-

notes the transition from state si at step hi to state s′
i in the next step when action ai is taken.

We now describe a pessimistic variant of the model-based approach on the basis of D0.

Empirical MDP. For each (s, a,h) ∈ S ×A× [H ], we denote by

Nh(s, a) :=
N∑

i=1

1
{
(si, ai, hi) = (s, a,h)

}
and

Nh(s) :=
N∑

i=1

1
{
(si, hi) = (s, h)

}(50)

the total number of sample transitions at step h that transition from (s, a) and from s, respec-
tively. We can then compute the empirical estimate P̂ = {P̂h}1≤h≤H of P as follows:

P̂h

(
s′|s, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Nh(s, a)

N∑
i=1

1
{(

si, ai, hi, s
′
i

) = (
s, a,h, s′)} if Nh(s, a) > 0,

1

S
else,

(51)

for each (s, a,h, s′) ∈ S ×A× [H ] × S .

The VI-LCB algorithm. With this estimated model in place, the VI-LCB algorithm (i.e.,
value iteration with lower confidence bounds) maintains the value function estimate {V̂h}
and Q-function estimate {Q̂h}, and works backward from h = H to h = 1 as in classical
dynamic programming with the terminal value V̂H+1 = 0 (Jin, Yang and Wang (2021), Xie
et al. (2021)). Specifically, the algorithm adopts the following update rule:

Q̂h(s, a) = max
{
rh(s, a) + P̂h,s,aV̂h+1 − bh(s, a),0

}
,(52)

where P̂h,s,a is the empirical estimate of Ph,s,a (cf. (37)),

(53) V̂h+1(s) = max
a

Q̂h+1(s, a),

and bh(s, a) ≥ 0 is some penalty term that is a decreasing function in Nh(s, a) (as we shall
specify shortly). In addition, the policy π̂ is selected greedily in accordance to the Q-estimate:

∀(s, h) ∈ S × [H ] : π̂h(s) ∈ arg max
a

Q̂h(s, a).(54)

In a nutshell, the VI-LCB algorithm—as summarized in Algorithm 2—applies the classical
value iteration approach to the empirical model P̂ , and in addition, implements the principle
of pessimism via certain lower confidence penalty terms {bh(s, a)}.

The Bernstein-style penalty terms. As before, we adopt Bernstein-style penalty in order
to better capture the variance structure over time; that is, for any (s, a,h) ∈ S ×A× [H ],

bh(s, a) = min
{√√√√cb log NH

δ

Nh(s, a)
VarP̂h,s,a

(V̂h+1) + cbH
log NH

δ

Nh(s, a)
,H

}
(55)

for some universal constant cb > 0 (e.g., cb = 16). Here, VarP̂h,s,a
(V̂h+1) corresponds to the

variance of V̂h+1 w.r.t. the distribution P̂h,s,a (see the definition (8)). Note that we choose P̂

as opposed to P (i.e., VarPh,s,a
(V̂h+1)) in the variance term, mainly because we have no access
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Algorithm 2: Offline value iteration with LCB (VI-LCB) for finite-horizon MDPs

1 input: data set D0; reward function r ; target success probability 1 − δ.
2 initialization: V̂H+1 = 0.
3 for h = H, . . . ,1 do
4 compute the empirical transition kernel P̂h according to (51).
5 for s ∈ S , a ∈ A do
6 compute the penalty term bh(s, a) according to (55).
7 set Q̂h(s, a) = max{rh(s, a) + P̂h,s,aV̂h+1 − bh(s, a),0}.
8 for s ∈ S do
9 set V̂h(s) = maxa Q̂h(s, a) and π̂h(s) ∈ arg maxa Q̂h(s, a).

10 output: π̂ = {π̂h}1≤h≤H .

to the true transition kernel P . Finally, it is worth noting that the Bernstein-style uncertainty
estimates have been widely studied when performing online exploration in episodic finite-
horizon MDPs (e.g., Azar, Osband and Munos (2017), Fruit, Pirotta and Lazaric (2020),
Jin et al. (2018), Li et al. (2021), Talebi and Maillard (2018), Zhang, Zhou and Ji (2020)).
Once again, the main purpose therein is to encourage exploration of the insufficiently visited
states/actions, a mechanism that is not applicable to offline RL due to the absence of further
data collection.

3.3. VI-LCB with twofold subsampling. Given that the batch data set D is composed of
several sample trajectories each of length H , the sample transitions in D cannot be viewed as
being independently generated (as the sample transitions at step h might influence the sam-
ple transitions in the subsequent steps). As one can imagine, the presence of such temporal
statistical dependency considerably complicates analysis.

To circumvent this technical difficulty, we propose a twofold subsampling trick that allows
one to exploit desired statistical independence. Informally, we propose the steps below:

• First of all, we randomly split the data set into two halves Dmain and Daux, where Dmain

consists of Nmain
h (s) sample transitions from state s at step h.

• For each (s, h) ∈ S × [H ], we use the data set Daux to construct a high-probability lower
bound N trim

h (s) on Nmain
h (s), and then subsample N trim

h (s) sample transitions w.r.t. (s, h)

from Dmain; this results in a new subsampled data set Dtrim.
• Run VI-LCB on the subsampled data set Dtrim (i.e., Algorithm 2).

The whole procedure is detailed in Algorithm 3. A few important features are worth high-
lighting, under the assumption that the sample trajectories in D are independently generated
from the same distribution.

• Given that {N trim
h (s)} are computed on the basis of the data set Daux and that Dtrim is

subsampled from another data set Dmain, one can clearly see that {N trim
h (s)} are statistically

independent from the sample transitions in Dtrim.
• As we shall see in the proof (i.e., Appendix C.2 in the Supplementary Material (Li et al.

(2024))), the samples in Dtrim can almost be treated as being statistically independent, a
key attribute resulting from the subsampling trick.

• The proposed algorithm only splits the data into two subsets, which is in stark contrast
to prior variants of VI-LCB that perform H -fold sample splitting (e.g., Xie et al. (2021)).
Eliminating the H -fold splitting requirement plays a crucial role in enabling optimal sam-
ple complexity.
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Algorithm 3: Subsampled VI-LCB for episodic finite-horizon MDPs

1 input: a data set D; reward function r .
2 subsampling: run the following procedure to generate the subsampled data set Dtrim.

(1) Data splitting. Split D into two halves: Dmain (which contains the first K/2
trajectories), and Daux (which contains the remaining K/2 trajectories); we let
Nmain

h (s) (resp., Naux
h (s)) denote the number of sample transitions in Dmain (resp.,

Daux) that transition from state s at step h.
(2) Lower bounding {Nmain

h (s)} using Daux. For each s ∈ S and 1 ≤ h ≤ H ,
compute

N trim
h (s) := max

{
Naux

h (s) − 10

√
Naux

h (s) log
HS

δ
,0

}
;(56)

(3) Random subsampling. Let Dmain′ be the set of all sample transitions (i.e., the
quadruples taking the form (s, a,h, s′)) from Dmain. Subsample Dmain′ to obtain Dtrim,
such that for each (s, h) ∈ S × [H ], Dtrim contains min{N trim

h (s),Nmain
h (s)} sample

transitions randomly drawn from Dmain′.
3 run VI-LCB: set D0 =Dtrim; run Algorithm 2 to compute a policy π̂ .

Before proceeding, we formally justify that N trim
h (s)—as computed in (56)—is a valid

lower bound on Nmain
h (s). Here and below, we denote by N trim

h (s, a) the number of sample
transitions in Dtrim that are associated with the state-action pair (s, a) at step h. The proof of
this lemma can be found in Appendix D.1 in the Supplementary Material (Li et al. (2024)).

LEMMA 3. Suppose that the K trajectories in D are generated in an i.i.d. fashion (see
Section 3.1). With probability at least 1 − 8δ, the quantities constructed in (56) obey

N trim
h (s) ≤ Nmain

h (s),(57a)

N trim
h (s, a) ≥ Kdb

h(s, a)

8
− 5

√
Kdb

h(s, a) log
KH

δ
(57b)

simultaneously for all 1 ≤ h ≤ H and all (s, a) ∈ S ×A.

3.4. Performance guarantees. In what follows, we characterize the sample complexity
of Algorithm 3, as formalized below.

THEOREM 3. Consider any ε ∈ (0,H ] and any 0 < δ < 1. With probability exceeding
1 − 12δ, the policy π̂ returned by Algorithm 3 obeys

V �
1 (ρ) − V π̂

1 (ρ) ≤ ε(58)

as long as the penalty terms are chosen according to the Bernstein-style quantity (55) for
some large enough numerical constant cb > 0, and the number of sample trajectories exceeds

K ≥ ckH
3SC�

clipped log KH
δ

ε2(59)

for some sufficiently large numerical constant ck > 0, where C�
clipped is introduced in Defini-

tion 4. Additionally, the above result continues to hold if C�
clipped is replaced with C� (intro-

duced in Definition 3).
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The proof of this result is postponed to Appendix C in the Supplementary Material (Li et al.
(2024)). In general, the total sample size characterized by Theorem 3 could be far smaller than
the ambient dimension (i.e., S2AH ) of the probability transition kernel P , thus precluding
one from estimating P in a reliable fashion. As a crucial insight from Theorem 3, the model-
based (or plug-in) approach enables reliable policy learning even when model estimation
is completely off. Our analysis of Theorem 3 relies heavily on (i) suitable decoupling of
complicated statistical dependency via subsampling, and (ii) careful control of the variance
terms in the presence of Bernstein-style penalty.

In order to help assess the tightness and optimality of Theoerem 3, we further develop a
minimax lower bound as follows; the proof can be found in Appendix E.3 in the Supplemen-
tary Material (Li et al. (2024)).

THEOREM 4. For any (H,S,C�
clipped, ε) obeying H ≥ 12, C�

clipped ≥ 8/S and ε ≤ c3H ,
one can construct a collection of MDPs {Mθ |θ ∈ �}, an initial state distribution ρ and a
batch data set with K independent sample trajectories each of length H , such that

inf
π̂

max
θ∈�

Pθ

{
V �

1 (ρ) − V π̂
1 (ρ) ≥ ε

} ≥ 1

4
,(60)

provided that the total sample size

N = KH ≤ c4C
�
clippedSH 4

ε2 .(61)

Here, c3, c4 > 0 are some small enough numerical constants, the infimum is over all estimator
π̂ , and Pθ denotes the probability when the MDP is Mθ .

Implications. Let us take a moment to discuss several other key implications of Theo-
rem 3.

• Near-optimal sample complexities. In the presence of the Bernstein-style penalty, the total
number of samples (i.e., KH ) needed for our algorithm to yield ε-accuracy is

(62) Õ

(
H 4SC�

clipped

ε2

)
.

This confirms the optimality of the proposed model-based approach (up to some logarith-
mic term) when Bernstein-style penalty is employed, since Theorem 4 reveals that at least
H 4SC�

clipped

ε2 samples are needed regardless of the algorithm in use.
• Full ε-range and no burn-in cost. The sample complexity bound (59) stated in Theorem 3

holds for an arbitrary ε ∈ (0,H ]. In other words, no burn-in cost is needed for the algorithm
to work sample-optimally. This improves substantially upon the state-of-the-art results for
model-based and model-free offline algorithms, both of which require a significant level
of burn-in sample size (H 9SC� and H 6SC�, respectively).

• Sample reduction and model compressibility when C�
clipped < 1. Given that C�

clipped might

drop below 1, the sample complexity of our algorithm might be as low as Õ(H 4S
ε2 ). In fact,

recognizing that C�
clipped can be as small as 1+o(1)

S
, we see that the sample complexity can

sometimes be reduced to

(63) Õ
(
H 4/ε2)

,

resulting in significant sample size saving compared to prior works. Caution needs to be ex-
ercised, however, that this sample size improvement is made possible as a result of certain
model compressibility implied by a small C�

clipped. For instance, C�
clipped = O(1/S) might
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happen when a small number of states accounts for a dominant fraction of probability mass
in d�

h(s), with the remaining states exhibiting vanishingly small occupancy probability (see
also the lower bound construction in the proof of Theorem 4); if this happens, then it often
suffices to focus on learning those dominant states.

(In)-feasibility of estimating C�
clipped. With the sample complexity (62) in mind, one nat-

ural question arises as to whether it is possible to estimate C�
clipped from the batch data set.

Unfortunately, this is in general infeasible, as demonstrated by the following example:

• (A hard example) Consider an MDP with horizon H = 2. In step h = 1, we have a singleton
state space S1 = {0} and an action space A1 = {0,1}, whereas in step h = 2, we have a
state space S2 = {0,1} and a singleton action space A2 = {0}. The reward function and the
transition kernel are given by

r1(0,0) = 0, r1(0,1) = 0, r2(0,0) = 0, r2(1,0) = 1,

P1(0|0,0) = 0.5, P1(1|0,0) = 0.5, P1(0|0,1) = p, P1(1|0,1) = 1 − p

for some unknown parameter p ∈ (0,1). We have K independent trajectories, and let

(64) db
1 (0,0) = 1 − 1/K and db

1 (0,1) = 1/K.

Elementary calculation then reveals that: C�
clipped = K when p < 1

2 , and C�
clipped = 1+ 1

K−1

when p > 1
2 . Such a remarkable difference in C�

clipped depends on the value of p, which
is only reflected in (s, a) = (0,1) at step 1. However, by construction, there is nonvanish-
ing probability (i.e., (1 − db

1 (0,1))K ≈ 1/e for large K) such that the data set does not
visit (s, a) = (0,1) in step h = 1 at all, which in turn precludes one from distinguishing
C�

clipped = 1 + 1
K−1 from C�

clipped = K given only the available data set.

Fortunately, implementing our algorithm does not require prior knowledge of C�
clipped at all,

and the algorithm succeeds once the task becomes feasible. On the other hand, we will not
be able to tell how large a sample size is enough a priori, but this is in general information-
theoretically infeasible as illustrated by the above example.

Towards instance optimality. While the primary focus of the current paper is minimax-
optimal algorithm design, the theoretical framework developed herein enables instance-
dependent analysis as well. Take episodic finite-horizon MDPs, for example: our analysis
framework directly leads to the following instance-dependent guarantee for Algorithm 3:

V �
h (ρ) − V π̂

h (ρ) = 〈
d�

1,V �
1 − V π̂

1
〉

≤ 12
H∑

j=h

∑
s

d�
j (s)

√√√√ cb log NH
δ

Kdb
j (s,π�

j (s))
VarPj,s,π�

j
(s)

(
V �

j+1

)
(65)

+
(100cbH

3SC� log NH
δ

K

)3/4
,

with the proviso that K ≥ 100cbHSC� log NH
δ

. Encouragingly, the dominate term (i.e., the
first term in the bound (65)) matches the instance-dependent lower bound established in Yin
and Wang ((2021), Theorem 4.3), thus confirming the instance optimality of the proposed
algorithm for a large enough sample size. The proof of (65) can be found in Appendix D.2 in
the Supplementary Material (Li et al. (2024)).
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Comparisons with prior statistical analysis. Let us discuss the novelty of our statistical
analysis. Perhaps the most related prior work is Xie et al. (2021), which proposed two algo-
rithms. The first algorithm therein is VI-LCB with H -fold sample splitting and Hoeffding-
style penalty, and each of these two features adds an H factor to the total sample complexity.
The second algorithm therein combines VI-LCB with variance reduction, which leads to op-
timal sample complexity for sufficiently small ε (i.e., a large burn-in cost is required). Note,
however, that none of the existing statistical tools for variance reduction is able to work
without imposing a large burn-in cost, regardless of the sampling mechanism in use (e.g.,
generative model, offline RL online RL) (Li et al. (2021), Sidford et al. (2018), Xie et al.
(2021), Zhang, Zhou and Ji (2020)). In contrast, our theory makes apparent that variance re-
duction is unnecessary, which leads to both simpler algorithm and tighter analysis. This also
confirms the power of our statistical analysis when coping with the most data-hungry regime.

4. Numerical experiments. To confirm the practical applicability of the proposed VI-
LCB algorithm, we evaluate its performance in the gambler’s problem (Panaganti and
Kalathil (2022), Shi and Chi (2022), Sutton and Barto (2018), Zhou et al. (2021)). The code
can be accessed at: https://github.com/Laixishi/Model-based-VI-LCB.

Gambler’s problem. We start by introducing the formulation of the gambler’s problem
and its underlying MDP. An agent plays a gambling game in which she bets on a sequence
of random coin flips, winning when the coins are heads and losing when they are tails. To
bet on each random clip, the agent’s policy chooses an integer number of dollars based on an
initial balance. If the number of bets hits the maximum length H , or if the agent reaches 50
dollars (win) or 0 dollars (lose), the game ends. Without loss of generality, the problem can
be formulated as an episodic finite-horizon MDP. Here, S is the state space {0,1, . . . ,50} and
the associated accessible actions obey a ∈ {0,1, . . . ,min{s,50 − s}}, H = 100 is the horizon
length, the reward is set to 0 for all other states unless s = 50. For the transition kernel, we
fix the probability of heads as phead = 0.45 at all steps h ∈ [H ] in the episode. Moreover,
the initial state/balance distribution of the agent ρ is taken as a uniform distribution over
S . The offline historical data set is constructed by collecting N independent samples drawn
randomly over each state-action pair and time step.

Evaluation results. First, we evaluate the performance of our VI-LCB method (cf. Algo-
rithm 2) with comparisons to the well-known value iteration (VI) method without the pes-
simism principle. To begin with, Figure 2(a) shows the average and standard derivations of
the performance gap V �

1 (s) − V π̂
1 (s) over all states s ∈ S , over 10 independent experiments

with a fixed sample size N = 50. The results indicate that the proposed VI-LCB method
outperforms the baseline VI method uniformly over the entire state space, showing that pes-
simism brings significant advantages in this sample-scarce regime. Second, we evaluate the

FIG. 2. The performances of the proposed method VI-LCB and the baseline value iteration (VI) in the gambler’s
problem. It shows that VI-LCB outperforms VI by taking advantage of the pessimism principle and achieves
approximately 1/

√
N sample complexity dependency w.r.t. the sample size N .

https://github.com/Laixishi/Model-based-VI-LCB
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performance gap V �
1 (ρ) − V π̂

1 (ρ) with varying sample size N ∈ {54,90,148, . . . ,22,026} ≈
{e4, e4.5, e5, . . . , e10}, over 10 independent trials. Note that throughout the experiments, we
fix cb = 0.05, which determines the level of the pessimism penalty of VI-LCB (cf. (55)). Fig-
ure 2(b) shows the average and standard derivations of the performance gap V �

1 (ρ) − V π̂
1 (ρ)

with respect to the sample size N . Clearly, as the sample size increases, both our method VI-
LCB and the baseline VI method perform better. Moreover, our VI-LCB method consistently
outperforms the baseline VI method over the entire range of the sample size N , especially in
the sample-starved regime. In addition, to corroborate the scaling of the sample size on the
performance gap, we plot the suboptimality performance gap of VI-LCB w.r.t. the sample
size on a log-log scale in Figure 2(c). Fitting using linear regression leads to a slope estimate
of −0.502, with the corresponding fitted line plotted also in Figure 2(c). This nicely matches
the finding of Theorem 3, which says the performance gap of VI-LCB scales as N−1/2.

5. Related works. In this section, we provide further discussions about prior art.

Off-policy evaluation and offline RL. Broadly speaking, at least two families of problems
have been investigated in the literature that tackle offline batch data: off-policy evaluation,
where the goal is to estimate the value function of a target policy that differs from the behavior
policy used in data collection; and offline policy learning, where the goal is to identify a near-
optimal policy. Our work falls under the second category. Note that off-policy evaluation has
been extensively studied (Duan, Jia and Wang (2020), Jiang and Li (2016), Kallus and Uehara
(2020), Li, Munos and Szepesvári (2014)); we excuse ourselves from enumerating the works
in that space.

Offline RL with the pessimism principle. The prior works that are the most relevant to this
paper are Jin, Yang and Wang (2021), Rashidinejad et al. (2022), Shi et al. (2022), Xie et al.
(2021), Yan et al. (2023), Yin and Wang (2021), which incorporated lower confidence bounds
into value estimation in order to avoid overly uncertain regions not covered by the target pol-
icy. In addition to the ones discussed in Section 1.2 that focus on minimax performance, the
recent works Yin et al. (2021), Yin and Wang (2021) further developed instance-dependent
statistical guarantees for the pessimistic model-based approach. The results in Yin and Wang
(2021), however, required a large burn-in sample size H 4

SC�(db
min)

2 (since db
min could be exceed-

ingly small), thus preventing it from attaining minimax optimality for the entire ε-range. It
is noteworthy that the principle of pessimism has been incorporated into policy optimization
and actor-critic methods as well by searching for some least-favorable models (e.g., Uehara
and Sun (2021), Zanette, Wainwright and Brunskill (2021)), which is quite different from
the approach studied herein. On the empirical side, model-based algorithms (Kidambi et al.
(2020), Yu et al. (2020)) have been shown to achieve superior performance than their model-
free counterpart for offline RL. In addition, a number of recent works studied offline RL
under various function approximation assumptions, for example, Jin, Yang and Wang (2021),
Nguyen-Tang, Gupta and Venkatesh (2021), Uehara and Sun (2021), Yin et al. (2021), Zhan
et al. (2022), which are beyond the scope of the current paper.

Online RL and the optimism principle. The optimism principle in the face of uncer-
tainty has received widespread adoption from bandits to online RL (Lai and Robbins (1985),
Lattimore and Szepesvári (2020)). In the context of online RL, Jaksch, Ortner and Auer
(2010) constructed confidence regions for the probability transition kernel to help select op-
timistic policies in the setting of weakly communicating MDPs, based on a variant (called
UCRL2) of the UCRL algorithm Auer and Ortner (2006); see also Bourel, Maillard and
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Talebi (2020), Filippi, Cappé and Garivier (2010), Talebi and Maillard (2018) for other vari-
ants of UCRL. When applied to episodic finite-horizon MDPs, the regret bound in Jaksch,
Ortner and Auer (2010) was suboptimal by a factor of at least

√
H 2S; see the discussion

in Azar, Osband and Munos (2017), Jin et al. (2018). Fruit, Pirotta and Lazaric (2020) de-
veloped an improved regret bound for UCRL2 by using empirical Bernstein-style bounds,
which however was still suboptimal by a factor of at least

√
HS when specialized to episodic

finite-horizon MDPs. In comparison, a more sample-efficient paradigm is to build Bernstein-
style UCBs for the optimal values to help select exploration policies, which has been recently
adopted in both model-based (Azar, Osband and Munos (2017), Zhang et al. (2023)) and
model-free algorithms (Jin et al. (2018)). Note that Bernstein-style uncertainty estimation
alone is not enough to ensure regret optimality in model-free algorithms, thereby motivating
the design of more sophisticated variance reduction strategies (Li et al. (2021), Zhang, Zhou
and Ji (2020)). Our investigation of offline RL has inspired new algorithms for both online
RL and hybrid RL (Li et al. (2023a, 2023b)).

Model-based RL. The algorithms studied herein fall under the category of model-based
RL, which decouples the model estimation and the planning. This popular paradigm has been
deployed and studied under various data collection mechanisms beyond offline RL, including
but not limited to the generative model (or simulator) setting (Agarwal, Kakade and Yang
(2020), Gheshlaghi Azar, Munos and Kappen (2013), Li et al. (2023c), Li et al. (2020)) and
the online exploratory setting (Azar, Osband and Munos (2017), Jin et al. (2020), Zhang
et al. (2023), Zhang, Ji and Du (2021)). The leave-one-out analysis (and the construction
of absorbing MDPs) adopted in the proof of Theorem 1 has been inspired by several recent
works Agarwal, Kakade and Yang (2020), Cui and Yang (2021), Li et al. (2023c), Pananjady
and Wainwright (2021), and has recently been shown to be effective for multiagent offline
RL (Yan et al. (2022)) and distributionally robust RL (Shi et al. (2023)) as well.

Model-free RL. Another widely used paradigm is model-free RL, which attempts to learn
the optimal value function without explicit construction of the model. Arguably the most fa-
mous example of model-free RL is Q-learning, which applies the stochastic approximation
paradigm to find the fixed point of the Bellman operator (Beck and Srikant (2012), Chen et
al. (2020), Even-Dar and Mansour (2003), Li et al. (2023a), Li et al. (2022), Qu and Wier-
man (2020), Shi et al. (2022), Szepesvári (1998), Watkins and Dayan (1992), Xiong et al.
(2020)). It is worth noting that the asynchronous Q-learning, which aims to learn the optimal
Q-function from a data trajectory collected by following a certain behavior policy, shares
some similarity with offline RL; note that prior results on vanilla asynchronous Q-learning
require a strong uniform coverage requirement (Chen et al. (2021), Li et al. (2023a), Li et
al. (2022), Qu and Wierman (2020)), which is stronger than the single-policy concentrabil-
ity considered herein. Moreover, Q-learning alone is known to be suboptimal in terms of the
sample complexity in various settings (Bai et al. (2019), Jin et al. (2018), Li et al. (2023a), Shi
et al. (2022)). This motivates the incorporation of the variance reduction in order to further
improve the sample complexity (Du et al. (2017), Li et al. (2021), Li et al. (2022), Shi et al.
(2022), Wainwright (2019b), Yan et al. (2023), Zhang, Zhou and Ji (2020), Zhang, Zhou and
Ji (2021)). Note, however, variance-reduced model-free RL typically requires a large burn-
in cost in order to operate in a sample-optimal fashion, and is hence outperformed by the
model-based approach under multiple sampling mechanisms.

6. Discussion. Our primary contribution has been to pin down the sample complexity
of model-based offline RL for the tabular settings, by establishing its minimax optimality for
both infinite- and finite-horizon MDPs. While reliable estimation of the transition kernel is of-
ten infeasible in the sample-starved regime, it does not preclude the success of this “plug-in”
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approach in learning the optimal policy. Encouragingly, the sample complexity characteriza-
tion we have derived holds for the entire range of accuracy level ε, thus revealing that sample
optimality comes into effect without incurring any burn-in cost. This is in stark contrast to
all prior results, which either suffered from sample suboptimality or required a large burn-
in sample size in order to yield optimal efficiency. We have demonstrated that sophisticated
techniques like variance reduction are not necessary, as long as Bernstein-style confidence
bounds are carefully employed to capture the estimation variance in each iteration.

Turning to future directions, we first note that the twofold subsampling adopted in Al-
gorithm 3 is likely unnecessary; it would be of interest to develop sharp analysis for the
VI-LCB algorithm without sample splitting, which would call for more refined analysis in
order to handle the complicated statistical dependency between different time steps. Notably,
while avoiding sample splitting cannot improve the sample complexity in an orderwise sense,
the potential gain in terms of the preconstants as well as the algorithmic simplicity might be
of practical interest. Moreover, given the appealing memory efficiency of model-free algo-
rithms, understanding whether one can design sample-optimal model-free offline algorithms
with minimal burn-in periods is another open direction. Moving beyond tabular settings, it
would be of great interest to extend our analysis to accommodate model-based offline RL in
more general scenarios; examples include MDPs with low-complexity linear representations,
and offline RL involving multiple agents.
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