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Variable selection on the large-scale networks has been extensively stud-
ied in the literature. While most of the existing methods are limited to the lo-
cal functionals especially the graph edges, this paper focuses on selecting the
discrete hub structures of the networks. Specifically, we propose an inferen-
tial method, called StarTrek filter, to select the hub nodes with degrees larger
than a certain thresholding level in the high-dimensional graphical models
and control the false discovery rate (FDR). Discovering hub nodes in the net-
works is challenging: there is no straightforward statistic for testing the de-
gree of a node due to the combinatorial structures; complicated dependence in
the multiple testing problem is hard to characterize and control. In method-
ology, the StarTrek filter overcomes this by constructing p-values based on
the maximum test statistics via the Gaussian multiplier bootstrap. In theory,
we show that the StarTrek filter can control the FDR by providing accurate
bounds on the approximation errors of the quantile estimation and addressing
the dependence structures among the maximal statistics.

To this end, we establish novel Cramér-type comparison bounds for the
high-dimensional Gaussian random vectors. Compared to the Gaussian com-
parison bound via the Kolmogorov distance established by Chernozhukov,
Chetverikov and Kato (Ann. Statist. 42 (2014) 1787–1818), our Cramér-type
comparison bounds establish the relative difference between the distribution
functions of two high-dimensional Gaussian random vectors, which is essen-
tial in the theoretical analysis of FDR control. Moreover, the StarTrek filter
can be applied to general statistical models for FDR control of discovering
discrete structures such as simultaneously testing the sparsity levels of multi-
ple high-dimensional linear models. We illustrate the validity of the StarTrek
filter in a series of numerical experiments and apply it to the genotype-tissue
expression dataset to discover central regulator genes.

1. Introduction. Graphical models are widely used for real-world problems in a broad
range of fields, including social science, economics, genetics and computational neuroscience
[55, 60, 68]. Scientists and practitioners aim to understand the underlying network structure
behind large-scale datasets. For a high-dimensional random vector X = (X1, . . . ,Xd) ∈ R

d ,
we let G = (V,E) be an undirected graph, which encodes the conditional dependence
structure among X. Specifically, each component of X corresponds to some vertex in
V = {1,2 · · · , d}, and (j, k) /∈ E if and only if Xj and Xk are conditionally independent
given the rest of variables. We denote the associated weight matrix by � with �jk being the
weight on the edge between j and k. Many existing works in the literature seek to learn the
structure of G via estimating the weight matrix �. For example, [9, 27, 41, 58, 63, 65, 67, 71,
84] focus on estimating the precision matrix in a Gaussian graphical model. Further, there is
also a line of work developing methodology and theory to assess the uncertainty of edge esti-
mation, that is, constructing hypothesis tests and confidence intervals on the network edges;
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see [11, 12, 24, 26, 29, 33, 66, 81]. Recently, simultaneously testing multiple hypotheses on
edges of the graphical models have received increasing attention [10, 25, 43, 46, 78, 79].

Most of the aforementioned works formulate the testing problems based on continuous
parameters and local properties. For example, [46] proposes a method to select edges in
Gaussian graphical models with asymptotic FDR control guarantees. Testing the existence
of edges concerns the local structure of the graph. Under certain modeling assumptions, its
null hypothesis can be translated into a single point in the continuous parameter space, for
example, �jk = 0 where � is the precision matrix or the general weight matrix. However, for
many scientific questions involving network structures, we need to detect and infer discrete
and combinatorial signals in the networks, which does not follow from single edge testing.
For example, in the study of social networks, it is interesting to discover active and impactful
users, usually called “hub users”, as they are connected to many other nodes in the social
network [31, 42]. In gene co-expression network analysis, identifying central regulators/hub
genes [50, 51, 83] is known to be extremely useful to the study of progression and prognosis
of certain cancers and can support the treatment in the future. In neuroscience, researchers are
interested in identifying the cerebral areas, which are intensively connected to other regions
[64, 69, 77] during certain cognitive processes. The discovery of such central/hub areas can
provide scientists better understanding of the mechanisms of human cognition.

Motivated by these applications in various areas, in this paper, we consider the hub node
selection problem from the network models. In specific, given a graph G = (V,E), where V
is the vertex set and E ⊆ V × V is the edge set, we consider multiple hypotheses on whether
the degree of some node j ∈ V exceeds a given threshold kτ :

H0j : degree of node j < kτ v.s. H1j : degree of node j ≥ kτ ,

based on i.i.d. samples X1, . . .Xn
i.i.d.∼ X ∈ R

d . Throughout the paper, these nodes with large
degrees will be called hub nodes. For each j ∈ [d], let ψj = 1 if H0j is rejected and ψj = 0
otherwise. When selecting hub nodes, we would like to control the false discovery rate, as
defined below:

FDR = E

[ ∑
j∈H0

ψj

max{∑d
j=1 ψj ,1}

]
,

where H0 = {j | degree of node j < kτ }. Remark the hypotheses H0j , j ∈ [d] are not based
on continuous parameters. They instead involve the degrees of the nodes, which are intrin-
sically discrete/combinatorial functionals. To the best of our knowledge, there is no existing
literature studying such combinatorial variable selection problems. The most relevant work
turns out to be [54], which proposes a general framework for inference about graph invari-
ants/combinatorial quantities on undirected graphical models. However, they study single
hypothesis testing and have to decide which subgraph to be tested before running the proce-
dure.

The combinatorial variable selection problems bring many new challenges. First, most of
the existing work focus on testing continuous parameters [4, 34–37, 46, 75, 76, 78, 79, 86].
For discrete functionals, it is more difficult to construct appropriate test statistics and estimate
its quantile accurately, especially in high dimensions. Second, many multiple testing proce-
dures rely on an independence assumption (or certain dependence assumptions) on the null
p-values [5–7]. However, the single hypothesis here is about the global property of the graph,
which means that any reasonable test statistic has to involve the whole graph. Therefore, com-
plicated dependence structures exist inevitably, which presents another layer of difficulty for
controlling the false discoveries. Now we summarize the motivating question for this paper:
how to develop a combinatorial selection procedure to discover nodes with large degrees on
a graph with FDR control guarantees. This paper introduces the StarTrek filter to select hub
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nodes. The filter is based on the maximum statistics, whose quantiles are approximated by
the Gaussian multiplier bootstrap procedure. Briefly speaking, the Gaussian multiplier boot-
strap procedure estimates the distribution of a given maximum statistic of general random
vectors with unknown covariance matrices by the distribution of the maximum of a sum of
the conditional Gaussian random vectors. The validity of high-dimensional testing problems,
such as familywise error rate (FWER) control, relies on the nonasymptotic bounds of the Kol-
mogorov distance between the true distribution of the maximum statistics and the Gaussian
multiplier bootstrap approximation, which is established in [16]. However, in order to control
the FDR in the context of combinatorial variable selection, a more refined characterization
of the quantile approximation errors is required. In specific, we need the so-called Cramér-
type comparison bounds quantifying the accuracy of the p-values in order to control the FDR
in the simultaneous testing procedures [14]. In our context, consider two centered Gaussian
random vectors U,V ∈ R

d with different covariance matrices �U , �V and denote the �∞
norms of U , V by ‖U‖∞, ‖V ‖∞, respectively. Then the Cramér-type comparison bounds
aim to control the relative error |P(‖U‖∞>t)

P(‖V ‖∞>t)
− 1| for certain range of t . Compared to the Kol-

mogorov distance supt∈R |P(‖U‖∞ > t) − P(‖V ‖∞ > t)| [18], the Cramér-type comparison
bound leads to the relative error between two cumulative density functions, which is neces-
sary to guarantee the FDR control. In specific, we show in this paper a novel Cramér-type
Gaussian comparison bound

(1.1) sup
0≤t≤C0

√
logd

∣∣∣∣P(‖U‖∞ > t)

P(‖V ‖∞ > t)
− 1

∣∣∣∣ = O

(
min

{
(logd)5/2�1/2∞ ,

�0 logd

p

})
,

for some constant C0 > 0, where �∞ := ||�U − �V ||max is the entrywise maximum norm
difference between the two covariance matrices, �0 := ||�U − �V ||0 with ‖ · ‖0 being the
entrywise �0-norm of the matrix, and p is the number of connected subgraphs in the graph
whose edge set E = {(j, k) : �U

jk 
= 0 or �V
jk 
= 0}. This comparison bound in (1.1) character-

izes the relative errors between Gaussian maxima via two types of rates: the �∞-norm �∞
and the �0-norm �0. This implies a new insight that the Cramér-type bound between two
Gaussian maxima is small as long as either their covariance matrices are uniformly close
or only sparse entries of the two covariance matrices differ. As far as we know, the second
type of rate in (1.1) has not been developed even in Kolmogorov distance results of high-
dimensional Gaussian maxima. In the study of FDR control, we need both types of rates:
the �∞ rate is used to show that the Gaussian multiplier bootstrap procedure is an accurate
approximation for the maximum statistic quantiles and the �0 rate is used to quantify the
complicated dependence structure of the p-values for the single tests on the degree of graph
nodes. In order to prove the Cramér-type comparison bound in (1.1), we develop two novel
theoretic techniques to prove the two types of rates separately. For the �∞ rate, we refor-
mulate the Slepian’s interpolation [73] into an ordinary differential inequality such that the
relative error can be controlled via the Grönwall’s inequality [28]. To control the �0 rate,
the anticoncentration inequality of Gaussian maxima developed in [18] is no longer suffi-
cient, and we establish a new type of anticoncentration inequality for the derivatives of the
soft-max of high-dimensional Gaussian vectors. The existing works on the Cramér-type com-
parison bounds such as [14, 48, 49] does not cover the high-dimensional maximum statistics.
Therefore, their techniques cannot be directly extended to our case. To the best of our knowl-
edge, it is the first time in our paper to prove the Cramér-type Gaussian comparison bounds
(1.1) for high-dimensional Gaussian maxima.

In summary, our paper makes the following major contributions. First, we develop a novel
StarTrek filter to select combinatorial statistical signals: the hub nodes with the FDR control.
This procedure involves maximum statistic and Gaussian multiplier bootstrap for quantile
estimation. Second, in theory, the proposed method is shown to be valid for many different
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models with the network structures. In this paper, we provide two examples: the Gaussian
graphical model and the bipartite network in the multiple linear models. Third, we prove a
new Cramér-type Gaussian comparison bound with two types of rates: the maximum norm
difference and �0 norm difference. These results are quite generic and has its own significance
in the probability theory.

1.1. Related work. Canonical approaches to FDR control and multiple testing [5–7] re-
quire that valid p-values are available, and they only allow for certain forms of dependence
between these p-values. However, obtaining asymptotic p-values with sufficient accuracy is
generally nontrivial for high-dimensional hypothesis testing problems concerning continuous
parameters [4, 35–37, 75, 76, 86], not even to mention discrete/combinatorial functionals.

Recently, there is a line of work conducting variable selection without needing to act on
a set of valid p-values, including [2, 3, 13, 20, 21, 80]. These approaches take advantage of
the symmetry of the null test statistics and establish FDR control guarantee. As their single
hypothesis is often formulated as conditional independence testing, it is challenging to apply
those techniques to select discrete signals for the problem studied in this paper.

Another line of work develops multiple testing procedures based on asymptotic p-values
for specific high-dimensional models [34, 45–47, 78, 79]. Among them, [46] studies the edge
selection problem on Gaussian graphical models, which turns out to be the most relevant
work to our paper. However, their single hypothesis is about the local property of the graph.
Our problem of discovering nodes with large degrees concerns the global property of the
whole network, therefore requiring far more work.

There exists some recent work inferring combinatorial functionals. For example, the
method proposed in [39] provides a confidence interval for the number of spiked eigenvalues
in a covariance matrix. Reference [38] focuses on estimating the number of communities in
a network and yields confidence lower bounds. References [54, 61] propose a general frame-
work for conducting inference on graph invariants/combinatorial quantities, such as the max-
imum degree, the negative number of connected subgraphs and the size of the longest chain
of a given graph. Reference [70] develops methods for testing the general community combi-
natorial properties of the stochastic block model. Regarding the hypothesis testing problem,
all these works only deal with a single hypothesis and establish asymptotic type-I error rate
control. Simultaneously testing those combinatorial hypotheses is also very interesting and
naturally arises from many practical problems.

1.2. Outline. In Section 2, we set up the general testing framework and introduce the
StarTrek filter for selecting hub nodes. In Section 3, we present our core probabilistic tools:
Cramér-type Gaussian comparison bounds in terms of maximum norm difference and �0
norm difference. To offer a relatively simpler illustration of our generic theoretical results,
we first consider the hub selection problem on a bipartite network (multitask regression with
linear models). Specifically, the input of the general StarTrek filter is chosen to be the estima-
tors and quantile estimates described in Section 4. Applying the probabilistic results under
this model, we establish FDR control guarantees under certain conditions. Then we move to
the Gaussian graphical model in Section 5. In Section 7, we demonstrate StarTrek’s perfor-
mance through empirical simulations and a real data application.

1.3. Notation. Let φ(x), �(x) be the probability density function (PDF) and the cumu-
lative distribution function (CDF), respectively, of the standard Gaussian distribution and
denote �̄(x) = 1 − �(x). Let 1d be the vector of ones of dimension d . We use 1(·) to de-
note the indicator function of a set and | · | to denote the cardinality of a set. For two sets
A and B , denote their symmetric difference by A � B , that is, A � B = (A \ B) ∪ (B \ A);
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let A × B be the Cartesian product. For two positive sequences {xn}∞n=1 and {yn}∞n=1, we say
xn = O(yn) if xn ≤ Cyn holds for any n with some large enough C > 0. We say xn = o(yn)

if xn/yn → 0 as n → ∞. For a sequence of random variables {Xn}∞n=1 and a scalar a, we
say Xn ≤ a + oP(1) if for all ε > 0, limn→∞P(Xn − a > ε) = 0. Given a random variable
Z, we define its ψ�-norm for � ≥ 1 as ‖Z‖ψ�

= supp≥1 p−1/�(E|Z|p)1/p . Let [d] denote
the set {1, . . . , d}. The �∞ norm and the �1 norm on R

d are denoted by ‖ · ‖∞ and ‖ · ‖1,
respectively. For a random vector X, let ‖X‖∞ be its �∞ norm. For a matrix A ∈ R

d1×d2 ,
we denote its minimal and maximal eigenvalues by λmin(A), λmax(A), respectively, the el-
ementwise max norm by ‖A‖max = maxi∈[d1],j∈[d2] |Aij | and the elementwise �0 norm by
‖A‖0 = ∑

i∈[d1],j∈[d2] 1(Aij 
= 0). Throughout this paper, C,C′,C′′,C0,C1,C2, . . . are used
as generic constants whose values may vary across different places.

2. Methodology. Before introducing our method, we set up the problem with more de-
tails. Specifically, we consider a graph G = (V1,V2,E) with the node sets V1, V2 and the edge
set E . Let d1 = |V1|, d2 = |V2| and denote its weight matrix by � ∈ R

d1×d2 . In the undirected
graph where V1 = V2 := V , � is a square matrix and its element �jk is nonzero when there
is an edge between node j and node k, zero when there is no edge. In a bipartite graph where
V1 
= V2, elements of � describe the existence of an edge between node j in V1 and node
k in V2. Without loss of generality, we focus on one of the node sets and denote it by V
with |V| := d . We would like to select those nodes among V whose degree exceeds a certain

threshold kτ , based on the n data samples X1, . . .Xn
i.i.d.∼ X ∈ R

d . The selection problem is
equivalent to simultaneously testing d hypotheses:

(2.1) H0j : degree of node j < kτ v.s. H1j : degree of node j ≥ kτ ,

for j ∈ [d]. Let ψj = 1 if H0j is rejected and ψj = 0 otherwise. Then for some multiple
testing procedure with output {ψj }j∈[d], the false discovery proportion (FDP) and FDR can
be defined as below:

FDP =
∑d

j∈H0
ψj

max{1,
∑d

j=1 ψj }
, FDR := E[FDP],

where H0 = {j | degree of node j < kτ }. Given the data X1, . . .Xn from the graphical model,
we aim to propose a multiple testing procedure such that the FDP or FDR can be controlled
at a given level 0 < q < 1.

We illustrate the above general setup in two specific examples. In multitask regression
with linear models, we are working with the bipartite graph case. Then the weight matrix �

corresponds to the parameter matrix whose row represents the linear coefficients for one given
response variable. Given a threshold kτ , we want to select those rows (response variables)
with �0 norm being at least kτ . In the context of Gaussian graphical models where V1 = V2,
� represents the precision matrix, and we want to select those hub nodes, that is, whose
degree is larger than or equal to kτ .

2.1. StarTrek filter. Letting �j be the j th row of � and �j,−j be the vector �j exclud-
ing its j th element, we formulate the testing problem for each single node as below:

H0j : ‖�j,−j‖0 < kτ v.s. H1j : ‖�j,−j‖0 ≥ kτ .

To test the above hypothesis, we need some estimator of the weight matrix �. In the Gaussian
graphical model, it is natural to use the estimator of a precision matrix. In the bipartite graph
(multiple response model), an estimated parameter matrix will suffice. Denote this generic
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Algorithm 1 Skip-down Method in [54] (for testing the degree of node j )

Input: {�̃e}e∈V×V , significance level α.
Initialize t = 0, E0 = {(j, k) : k ∈ [d], k 
= j}.
repeat

t ← t + 1;
Select the rejected edges R ← {(j, k) ∈ Et−1 | √n|�̃jk| > ĉ(α,Et−1)};
Et ← Et−1\R;

until |Ec
t | ≥ kτ or R = ∅

Output: ψj,α = 1 if |Ec
t | ≥ k and ψj,α = 0 otherwise.

estimator by �̃ (without causing confusion in notation), and the maximum test statistic over
a given subset E of V × V will be

(2.2) TE := max
(j,k)∈E

√
n|�̃jk|

and its quantile is defined as c(α,E) = inf{t ∈ R | P(TE ≤ t) ≥ 1 − α}, which is often un-
known. Assume it can be estimated by ĉ(α,E) from some procedure such as the Gaussian
multiplier bootstrap, a generic method called the skip-down procedure can be used, which
was originally proposed in [54] for testing a family of monotone graph invariants. When
applied to the specific degree testing problem, it leads to Algorithm 1.

To conduct the node selection over the whole graph, we need to determine an appropriate
threshold α̂, then reject H0j if ψj,α̂ = 1. A desirable choice of α̂ should be able to discover
as many hub nodes as possible with the FDR remaining controlled under the nominal level
q . For example, if the BHq procedure [6] is considered, α̂ can be defined as follows:

(2.3) α̂ = sup
{
α ∈ (0,1) : αd

max{1,
∑

j∈[d] ψj,α} ≤ q

}
.

The above range of α is (0,1); it will be very computationally expensive if we do an ex-
haustive search since for each α, we have to recompute the quantiles ĉ(α,E) for a lot of
sets E.

We overcome the computational difficulty and propose a efficient procedure called
StarTrek filter, which is presented in Algorithm 2. Remark if it only involves estimating
kτ different quantiles of some maximum statistics per node, which is more efficient than the
Skip-down procedure [54] in terms of computation. We shall note that Algorithm 2 is equiv-
alent to running the BHq procedure with Algorithm 1: rejecting H0j if ψj,α̂ = 1, j ∈ [d],
where α̂ is defined by (2.3) and the test ψj,α is defined by Algorithm 1; see the proof at the
beginning of Appendix A in the Supplementary Material [85]. Without causing confusion,

Algorithm 2 StarTrek Filter

Input: {�̃e}e∈V×V , nominal FDR level q .
for j ∈ [d] do

We order the elements in {|�̃j�| : � 
= j} as |�̃j,(1)| ≥ |�̃j,(2)| ≥ · · · ≥ |�̃j,(d−1)|, where

|�̃j,(�)| is the �th largest entry. Compute αj = max1≤s≤kτ ĉ−1(
√

n|�̃j,(s)|,E(s)
j ) where

E
(s)
j := {(j, �) : � 
= j, |�̃j�| ≤ |�̃j,(s)|}.

end for
Order αj as α(1) ≤ α(2) ≤ · · · ≤ α(d) and set α(0) = 0, and let jmax = max{0 ≤ j ≤ d :
α(j) ≤ qj/d}.
Output: S = {j : αj ≤ α(jmax)} if jmax > 0; S =∅ otherwise.
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we will refer to the BHq procedure with Algorithm 1 simply by Algorithm 1. Intuitively,
Algorithm 2 directly acts the hub node selection by conducting the BHq adjustment to the
p-values of all d nodes but Algorithm 1 has to specify a significance level first to test the
degree for each node and then search for an appropriate significance level for all nodes. We
conduct a numerical comparison for the two methods in Section 7.3.

3. Cramér-type comparison bounds for Gaussian maxima. In this section, we present
the theoretic results on the Cramér-type comparison bounds for Gaussian maxima. Let
U,V ∈ R

d be two centered Gaussian random vectors with different covariance matrices
�U = (σU

jk)1≤j,k≤d , �V = (σV
jk)1≤j,k≤d . Recall that the maximal difference of the covari-

ance matrices is �∞ := ||�U − �V ||max and the elementwise �0 norm difference of the co-
variance matrices is denoted by �0 := ‖�U − �V ‖0 = ∑

j,k∈[d] 1(σU
jk 
= σV

jk). The Gaussian
maxima of U and V are denoted as ‖U‖∞ and ‖V ‖∞. Now we present a Cramér-type com-
parison bound (CCB) between Gaussian maxima in terms of the maximum norm difference
�∞.

THEOREM 3.1 (CCB with maximum norm difference). Suppose (logd)5�∞ = O(1).
Then we have

(3.1) sup
0≤t≤C0

√
logd

∣∣∣∣P(‖U‖∞ > t)

P(‖V ‖∞ > t)
− 1

∣∣∣∣ = O
(
(logd)5/2�1/2∞

)
,

for some constant C0 > 0.

REMARK 3.2. We can actually prove a more general form (see Theorem B.3 in the
Appendix) of the upper bound on the above term, without the assumption on �∞. In fact, we
bound the right-hand side of (3.1) as M3(logd)3/2A(�∞)eM3(logd)3/2A(�∞), where A(�∞) =
M1 logd�

1/2∞ exp (M2 log2 d�
1/2∞ ) with the constants M1, M2 only depending on the variance

terms min1≤j≤d{σU
jj , σ

V
jj }, max1≤j≤d{σU

jj , σ
V
jj } and M3 being a universal constant.

When applying Theorem 3.1 to Gaussian multiplier bootstrap, �∞ actually controls the
maximum differences between the true covariance matrix and the empirical covariance ma-
trix, where �∞ = OP (

√
logd/n). The proof of the theorem can be found in Appendix

B.1. Compared with the proof of Kolmogorov distance results in [16, 17], the key inno-
vation in our proof of the Cramér-type Gaussian comparison bounds is a contraction map-
ping inequality. In specific, denote the Slepian interpolation W(s) = √

sU + √
1 − sV ,

s ∈ [0,1] and the tail probability of maxima Qt(s) = P(||W(s)||∞ > t). Our proof shows
that Rt(s) = Qt(s)/Qt(0) − 1 has the following key inequality:

∣∣Rt(s)
∣∣ ≤ AB

∫ s

0

∣∣Rt(μ)
∣∣dμ + AB · s + A,

where AB and A are only depending on �∞. By Grönwall’s inequality [28], we then derive
the bound on Rt(1) explicitly in terms of A and B , which finally lead to the desired Cramér-
type comparison bound in (3.1).

The above theorem is a key ingredient for deriving Cramér-type deviation results for the
Gaussian multiplier bootstrap procedure. However, in certain situations especially in the ap-
plications of graphical models, comparison bounds in terms of maximum norm difference
may not be appropriate. There exist cases where the covariance matrices of two Gaussian
random vectors are not uniformly closed to each other, but have lots of identical entries.
Namely, �∞ is not negligible but �0 is small. To this end, we develop a different version of
the Cramér-type comparison bound as below.
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THEOREM 3.3 (CCB with elementwise �0-norm difference). Assume the Gaussian ran-
dom vectors U and V have unit variances, that is, σU

jj = σV
jj = 1, j ∈ [d] and there exists

some σ0 < 1 such that |σV
jk| ≤ σ0, |σU

jk| ≤ σ0 for any j 
= k. Suppose there exists a disjoint

p-partition of nodes
⋃p

�=1 C� = [d] such that σU
jk = σV

jk = 0 when j ∈ C� and k ∈ C�′ for some
� 
= �′. We have

(3.2) sup
0≤t≤C0

√
logd

∣∣∣∣P(‖U‖∞ > t)

P(‖V ‖∞ > t)
− 1

∣∣∣∣ = O

(
�0 logd

p

)
,

for some constant C0 > 0.

When applying the above result to our multiple degree testing problem, specifically the
covariance of maximum test statistics for pairs of nonhub nodes, we can show �0 = O(1).
In Theorem 3.3, the quantity p represents the number of connected subgraphs shared by
the coviarance matrix networks of U and V . We refer to Theorem B.6 in the Appendix
for a generalized definition of p to strengthen the results in (3.2). The p in the denomina-
tor of the right-hand side of the Cramér-type comparison bound in (3.2) is necessary: it is
possible that even if �0 is small, when p is large, the Camér-type Gaussian comparison
bound is not converging to zero. For example, consider Gaussian vectors with unit variances
U = (X1,X2,Z, . . . ,Z) ∈ R

d , V = (Y1, Y2,Z, . . . ,Z) ∈ R
d , where corr(X1,X2) = 0.9,

corr(Y1, Y2) = 0 and (X1,X2) ⊥⊥ Z, (Y1, Y2) ⊥⊥ Z. For this case, the Camér-type Gaussian
comparison bound

sup
0≤t≤C0

√
logd

∣∣∣∣P(‖U‖∞ > t)

P(‖V ‖∞ > t)
− 1

∣∣∣∣ = sup
0≤t≤C0

√
logd

∣∣∣∣P(max{|X1|, |X2|, |Z|} > t)

P(max{|Y1|, |Y2|, |Z|} > t)
− 1

∣∣∣∣
is not converging to zero as d goes to infinity even if the corresponding �0 is 1 but p = 2.

The proof of Theorem 3.3 can be found in Appendix B.2. Our main technical innovation
is to establish a new type of anticoncentration bound for “derivatives” of Gaussian maxima.
Different from the anticoncentration inequalities in [17] bounding the maxima of Slepian
interpolation E[1(t − ε ≤ ||W(s)||∞ ≤ t + ε)], we are able to further bound its derivatives:

(3.3) E
[∣∣∂j ∂kϕ

(
W(s)

)∣∣ · 1(
t − ε ≤ ∥∥W(s)

∥∥∞ ≤ t + ε
)]
� P(‖V ‖∞ > t)(logd)2

εβp
,

where ϕ is the some smooth approximation of the maxima with the parameter β measuring
the level of approximation. The above anticoncentration bound is nonuniform and has only
a logarithm dependence on the dimension d . It provides a relatively sharp characterization
when t is large and the graph is not highly connected (i.e., p is large).

4. Discovering hub responses in multitask regression. The theoretical results pre-
sented in Section 3 will be the cornerstone for establishing FDR control of the multiple testing
problem described in Section 2. As seen previously, the testing problem (2.1) is set up in a
quite general way: � is a weight matrix, and we would like to select rows whose �0 norm
exceeds some threshold. This section considers the specific application to multitask/multiple
response regression, which turns out to be less involved. We take advantage of it and demon-
strate how to utilize the probabilistic tools in Section 3. After that, the theoretical results on
FDR control for the Gaussian graphical models are presented and discussed in Section 5.

In the multitask regression problem, multiple response variables are regressed on a com-
mon set of predictors. We can view this example as a bipartite graph G = (V1,V2,E),
|V1| = d1, |V2| = d2, where V1 contains the response variables and V2 represents the common
set of predictors. Each entry of the weight matrix � indicates whether a given predictor is
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nonnull or not for a given response variable. In the case of a parametric model, � ∈ R
d1×d2

corresponds to the parameter matrix. One might be interested in identifying shared sparsity
patterns across different response variables. It can be solved by selecting a set of predictors
being nonnull for all response variables [22, 62]. This section problem is columnwise in the
sense that we want to select columns of �, denoted by �·j , such that ‖�·j‖0 = d1. It is also
interesting to consider a rowwise selection problem formalized in (2.1). Under the multitask
regression setup, we would like to select response variables with at least a certain amount of
nonnull predictors. We will call this type of response variables as hub responses throughout
the section. This has practical applications in real-world problems such as the gene-disease
network.

Consider the multitask regression problem with linear models, we have n i.i.d. pairs of
the response vector and the predictor vector, denoted by (Y 1,X1), (Y 2,X2), . . . , (Y n,Xn),
where Y i ∈ R

d1 , Xi ∈ R
d2 satisfy the following relationship:

(4.1) Y i = �Xi + Ei , where Ei ∼ N (0,Dd1×d1) and Xi ⊥⊥ Ei ,

where � ∈ R
d1×d2 is the parameter matrix and D is a d1 by d1 diagonal matrix whose di-

agonal elements σ 2
j is the noise variance for response variable Y (j). Let X be the design

matrix with rows X�
1 , . . . ,X�

n , shared by different response variables, and assume the noise
variables are independent conditional on the design matrix X. Let s = maxj∈[d1] ‖�j‖0 be
the sparsity level of the parameter matrix �, and we want to select columns of the parameter
matrix, which has at least kτ nonzero entries, that is, select nodes with a large degree among
[d1] in the bipartite graph G = (V1,V2,E).

As mentioned in Section 2, some estimator of the parameter matrix is needed to conduct
hypothesis testing. Debiased Lasso is widely used for parameter estimation and statistical
inference in high-dimensional linear models [36, 37]. For each response variable Y (j), j ∈
[d1], we compute the debiased Lasso estimator, denoted by �̃

d
j as

�̃
d
j = �̂j + 1

n
MX�(

Y (j) − X�̂j

)
,

where �̂j = arg min
β∈Rd2

{
1

2n

∥∥Y (j) − Xβ
∥∥2

2 + λ‖β‖1

}
.

(4.2)

Note the above M is defined as M = (m1, . . . ,md2)
� where

mi = argmin
m

m��̂m, s.t. ‖�̂m − ei‖∞ ≤ μ,(4.3)

and here �̂ = (X�X)/n.
Then the debiased estimator of the parameter matrix, defined by �̃

d := (�̃
d
1, . . . , �̃

d
d1

)�,
will be used the input {�̃e}e∈V1×V2 of Algorithm 2. In addition, we also need to compute
the quantile of the maximum statistics. There exist many works studying the asymptotic
distribution of the debiased Lasso estimator. Among them, the results in [36] (when translated
into our multitask regression setup) imply, for each response variable Y (j), j ∈ [d1],
(4.4)

√
n
(
�̃

d
j − �j

) = Z + �, Z|X ∼ N
(
0, σ 2

j M�̂M�)
,

under proper assumptions. Additionally, with a natural probabilistic model of the design ma-
trix, the bias term can be shown to be ‖�‖∞ = O(

s logd2√
n

) with high probability. As discussed
in [36], the asymptotic normality result can be used for deriving confidence intervals and sta-
tistical hypothesis tests. As the noise variance σj is unknown, the scaled Lasso is used for its
estimation [36, 74], given by the following joint optimization problem:

(4.5) {�̂j , σ̂j } = arg min
β∈Rd2 ,σ>0

{
1

2σn

∥∥Y (j) − Xβ
∥∥2

2 + σ

2
+ λ‖β‖1

}
.
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Regarding our testing problem, intuitively we can use the quantile of the Gaussian
maxima of N (0, σ̂ 2

j M�̂M�) to approximate the quantile of maximum statistic TE =
max(j,k)∈E

√
n|�̃d

jk| for some given subset E. Specifically, let Zj | X,Y (j) ∼ N (0,

σ̂ 2
j M�̂M�) where Zj ∈ R

d2 and consider the subset E ⊂ {j} × V2. We approximate the
quantile of TE by the following:

(4.6) T N
E := max

(j,k)∈E
|Zjk|, ĉ(α,E) = inf

{
t ∈ R : PZ

(
T N

E ≤ t
) ≥ 1 − α

}
.

Indeed, under proper scaling conditions, we can show that, that is, as n,d → ∞,

(4.7) sup
α∈(0,1)

∣∣∣P(
max

(j,k)∈E

√
n
∣∣�̃d

jk − �jk

∣∣ > ĉ(α,E)
)

− α
∣∣∣ → 0.

The above result is based on two ingredients: the asymptotic normality result and the control
of the bias term �. Below we list the required assumptions for those two ingredients, that is,
(4.4) and ‖�‖∞ = O(

s logd2√
n

).

ASSUMPTION 4.1 (Debiased Lasso with random designs). The following assumptions
are from the ones of Theorems 7 and 8 in [36]:

• Let � = E[X1X
�
1 ] ∈ R

d2×d2 be such that σmin(�) ≥ Cmin > 0, and σmax(�) ≤ Cmax < ∞
and maxj∈[d2] �jj ≤ 1. Assume X�−1/2 have independent sub-Gaussian rows, with zero
mean and sub-Gaussian norm ‖�−1/2Xi‖ψ2 = κ , for some constant κ ∈ (0,∞).

• μ = a
√

(logd2)/n, and n ≥ max(ν0s log(d2/s), ν1 logd2), ν1 = max(1600κ4, a/4) and

λ = σ
√

(c2 logd2)/n.

Remark that there may exist other ways of obtaining a consistent estimator of � and
sufficiently accurate quantile estimates under different assumptions. Since it is not the main
focus of this paper, we will not elaborate on it. As mentioned before, the Kolmogorov-type
result in (4.7) can be immediately applied to the global testing problem to guarantee FWER
control. However, it is not sufficient for FDR control of the multiple testing problem in this
paper. This is when the Cramér-type comparison bound for Gaussian maxima established
in Section 3 play its role. In addition, the signal strength condition is needed. Recall that
H0 = {j ∈ [d1] : ‖�j‖0 < kτ } with d0 = |H0|. We consider the following rows of �:

(4.8) B := {
j ∈ Hc

0 : ∀k ∈ supp(�j ), |�jk| > c
√

logd2/n
}
,

and define the proportion of such rows as ρ = |B|/d1. In the context of multitask regression, ρ
measures the proportion of hub response variables whose nonnull parameter coefficients all
exceed certain thresholds, and thus characterizes the overall signal strength. As mentioned
at the beginning, the application of the StarTrek filter in this section is less involved than
that in Gaussian graphical models. The major simplification comes from how the multitask
regression problem with linear models gets set up: the response vector Y i ∈ R

d1 follows
Y i = �Xi + Ei , where Ei ∼ N (0,Dd1×d1) and Xi ⊥⊥ Ei ; thus those d1 response variables
are independent, conditional on the covariate Xi . Such conditional independence carries over
to the statistics of testing each response (node) in our proposed method. In Gaussian graphical
models, the test statistics for each node unavoidably have complicated dependence structures,
due to the nature of this combinatorial selection problem and how the nodes are connected to
each other. To this end, we will introduce some quantity (see (5.3)) to measure the dependence
level of the graph and characterize how such dependence affects the validity of our StarTrek
filter (see (5.5) in Assumption 5.1). Below we present our result on FDP/FDR control under
appropriate assumptions.
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THEOREM 4.2 (FDP/FDR control). Under Assumption 4.1 and the scaling condition
d2 logd2+d0

d0d2ρ
+ s log2 d2

n1/2 + log2 d2
(nρ)1/5 = o(1), if we implement the StarTrek procedure in Algorithm 2

with � estimated by (4.2) and the quantiles approximated by (4.6), as (n, d1, d2) → ∞, we
have

(4.9) FDP ≤ q
d0

d1
+ oP(1) and lim

(n,d1,d2)→∞ FDR ≤ q
d0

d1
.

The proof of Theorem 4.2 can be found in Appendix A.3. Note that signal strength
conditions, which require some entries of parameter matrix � have magnitudes exceeding
c
√

logd2/n, are usually assumed in existing work studying FDR control problem for high-
dimensional models [34, 46, 47, 49, 78, 79].

5. Discovering hub nodes in Gaussian graphical models. This section focuses on the

hub node selection problem on Gaussian graphical models where X1, . . . ,Xn
i.i.d.∼ Nd(0,�).

Let the weight matrix be the precision matrix � = �−1. Given some estimator �̂ (e.g.,
the graphical Lasso (GLasso) estimator [27] or the CLIME estimator [9]), we consider the
following one-step estimator {�̂d

e}e∈V×V :

(5.1) �̂
d
jk := �̂jk − �̂

�
j (�̂�̂k − ek)

�̂
�
j �̂j

, �̃
d
jk := �̂

d
jk/

√
�̂

d
jj�̂

d
kk,

where ek denotes the kth canonical basis in R
d . Then we use its standardized version

{�̃d
e}e∈V×V as the input of Algorithm 2. Our StarTrek filter selects nodes with large degrees

based on the maximum statistics TE = max(j,k)∈E

√
n|�̃d

jk| over the certain subset E. The
quantiles are approximated using the Gaussian multiplier bootstrap [16]: given the Gaussian

multipliers ξi
i.i.d.∼ N(0,1), we compute

(5.2) ĉ(α,E) = inf
{
t ∈ R : Pξ

(
T B

E ≤ t
) ≥ 1 − α

}
,

where T B
E := max(j,k)∈E

1√
n �̂jj �̂kk

|∑n
i=1 �̂

�
j (XiX

�
i �̂k − ek)ξi |.

Reference [16] shows that the above quantile approximation is accurate enough for FWER
control in modern high-dimensional simultaneous testing problems. Their results are based
on the control of the nonasymptotic bounds in a Kolmogorov distance sense. Reference [54]
also takes advantage of this result to test single hypothesis of graph properties or derive
confidence bounds on graph invariants.

However, in order to conduct combinatorial variable selection with FDR control guaran-
tees, we need more refined studies about the accuracy of the quantile approximation. This
is due to the ratio nature of the definition of FDR, as explained in Section 2.1. Compared
with the results in [16], we provide a Cramér-type control on the approximation errors of the
Gaussian multiplier bootstrap procedure. This is built on the probabilistic tools in Section 3,
in particular, the Cramér-type Gaussian comparison bound with max norm difference in The-
orem 3.1. Due to the dependence structure behind the hub selection problem in graphical
models, we also have to utilize Theorem 3.3. In a bit more detail, computing the maximum
test statistic for testing node actually involves the whole graph, resulting in complicated de-
pendence among the test statistics. The nondifferentiability of the maximum function makes
it very difficult to track this dependence. Also, note that this type of difficulty cannot be easily
circumvented by alternative methods, due to the discrete nature of the combinatorial infer-
ence problem. However, we figure out that the Cramér-type Gaussian comparison bound with
�0 norm difference plays an important role in handling this challenge.



STARTREK 89

In general, the sparsity/density of the graph is closed related to the dependence level of
multiple testing problem on graphical models. For example, [46, 78, 79] make certain as-
sumptions on the sparsity level and control the dependence of test statistics when testing
multiple hypotheses on graphical models/networks. For the hub node selection problem in
this paper, a new quantity is introduced, and we will explain why it is suitable. Recall that we
define the set of nonhub response variables in Section 4. Similarly, the set of nonhub nodes
is denoted by H0 = {j ∈ [d] : ‖�j‖0 < kτ } with d0 = |H0|. Now we consider the following
set:

(5.3)
S = {

(j1, j2, k1, k2) : j1, j2 ∈ H0, j1 
= j2, k1 
= k2,

�j1j2 = �j1k1 = �j2k2 = 0,�j1k2 
= 0,�j2k1 
= 0
}
.

Remark that in the above definition, k1 can be the same as j2 and k2 can be the same as
j1. If there exists a large number of nodes, which are neither connected to j1 nor j2, we
then do not need to worry much about the dependence between the test statistics for nonhub
nodes. Therefore, |S| actually measures the dependence level via checking how a pair of
nonhub nodes interact through other nodes. References [10, 46] also examine the connection
structures in the 4-vertex graph and control the dependence level by carefully bounding the
number of the 4-vertex graphs with different numbers of edges.

We provide a graphical demonstration of S and show how |S| looks like in certain types
of graph patterns via some simple examples. Though the definition of S does not exclude the
possibility of (j1, j2, k1, k2) being a graph with 2 or 3 vertices, we only draw a 4-vertex graph
in Figure 1 for convenience. In the left panel of Figure 1, we consider four different cases of
the 4-vertex graph. The upper two belong to the set S, while the lower two do not. In the right
panel, we consider four graphs, which all have 6 vertices. They have different graph patterns.
For example, (a) clearly has a hub structure. All of the nonhub nodes are only connected to
the hub node, while in (d), the edges are evenly distributed and each node is connected to its
two nearest neighbors. For each graph, we count the value of |S| and obtain 10,15,24,51,
respectively, which show a increasing trend of |S|. This sort of matches our intuition that it
is relatively easier to discover hub nodes on graph (a) compared with graph (d). See more
evidence in the empirical results of Section 7.

In addition to |S|, we also characterize the dependence level via the connectivity of the
graph. Specifically, let p be the number of connected components. Similarly, as in Section 4,
we define ρ to measure the signal strength, that is, ρ = |B|/d , where B := {j ∈ Hc

0 : ∀k ∈

FIG. 1. Left panel: a graphical demonstration of the definition of S via four examples of a 4-vertex graph;
Right panel: four different graph patterns with 6 vertices. Calculating |S| yields 10,15,24,51 for (a), (b), (c), (d),
respectively.
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supp(�j ), |�jk| > c
√

logd/n}. In the following, we list our assumptions needed for FDR
control.

ASSUMPTION 5.1. Suppose that � ∈ U(M, s, r0) and the following conditions hold:

(i) Signal strength and scaling condition:

(5.4)
logd

ρ

(
(logd)19/6

n1/6 + (logd)11/6

ρ1/3n1/6 + s(logd)3

n1/2

)
= o(1).

(ii) Dependency and connectivity condition:

(5.5)
logd

ρd0
+ (logd)2|S|

ρd2
0p

= o(1).

In the above assumption, (5.4) places conditions on the signal strength and scaling. The
first and the second term come from the Cramér-type large deviation bounds in the high-
dimensional CLT setting [40] and the Cramér-type Gaussian comparison bound established
in Theorem 3.1. The third term comes from the fact that the relevant test statistics arise as
maxima of approximate averages instead of the exact averages, and thus the approximation
error needs to be controlled. See similar discussions about this in [16]. Remark that the sig-
nal strength condition is mild here, due to similar reasons as the discussion in Section 4.
Regarding (5.5), there is a trade-off between the dependence level and connectivity level of
the topological structure. |S|/d2

0 characterizes how the test statistics of nonhub nodes are cor-
related to each other in average. p by definition describes the level of connectivity. Due to
the condition (5.5), larger signal strength generally makes the hub selection problem easier.
When |S|/d2

0 is small, the graph is allowed to be more connected. When there exist more
subgraphs, we allow higher correlations between the nonhub nodes. Note that the cardinality
of S is directly related to the �0 norm covariance matrix difference term �0, and arises from
the application of Theorem 3.3. In the following, we present our core theoretical result on
FDP/FDR control for hub selection using the StarTrek filter on Gaussian graphical models.

THEOREM 5.2 (FDP/FDR control). Under Assumption 5.1, the StarTrek procedure in
Algorithm 2 with (5.1) as input and the quantiles approximated by (5.2) satisfies: as (n, d) →
∞,

(5.6) FDP ≤ q
d0

d
+ oP(1) and lim

(n,d)→∞ FDR ≤ q
d0

d
.

The proof can be found in Appendix A.1. Remark that control of the FDR does not prohibit
the FDP from varying. Therefore, our result on FDP provides a stronger guarantee on con-
trolling the false discoveries. See clear empirical evidence in Section 7.2. To the best of our
knowledge, the proposed StarTrek filter in Section 2 and the above FDP/FDR control result
are the first algorithm and theoretical guarantee for the problem of simultaneously select-
ing hub nodes. Existing work like [34, 46, 47, 78, 79] focus on the discovery of continuous
signals and their tools are not applicable to the problem here.

6. StarTrek for general graphical models. Sections 4 and 5 apply the StarTrek filter
to two concrete examples: Gaussian graphical models and multitask regression and provide
FDR results with explicit assumptions. In this section, we will discuss how to generalize the
results in Theorem 5.2 to the general graphical models.

Recall that in Section 2.1, we denote � as the weight matrix of the general graphical mod-
els, that is, �e 
= 0 if and only if e ∈ E where E is the edge set, and �̃ is the generic estimator
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of �. Since Algorithm 2 requires the quantile of the maximal statistics in (2.2), we need the
estimator �̃ to be asymptotically Gaussian. In specific, for each e ∈ V × V , there exist n

i.i.d. mean zero random vectors Y 1(e), . . . ,Y n(e) such that �̃e − �e = n−1 ∑n
i=1 Y i (e) +

oP (1/
√

n). We can then estimate the quantile of TE = maxe∈E

√
n|�̃e − �e| by some Gaus-

sian multiplier bootstrap statistic T B
E , that is,

(6.1) ĉ(α,E) = inf
{
t ∈ R : Pξ

(
T B

E ≤ t
) ≥ 1 − α

}
.

In specific, similar to the assumptions in Theorem 3.2 of [16], we need the following general
assumptions on �̃.

ASSUMPTION 6.1. There exist ζ1 ≥ 0 and ζ2 ≥ 0 such that for any edge set E ⊆ V × V ,
we have

P
(|TE − T0E| > ζ1

)
< ζ2, where T0E = max

e∈E

∣∣∣∣∣ 1√
n

n∑
i=1

Y i (e)

∣∣∣∣∣,
P

(
Pξ

(∣∣T B
E − T B

0E

∣∣ > ζ1
)
> ζ2

)
< ζ2, where T B

0E = max
e∈E

∣∣∣∣∣ 1√
n

n∑
i=1

Y i (e)ξi

∣∣∣∣∣,
where the i.i.d. mean zero random vectors Y 1(e), . . . ,Y n(e) ∼ Y (e) satisfy
mine∈V×V E[Y 2(e)] > c, maxe∈V×V ‖Y (e)‖ψ1 ≤ C and maxe∈V×V ‖Y 2(e)‖ψ1 ≤ C

√
n/ logd

for some positive constants c and C. The multiplier variables ξi
i.i.d.∼ N (0,1) are independent

from the data and Pξ is the measure only on ξ1, . . . , ξn.

For the multitask regression problem, we verify the above assumption in Lemma A.7 in
the Supplementary Material [85]. As for the Gaussian graphical models, the assumption is
verified in the proof of Lemma C.4 in the Supplementary Material [85]. The assumption
has also been validated under other graphical models. For example, [82] proved the assump-
tion holds for the exponential family pairwise graphical models, which include nonnegative
Gaussian, conditionally specified mixed graphical models, exponential square-root graphical
model, etc.

Similar to (5.3), for the general case, we also need to define a dependency set S as

S = {
(j1, j2, k1, k2) : j1, j2 ∈ H0, j1 
= j2,�j1k1 = �j2k2 = 0,

Cov
(
Y

(
(j1, k1)

)
,Y

(
(j2, k2)

)) 
= 0
}
.

We also impose the cardinality of S similar to Assumption 5.1 for general graphical models.

ASSUMPTION 6.2. Suppose that � ∈ U(M, s, r0) and the following scaling condition
holds:

logd

ρ

(
(logd)19/6

n1/6 + (logd)11/6

ρ1/3n1/6 + ζ1 logd + ζ2

ρ

)
+ ζ2d

4 + logd

ρd0
+ (logd)2|S|

ρd2
0

= o(1),

where the definitions of d0 and ρ are the same as in Section 5.

We then have the following theorem on the FDR control for the general graphical models.

THEOREM 6.3. Under Assumptions 6.1 and 6.2, the StarTrek procedure in Algorithm 2
with the generic estimator �̃ and the approximated quantiles (6.1) satisfies the following: as
(n, d) → ∞,

FDP ≤ qd0/d + oP(1) and lim
(n,d)→∞ FDP ≤ qd0/d.

The proof can be found in Appendix A.5.
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7. Numerical results. In this section, we conduct simulation studies to complement
the main theoretical claims of the paper and demonstrate the empirical performance of our
method. Section 7.1 presents numerical results of applying the StarTrek filter to the multitask
regression problem in Section 4. Section 7.2 focuses on the Gaussian graphical models stud-
ied in Section 5. In Section 7.3, we numerically compare our method to the grid search based
on the skip-down method and demonstrate the computational advantages of the StarTrek fil-
ter. We also study the power performance of our approach against three competitor testing
methods.

7.1. Simulations for multitask regression. Section 4 considers the application of the
StarTrek filter to the multitask regression problem and provides theoretical results on
FDP/FDR control. Here, we conduct some simulation studies. The synthetic datasets are
generated from the multitask regression model described in (4.1). We sample the covariates
from a Gaussian autoregressive model of order 1 (AR(1)) and choose the noise variance to be
1 for all responses. Now we describe how to generate the parameter matrix. First, the number
of nonzero coefficients for each row is independently uniformly sampled from the integers
between 0 and 20. Then the locations of nonzero coefficients are independently uniformly
drawn from among the covariates. Finally, the values of nonzero coefficients are taking uni-
form random signs and identical magnitudes of 1. Throughout the simulated examples, we
fix the number of responses and the number of covariates (d1 = d2 = 300) and vary the sam-
ple size n and the autocorrelation coefficient of the AR(1) design. We also run the selection
procedure under two choices of the nominal FDR level, that is, q ∈ {0.1,0.2}. Given the
sparsity level of each response is uniformly distributed over integers between 0 and 20, we
choose the threshold kτ for determining hub responses to be 19, which is roughly the upper
10% quantile of the sparsity level’s distribution. To run the StarTrek filter, we exactly follow
the procedures described in Section 4 to calculate the test statistics and the approximated
quantiles. The involving estimation steps are based on [36, 74].

Table 1 shows that the FDRs of the StarTrek filter are all well controlled below the nominal
levels for different sample sizes and autocorrelation coefficient σ̄ . From Table 2, we find that
the power of the proposed method increases as the sample size grows and decreases as the
covariates become more dependent (i.e., with higher autocorrelations).

7.2. Simulations for Gaussian graphical models. In this section, we provide simulations
results for Section 5. The synthetic datasets are generated from Gaussian graphical models.
The corresponding precision matrices are specified based on four different types of graphs.
Given the number of nodes d and the number of connected components p, we will randomly
assign those nodes into p groups. Within each group (subgraph), the way of assigning edges
for different graph types will be explained below in detail. After determining the adjacency

TABLE 1
Empirical FDR for the multitask regression problem. We set d1 = d2 = 300 and n = 150,200,250 and 300. The

autocorrelaiton σ̄ varies from 0.3 to 0.7

q = 0.1 q = 0.2

n 150 200 250 300 150 200 250 300

σ̄ = 0.3 0.0656 0.0416 0.0162 0.0184 0.0991 0.0676 0.0269 0.0355
σ̄ = 0.4 0.0638 0.0355 0.0144 0.0158 0.1006 0.0577 0.0252 0.0300
σ̄ = 0.5 0.0554 0.0376 0.0177 0.0179 0.0827 0.0532 0.0253 0.0349
σ̄ = 0.6 0.0525 0.0316 0.0144 0.0155 0.0762 0.0516 0.0257 0.0270
σ̄ = 0.7 0.0406 0.0454 0.0233 0.0224 0.0557 0.0662 0.0464 0.0385
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TABLE 2
Empirical power for the multitask regression. We set d1 = d2 = 300 and n = 150,200,250 and 300. The

autocorrelaiton σ̄ is chosen from 0.3 to 0.7

q = 0.1 q = 0.2

n 150 200 250 300 150 200 250 300

σ̄ = 0.3 0.8902 1.0000 1.0000 1.0000 0.9206 1.0000 1.0000 1.0000
σ̄ = 0.4 0.8090 1.0000 1.0000 1.0000 0.8481 1.0000 1.0000 1.0000
σ̄ = 0.5 0.6563 0.9912 1.0000 1.0000 0.7081 0.9953 1.0000 1.0000
σ̄ = 0.6 0.4058 0.9549 0.9976 1.0000 0.4590 0.9622 0.9990 1.0000
σ̄ = 0.7 0.1215 0.7119 0.9678 0.9965 0.1578 0.7621 0.9778 0.9995

matrix of the graph, we follow [87] to construct the precision matrix. More specifically, we set
the off-diagonal elements to be of value v, which control the magnitude of partial correlations
and is closely related to the signal strength. In order to ensure positive definiteness, we add
some value v together with the absolute value of the minimal eigenvalues to the diagonal
terms. In the following simulations, v and u are set to be 0.4 and 0.1, respectively. Now we
explain how to determine the edges within each group (subgraph) for four different graph
patterns.

• Hub graph. We randomly pick one node as the hub node of the subgraph, then the rest of
the nodes are made to connect with this hub node. There is no edge between the nonhub
nodes.

• Random graph. This is the Erdős–Rényi random graph. There is an edge between each pair
of nodes with certain probability independently. In the following simulations, we will set
this probability to be 0.15 unless stated otherwise.

• Scale-free graph. In this type of graphs, the degree distribution follows a power law. We
construct it by the Barabási–Albert algorithm: starting with two connected nodes, then
adding each new node to be connected with only one node in the existing graph; and the
probability is proportional to the degree of the each node in the existing graph. The number
of the edges will be the same as the number of nodes.

• K-nearest neighbor (knn) graph. For a given number of k, we add edges such that each
node is connected to another k nodes. In our simulations, k is sampled from {1,2,3,4}
with probability mass {0.4,0.3,0.2,0.1}.

See a visual demonstration of the above four different graph patterns in Appendix E.1.
Throughout the simulated examples, we fix the number of nodes d to be 300 and vary other
quantities such as sample size n or the number of connected components p. To estimate the
precision matrix, we run the graphical Lasso algorithm with 5-fold cross-validation. Then we
obtain the standardized debiased estimator as described in (5.1). To obtain the quantile esti-
mates, we use the Gaussian multiplier bootstrap with 4000 bootstrap samples. The threshold
kτ for determining hub nodes is set to be 3. All results (of FDR and power) are averaged over
64 independent replicates.

As we can see from Table 3, the FDRs of the StarTrek filter for different types of graph are
well controlled below the nominal levels. In the hub graph, the FDRs are relatively small but
the power is still pretty good. A similar phenomenon for the multiple edge testing problem is
observed [46]. In the context of node testing, it is also unsurprising. These empirical results
actually match our demonstration about |S| in Figure 1: hub graphs have a relatively weaker
dependence structure (smaller S values) and make it is easier to discover true hub nodes
without making many errors.
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TABLE 3
Empirical FDR for Gaussian graphical models

d = 300 q = 0.1 q = 0.2

n 200 300 400 200 300 400

p = 20
hub 0.0000 0.0007 0.0000 0.0018 0.0016 0.0015
random 0.0186 0.0329 0.0438 0.0438 0.0727 0.0851
scale-free 0.0091 0.0243 0.0259 0.0265 0.0480 0.0579
knn 0.0103 0.0288 0.0345 0.0275 0.0648 0.0736

p = 30
hub 0.0012 0.0017 0.0000 0.0031 0.0039 0.0036
random 0.0464 0.0498 0.0478 0.0874 0.0969 0.0911
scale-free 0.0205 0.0326 0.0271 0.0414 0.0602 0.0580
knn 0.0216 0.0475 0.0431 0.0551 0.0909 0.0883

The power performance of the StarTrek filter is shown in Table 4. As the sample size
grows, we see the power is increasing for all four different types of graphs. When p is larger,
there are more hub nodes in general due to the way of constructing the graphs, and we find
that the power is higher. Among different types of graphs, the power in the hub graph and
scale-free graph is higher than that in the random and knn graph since the latter two are
relatively denser and have more complicated topological structures.

In Figure 2, we demonstrate the performance of our method in the random graph with
different parameters. Specifically, we vary the connecting probability changing from 0.1 to
0.3 in the x-axis. In those plots, we see the FDRs are all well controlled below the nomi-
nal level q = 0.1. As the connecting probability of the random graph grows, the graph gets
denser, resulting more hub nodes. Thus we can see that the height of the short blue solid lines
(representing qd0/d) is decreasing. Based on our results in Theorem 5.2, the target level of
FDP/FDR control is qd0/d . This is why we find that the mean and median of each box plot
is getting smaller as the connecting probability increases (hence d0 decreases).

The box plots and the jittering points show that our StarTrek procedure not only controls
the FDR but also prohibit it from varying too much, as implied by the theoretical results
on FDP control in Section 5. Regarding the power plots, we see that the power is smaller

TABLE 4
Empirical power for Gaussian graphical models

d = 300 q = 0.1 q = 0.2

n 200 300 400 200 300 400

p = 20
hub 0.6789 0.9406 0.9812 0.7727 0.9609 0.9867
random 0.3445 0.7734 0.9390 0.4637 0.8413 0.9592
scale-free 0.4799 0.8050 0.9347 0.5549 0.8479 0.9545
knn 0.1337 0.5689 0.8381 0.2254 0.6913 0.8920

p = 30
hub 0.6861 0.9242 0.9736 0.7497 0.9405 0.9810
random 0.5136 0.8728 0.9741 0.6027 0.9085 0.9842
scale-free 0.6296 0.8975 0.9778 0.7060 0.9230 0.9842
knn 0.2442 0.7036 0.8990 0.3396 0.7799 0.9335
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FIG. 2. FDP and power plots for the StarTrek filter in the random graph. The connecting probability is varied
on the x-axis. The number of samples n is chosen to be 300 and the number of connected components p equals
20 and 30. The nominal FDR level is set to be q = 0.1; the short blue solid lines correspond to qd0/d , calculated
by averaging over the 64 replicates. For both panels, the box plots are plotted with the black points representing
the outliers. Colored points are jittered around, demonstrating how the FDP and power distribute.

when the graph is denser since the hub selection problem becomes more difficult with more
disturbing factors. Plots with nominal FDR level q = 0.2 are deferred to Appendix E.3.

7.3. Comparison with the grid search based on the skip-down method. In this section, we
empirically compare the performance of two methods: our StarTrek filter (Algorithm 2) and
the BHq procedure with Algorithm 1 (referred simply as Algorithm 1 without causing confu-
sion). To implement Algorithm 1, we estimate α̂ in (2.3) by a grid search of the suprema on a
evenly spaced grid over (0, q) with 7 spacing sizes: 0.1,0.05,0.02,0.01, 0.005,0.002,0.001.
Note that the smaller spacing sizes correspond to higher granularity levels. We can see that
the computation complexity of Algorithm 2 is O(dkτ + d2 logd) and the time complexity is
O(d2kτ /g) for Algorithm 1 where g is the grid spacing size. In additional to the computa-
tional differences, we shall note that the selected hub node set from the grid search method
must be a subset of that from the StarTrek filter, and as the grid becomes sufficiently granular
(i.e., the gird spacing size becomes sufficiently small), the selected hub node sets from the
two methods will be the same. To illustrate such points in our empirical comparison, we will
additionally compute a relative version of FDR and power. Specifically, we compute the FDR
and power for both methods but treat the selected hub node set from the StarTrek filter as the
true hub node set. We follow Section 7.2 to generate the synthetic data and consider exactly
the same settings in Table 3. The results are then visualized in Figure 3. First, we see that
the relative FDR is always 0 and the relative power approaches 1 as the grid spacing size
decreases to 0, which illustrates the equivalence of two algorithms. In terms of power and
computational performances, we find that StarTrek filter achieves higher power than Algo-
rithm 1 when the granularity level is coarse. By making the grid sufficiently granular, the grid
search method can attain comparable power but cost much longer computational time than
the StarTrek filter, and hence demonstrate the superiority of our proposed method.

7.4. Comparison with other testing procedures. This section compares the performance
of the StarTrek filter against some other testing procedures. Three competitor methods are
considered:

1. Method 1 computes the p-values with respect to testing �jk = 0 for all the (d2 − d)/2
pairs of (j, k). Then it adopts the canonical FWER control method to select the significant
edges and count the selected edges for each row/column to determine whether each node is
selected to be a hub node.

2. Method 2 computes all the p-values as in Method 1, but changes the way of applying
FWER control adjustment. For each node j , it applies the Bonferroni procedure to the d − 1
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FIG. 3. Empirical comparison of the StarTrek filter with the grid search based on the skip-down method. On the
x-axis, we have the grid method with 7 granularity levels and our proposed StarTrek filter. The top panel compares
FDR and relative FDR; the middle panel compares power and relative power; the bottom panel compares the CPU
time (in seconds). Four columns correspond to four different graph patterns. For each graph pattern, we average
those criterion quantities over 6 different settings (i.e., 3 choices of n and 2 choices of p) where 64 independent
replicates are simulated for each setting. The FDR nominal level q is 0.1.

p-values corresponding to the j th column of the precision matrix, resulting in the node p-
value. Then the BHq procedure is further applied to these node p-values to select the hub
nodes.

3. Method 3 utilizes the node p-values computed from Algorithm 2 but applies the BY
procedure [7] instead of the BHq procedure [6].

All three competitor methods are more conservative than the StarTrek filter since they are
either only based on continuous edge testing procedures or not adapting to the complex de-
pendence structures. We follow Section 7.2 to generate the synthetic data and consider exactly
the same settings in Table 3, which involve 3 choices of the sample size n, 2 choices of p and
4 different types of graph patterns.

In Figure 4, we visualize the performances of the StarTrek filter against the above three
competitor methods in terms of FDR and power. To understand how the set of selected hub
nodes produced from each competitor method is similar/different to that from the StarTrek
filter, we also calculate a relative version of FDR and power similarly as in Section 7.3 and
the Jaccard index [32]. We find that our proposed StarTrek filter is less conservative and
more powerful than all the three competitor methods, among which Method 1 is the most
conservative method and Method 3 has the most similar selected hub node set to the StarTrek
filter.

7.5. Application to gene expression data. We also apply our method to the Genotype-
Tissue Expression (GTEx) data studied in [52]. Beginning with a 2.5-year pilot phase, the
GTEx project establishes a great database and associated tissue bank for studying the re-
lationship between certain genetic variations and gene expressions in human tissues. The
original dataset involves 54 nondiseased tissue sites across 549 research subjects. Here, we
only focus on analyzing the breast mammary tissues. It is of great interest to identify hub
genes over the gene expression network.

First, we calculate the variances of the gene expression data and focus on the top 100
genes in the following analysis. The data involves n = 291 samples for male individuals
and n = 168 samples for female individuals. The original count data is log-transformed and
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FIG. 4. Empirical comparison of the StarTrek filter with the three competitor methods. On the x-axis, we have
Method 1 (FWER_all), Method 2 (Bonf_BHq), Method 3 (BY) and our proposed StarTrek filter. The top panel com-
pares FDR and relative FDR; the middle panel compares power and relative power; the bottom panel compares
the Jaccard index (with respect to the set of selected hub nodes by the StarTrek filter). Four columns correspond
to four different graph patterns. For each graph pattern, we average those criterion quantities over 6 different
settings (i.e., 3 choices of n and 2 choices of p) where 64 independent replicates are simulated for each setting.
The FDR nominal level q is 0.1.

scaled. We then obtain the estimator of the precision matrix by the graphical Lasso with 2-
fold cross-validation. As for the hub node criterion, we set kτ as the 50% quantile of the node
degrees in the estimated precision matrix. We run StarTrek filter with 2000 bootstrap samples
and nominal FDR level q = 0.1 to select hub genes.

Figure 5 shows that the selected hub genes by the StarTrek filter also have large degrees
on the estimated gene networks (based on the estimated precision matrices). In Figure 6,
the results for the male and female dataset agree with each other except that the number of
selected hub genes using the female dataset is smaller due to a much smaller sample size. The
selected hub genes are found to play an important role in breast-related molecular processes,
either as central regulators or their abnormal expressions are considered as the causes of
breast cancer initiation and progression; see relevant literature in genetic research such as [1,

FIG. 5. The above graphs are based the estimated precision matrices (the left two plots). The adjacency
matrices of the other six plots are based on the standardized estimated precision matrices but thresholded at
0.025,0.05,0.075, respectively. Blue vertices represent the selected hub genes.
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FIG. 6. Plots of the sorted p-values (αj , j ∈ [d]) in Algorithm 2. Those blue points correspond to selected
hub genes. The blue line is the rejection line of the BHq procedure. The coordinates of the plots are flipped. We
abbreviate the names of the 100 genes and only show selected ones with blue colored text.

8, 15, 30, 44, 53, 56, 57, 59, 72]. Therefore, our proposed method for selecting hub nodes
can be applied to the hub gene identification problem. It may improve our understanding of
the mechanisms of breast cancer and provide a valuable prognosis and treatment signature.

8. Discussions. In this paper, we have proposed a novel method to select the hub nodes
in the graph with degrees larger than a certain thresholding level. To show the validity of the
method, we prove Cramér-type Gaussian comparison bounds with two types of covariance
matrix differences and Cramér-type deviation results of the Gaussian multiplier bootstrap
procedure. The extension of our results to other bootstrap methods is interesting for future
research. In specific, [23] generalizes the Kolmogorov distance results of the Gaussian mul-
tiplier bootstrap [16] to the wild bootstrap and empirical bootstrap by proposing new com-
parison bounds and anticoncentration inequalities. Their techniques have the potential to be
extended to the Cramér-type deviation bounds in the future. Moreover, [19] showed a faster
rate of Kolmogorov distance consistency of the Gaussian multiplier bootstrap and it could be
extended to Cramér-type deviation bounds to improve the rates in our paper as well.

Funding. The authors are grateful for the support of NSF DMS-1916211, NIH R35
CA220523, NIH R01 ES32418 and NIH U01CA209414.

SUPPLEMENTARY MATERIAL

Supplement to “StarTrek: Combinatorial variable selection with false discovery rate
control”. (DOI: 10.1214/23-AOS2296SUPP; .pdf). Supplementary information.

https://doi.org/10.1214/23-AOS2296SUPP


STARTREK 99

REFERENCES

[1] BAI, J., ZHANG, X., KANG, X., JIN, L., WANG, P. and WANG, Z. (2019). Screening of core genes and
pathways in breast cancer development via comprehensive analysis of multi gene expression datasets.
Oncol. Lett. 18 5821–5830.

[2] BARBER, R. F. and CANDÈS, E. J. (2015). Controlling the false discovery rate via knockoffs. Ann. Statist.
43 2055–2085. MR3375876 https://doi.org/10.1214/15-AOS1337

[3] BARBER, R. F. and CANDÈS, E. J. (2019). A knockoff filter for high-dimensional selective inference. Ann.
Statist. 47 2504–2537. MR3988764 https://doi.org/10.1214/18-AOS1755

[4] BELLONI, A., CHERNOZHUKOV, V. and HANSEN, C. (2014). Inference on treatment effects after selection
among high-dimensional controls. Rev. Econ. Stud. 81 608–650. MR3207983 https://doi.org/10.1093/
restud/rdt044

[5] BENJAMINI, Y. (2010). Discovering the false discovery rate. J. R. Stat. Soc. Ser. B. Stat. Methodol. 72
405–416. MR2758522 https://doi.org/10.1111/j.1467-9868.2010.00746.x

[6] BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful
approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300. MR1325392

[7] BENJAMINI, Y. and YEKUTIELI, D. (2001). The control of the false discovery rate in multiple testing under
dependency. Ann. Statist. 29 1165–1188. MR1869245 https://doi.org/10.1214/aos/1013699998

[8] BLEIN, S., BARJHOUX, L., GENESIS INVESTIGATORS, DAMIOLA, F., DONDON, M.-G., EON-
MARCHAIS, S., MARCOU, M., CARON, O., LORTHOLARY, A. et al. (2015). Targeted sequencing
of the mitochondrial genome of women at high risk of breast cancer without detectable mutations in
BRCA1/2. PLoS ONE 10 e0136192.

[9] CAI, T., LIU, W. and LUO, X. (2011). A constrained �1 minimization approach to sparse precision ma-
trix estimation. J. Amer. Statist. Assoc. 106 594–607. MR2847973 https://doi.org/10.1198/jasa.2011.
tm10155

[10] CAI, T., LIU, W. and XIA, Y. (2013). Two-sample covariance matrix testing and support recovery in high-
dimensional and sparse settings. J. Amer. Statist. Assoc. 108 265–277. MR3174618 https://doi.org/10.
1080/01621459.2012.758041

[11] CAI, T. T. and MA, Z. (2013). Optimal hypothesis testing for high dimensional covariance matrices.
Bernoulli 19 2359–2388. MR3160557 https://doi.org/10.3150/12-BEJ455

[12] CAI, T. T. and ZHANG, A. (2016). Inference for high-dimensional differential correlation matrices. J. Mul-
tivariate Anal. 143 107–126. MR3431422 https://doi.org/10.1016/j.jmva.2015.08.019

[13] CANDÈS, E., FAN, Y., JANSON, L. and LV, J. (2018). Panning for gold: ‘model-X’ knockoffs for
high dimensional controlled variable selection. J. R. Stat. Soc. Ser. B. Stat. Methodol. 80 551–577.
MR3798878 https://doi.org/10.1111/rssb.12265

[14] CHANG, J., SHAO, Q.-M. and ZHOU, W.-X. (2016). Cramér-type moderate deviations for Studentized
two-sample U -statistics with applications. Ann. Statist. 44 1931–1956. MR3546439 https://doi.org/10.
1214/15-AOS1375

[15] CHEN, W.-C., WANG, C.-Y., HUNG, Y.-H., WENG, T.-Y., YEN, M.-C. and LAI, M.-D. (2016). Sys-
tematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme A
synthetase family in cancer. PLoS ONE 11 e0155660.

[16] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2013). Gaussian approximations and multi-
plier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist. 41 2786–2819.
MR3161448 https://doi.org/10.1214/13-AOS1161

[17] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2014). Anti-concentration and honest, adaptive
confidence bands. Ann. Statist. 42 1787–1818. MR3262468 https://doi.org/10.1214/14-AOS1235

[18] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2015). Comparison and anti-concentration
bounds for maxima of Gaussian random vectors. Probab. Theory Related Fields 162 47–70.
MR3350040 https://doi.org/10.1007/s00440-014-0565-9

[19] CHERNOZHUOKOV, V., CHETVERIKOV, D., KATO, K. and KOIKE, Y. (2022). Improved central limit the-
orem and bootstrap approximations in high dimensions. Ann. Statist. 50 2562–2586. MR4500619
https://doi.org/10.1214/22-aos2193

[20] DAI, C., LIN, B., XING, X. and LIU, J. S. (2022). False discovery rate control via data splitting. J. Amer.
Statist. Assoc. 1–18. https://doi.org/10.1080/01621459.2022.2060113

[21] DAI, C., LIN, B., XING, X. and LIU, J. S. (2023). A scale-free approach for false discovery rate control
in generalized linear models. J. Amer. Statist. Assoc. 118 1551–1565. MR4646583 https://doi.org/10.
1080/01621459.2023.2165930

[22] DAI, R. and BARBER, R. (2016). The knockoff filter for FDR control in group-sparse and multitask regres-
sion. In International Conference on Machine Learning 1851–1859. PMLR.

https://mathscinet.ams.org/mathscinet-getitem?mr=3375876
https://doi.org/10.1214/15-AOS1337
https://mathscinet.ams.org/mathscinet-getitem?mr=3988764
https://doi.org/10.1214/18-AOS1755
https://mathscinet.ams.org/mathscinet-getitem?mr=3207983
https://doi.org/10.1093/restud/rdt044
https://mathscinet.ams.org/mathscinet-getitem?mr=2758522
https://doi.org/10.1111/j.1467-9868.2010.00746.x
https://mathscinet.ams.org/mathscinet-getitem?mr=1325392
https://mathscinet.ams.org/mathscinet-getitem?mr=1869245
https://doi.org/10.1214/aos/1013699998
https://mathscinet.ams.org/mathscinet-getitem?mr=2847973
https://doi.org/10.1198/jasa.2011.tm10155
https://mathscinet.ams.org/mathscinet-getitem?mr=3174618
https://doi.org/10.1080/01621459.2012.758041
https://mathscinet.ams.org/mathscinet-getitem?mr=3160557
https://doi.org/10.3150/12-BEJ455
https://mathscinet.ams.org/mathscinet-getitem?mr=3431422
https://doi.org/10.1016/j.jmva.2015.08.019
https://mathscinet.ams.org/mathscinet-getitem?mr=3798878
https://doi.org/10.1111/rssb.12265
https://mathscinet.ams.org/mathscinet-getitem?mr=3546439
https://doi.org/10.1214/15-AOS1375
https://mathscinet.ams.org/mathscinet-getitem?mr=3161448
https://doi.org/10.1214/13-AOS1161
https://mathscinet.ams.org/mathscinet-getitem?mr=3262468
https://doi.org/10.1214/14-AOS1235
https://mathscinet.ams.org/mathscinet-getitem?mr=3350040
https://doi.org/10.1007/s00440-014-0565-9
https://mathscinet.ams.org/mathscinet-getitem?mr=4500619
https://doi.org/10.1214/22-aos2193
https://doi.org/10.1080/01621459.2022.2060113
https://mathscinet.ams.org/mathscinet-getitem?mr=4646583
https://doi.org/10.1080/01621459.2023.2165930
https://doi.org/10.1093/restud/rdt044
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1080/01621459.2012.758041
https://doi.org/10.1214/15-AOS1375
https://doi.org/10.1080/01621459.2023.2165930


100 L. ZHANG AND J. LU

[23] DENG, H. and ZHANG, C.-H. (2020). Beyond Gaussian approximation: Bootstrap for maxima of sums
of independent random vectors. Ann. Statist. 48 3643–3671. MR4185823 https://doi.org/10.1214/
20-AOS1946

[24] DING, X. and ZHOU, Z. (2020). Estimation and inference for precision matrices of nonstationary time
series. Ann. Statist. 48 2455–2477. MR4134802 https://doi.org/10.1214/19-AOS1894

[25] EISENACH, C., BUNEA, F., NING, Y. and DINICU, C. (2020). High-dimensional inference for cluster-based
graphical models. J. Mach. Learn. Res. 21 Paper No. 53, 55. MR4095332

[26] FENG, H. and NING, Y. (2019). High-dimensional mixed graphical model with ordinal data: Parameter
estimation and statistical inference. In The 22nd International Conference on Artificial Intelligence
and Statistics 654–663. PMLR.

[27] FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2008). Sparse inverse covariance estimation with the
graphical lasso. Biostatistics 9 432–441. https://doi.org/10.1093/biostatistics/kxm045

[28] GRONWALL, T. H. (1919). Note on the derivatives with respect to a parameter of the solutions of a system
of differential equations. Ann. of Math. (2) 20 292–296. MR1502565 https://doi.org/10.2307/1967124

[29] GU, Q., CAO, Y., NING, Y. and LIU, H. (2015). Local and global inference for high dimensional nonpara-
normal graphical models. Preprint. Available at arXiv:1502.02347.

[30] HELLWIG, B., MADJAR, K., EDLUND, K., MARCHAN, R., CADENAS, C., HEIMES, A.-S., ALMST-
EDT, K., LEBRECHT, A., SICKING, I. et al. (2016). Epsin family member 3 and ribosome-related
genes are associated with late metastasis in estrogen receptor-positive breast cancer and long-term sur-
vival in non-small cell lung cancer using a genome-wide identification and validation strategy. PLoS
ONE 11 1–18. https://doi.org/10.1371/journal.pone.0167585

[31] ILYAS, M. U., SHAFIQ, M. Z., LIU, A. X. and RADHA, H. (2011). A distributed and privacy preserving
algorithm for identifying information hubs in social networks. In 2011 Proceedings IEEE INFOCOM
561–565. IEEE.

[32] JACCARD, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions
voisines. Bull. Soc. Vaud. Sci. Nat. 37 241–272.

[33] JANKOVÁ, J. and VAN DE GEER, S. (2017). Honest confidence regions and optimality in high-
dimensional precision matrix estimation. TEST 26 143–162. MR3613609 https://doi.org/10.1007/
s11749-016-0503-5

[34] JAVANMARD, A. and JAVADI, H. (2019). False discovery rate control via debiased lasso. Electron. J. Stat.
13 1212–1253. MR3935848 https://doi.org/10.1214/19-ejs1554

[35] JAVANMARD, A. and MONTANARI, A. (2013). Nearly optimal sample size in hypothesis testing for high-
dimensional regression. In 2013 51st Annual Allerton Conference on Communication, Control, and
Computing (Allerton) 1427–1434. IEEE.

[36] JAVANMARD, A. and MONTANARI, A. (2014). Confidence intervals and hypothesis testing for high-
dimensional regression. J. Mach. Learn. Res. 15 2869–2909. MR3277152

[37] JAVANMARD, A. and MONTANARI, A. (2014). Hypothesis testing in high-dimensional regression un-
der the Gaussian random design model: Asymptotic theory. IEEE Trans. Inf. Theory 60 6522–6554.
MR3265038 https://doi.org/10.1109/TIT.2014.2343629

[38] JIN, J., KE, Z. T., LUO, S. and WANG, M. (2023). Optimal Estimation of the Number of Network Com-
munities. J. Amer. Statist. Assoc. 118 2101–2116.

[39] KE, Z. T., MA, Y. and LIN, X. (2023). Estimation of the number of spiked eigenvalues in a covariance
matrix by bulk eigenvalue matching analysis. J. Amer. Statist. Assoc. 118 374–392.

[40] KUCHIBHOTLA, A. K., MUKHERJEE, S. and BANERJEE, D. (2021). High-dimensional CLT: Im-
provements, non-uniform extensions and large deviations. Bernoulli 27 192–217. MR4177366
https://doi.org/10.3150/20-BEJ1233

[41] LAM, C. and FAN, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation.
Ann. Statist. 37 4254–4278. MR2572459 https://doi.org/10.1214/09-AOS720

[42] LEE, R. K.-W., HOANG, T.-A. and LIM, E.-P. (2019). Discovering hidden topical hubs and authorities
across multiple online social networks. IEEE Trans. Knowl. Data Eng. 33 70–84.

[43] LI, J. and MAATHUIS, M. H. (2021). GGM knockoff filter: False discovery rate control for Gaussian graph-
ical models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 83 534–558. MR4294543 https://doi.org/10.1111/
rssb.12430

[44] LI, Y., GIORGI, E. E., BECKMAN, K. B., CABERTO, C., KAZMA, R., LUM-JONES, A., HAIMAN, C. A.,
MARCHAND, L. L., STRAM, D. O. et al. (2019). Association between mitochondrial genetic variation
and breast cancer risk: The multiethnic cohort. PLoS ONE 14 1–14. https://doi.org/10.1371/journal.
pone.0222284

[45] LIU, M., XIA, Y., CHO, K. and CAI, T. (2021). Integrative high dimensional multiple testing with hetero-
geneity under data sharing constraints. J. Mach. Learn. Res. 22 Paper No. 126, 26. MR4279777

https://mathscinet.ams.org/mathscinet-getitem?mr=4185823
https://doi.org/10.1214/20-AOS1946
https://mathscinet.ams.org/mathscinet-getitem?mr=4134802
https://doi.org/10.1214/19-AOS1894
https://mathscinet.ams.org/mathscinet-getitem?mr=4095332
https://doi.org/10.1093/biostatistics/kxm045
https://mathscinet.ams.org/mathscinet-getitem?mr=1502565
https://doi.org/10.2307/1967124
http://arxiv.org/abs/arXiv:1502.02347
https://doi.org/10.1371/journal.pone.0167585
https://mathscinet.ams.org/mathscinet-getitem?mr=3613609
https://doi.org/10.1007/s11749-016-0503-5
https://mathscinet.ams.org/mathscinet-getitem?mr=3935848
https://doi.org/10.1214/19-ejs1554
https://mathscinet.ams.org/mathscinet-getitem?mr=3277152
https://mathscinet.ams.org/mathscinet-getitem?mr=3265038
https://doi.org/10.1109/TIT.2014.2343629
https://mathscinet.ams.org/mathscinet-getitem?mr=4177366
https://doi.org/10.3150/20-BEJ1233
https://mathscinet.ams.org/mathscinet-getitem?mr=2572459
https://doi.org/10.1214/09-AOS720
https://mathscinet.ams.org/mathscinet-getitem?mr=4294543
https://doi.org/10.1111/rssb.12430
https://doi.org/10.1371/journal.pone.0222284
https://mathscinet.ams.org/mathscinet-getitem?mr=4279777
https://doi.org/10.1214/20-AOS1946
https://doi.org/10.1007/s11749-016-0503-5
https://doi.org/10.1111/rssb.12430
https://doi.org/10.1371/journal.pone.0222284


STARTREK 101

[46] LIU, W. (2013). Gaussian graphical model estimation with false discovery rate control. Ann. Statist. 41
2948–2978. MR3161453 https://doi.org/10.1214/13-AOS1169

[47] LIU, W. and LUO, S. (2014). Hypothesis testing for high-dimensional regression models.
[48] LIU, W. and SHAO, Q.-M. (2010). Cramér-type moderate deviation for the maximum of the periodogram

with application to simultaneous tests in gene expression time series. Ann. Statist. 38 1913–1935.
MR2662363 https://doi.org/10.1214/09-AOS774

[49] LIU, W. and SHAO, Q.-M. (2014). Phase transition and regularized bootstrap in large-scale t-tests with false
discovery rate control. Ann. Statist. 42 2003–2025. MR3262475 https://doi.org/10.1214/14-AOS1249

[50] LIU, Y., GU, H.-Y., ZHU, J., NIU, Y.-M., ZHANG, C. and GUO, G.-L. (2019). Identification of hub genes
and key pathways associated with bipolar disorder based on weighted gene co-expression network
analysis. Front. Physiol. 10 1081.

[51] LIU, Y., YI, Y., WU, W., WU, K. and ZHANG, W. (2019). Bioinformatics prediction and analysis of hub
genes and pathways of three types of gynecological cancer. Oncol. Lett. 18 617–628.

[52] LONSDALE, J., THOMAS, J., SALVATORE, M., PHILLIPS, R., LO, E., SHAD, S., HASZ, R., WALTERS, G.,
GARCIA, F. et al. (2013). The genotype-tissue expression (GTEx) project. Nat. Genet. 45 580–585.

[53] LOU, W., DING, B., WANG, S. and FU, P. (2020). Overexpression of GPX3, a potential biomarker for
diagnosis and prognosis of breast cancer, inhibits progression of breast cancer cells in vitro. Cancer
Cell Int. 20 1–15.

[54] LU, J., NEYKOV, M. and LIU, H. (2017). Adaptive inferential method for monotone graph invariants.
Preprint. Available at arXiv:1707.09114.

[55] LUSCOMBE, N. M., BABU, M. M., YU, H., SNYDER, M., TEICHMANN, S. A. and GERSTEIN, M. (2004).
Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431 308–
312.

[56] MALVIA, S., BAGADI, S. A. R., PRADHAN, D., CHINTAMANI, C., BHATNAGAR, A., ARORA, D.,
SARIN, R. and SAXENA, S. (2019). Study of gene expression profiles of breast cancers in Indian
women. Sci. Rep. 9 1–15.

[57] MARINO, N., GERMAN, R., RAO, X., SIMPSON, E., LIU, S., WAN, J., LIU, Y., SANDUSKY, G., JACOB-
SEN, M. et al. (2020). Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis.
npj Breast Cancer 6 1–13.

[58] MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the
lasso. Ann. Statist. 34 1436–1462. MR2278363 https://doi.org/10.1214/009053606000000281

[59] MOHAMED, M. M., SABET, S., PENG, D.-F., NOUH, M. A., EL-SHINAWI, M. and EL-RIFAI, W. (2014).
Promoter hypermethylation and suppression of glutathione peroxidase 3 are associated with inflamma-
tory breast carcinogenesis. Oxid. Med. Cell. Longev. 2014.

[60] NEWMAN, M. E., WATTS, D. J. and STROGATZ, S. H. (2002). Random graph models of social networks.
Proc. Natl. Acad. Sci. USA 99 2566–2572.

[61] NEYKOV, M., LU, J. and LIU, H. (2019). Combinatorial inference for graphical models. Ann. Statist. 47
795–827. MR3909951 https://doi.org/10.1214/17-AOS1650

[62] OBOZINSKI, G., TASKAR, B. and JORDAN, M. (2006). Multi-task feature selection. Statistics Department,
UC Berkeley, Tech. Rep. 2 2.

[63] PENG, J., ZHOU, N. and ZHU, J. (2009). Partial correlation estimation by joint sparse regression models.
J. Amer. Statist. Assoc. 104 735–746. MR2541591 https://doi.org/10.1198/jasa.2009.0126

[64] POWER, J. D., SCHLAGGAR, B. L., LESSOV-SCHLAGGAR, C. N. and PETERSEN, S. E. (2013). Evidence
for hubs in human functional brain networks. Neuron 79 798–813. https://doi.org/10.1016/j.neuron.
2013.07.035

[65] RAVIKUMAR, P., WAINWRIGHT, M. J., RASKUTTI, G. and YU, B. (2011). High-dimensional covari-
ance estimation by minimizing �1-penalized log-determinant divergence. Electron. J. Stat. 5 935–980.
MR2836766 https://doi.org/10.1214/11-EJS631

[66] REN, Z., SUN, T., ZHANG, C.-H. and ZHOU, H. H. (2015). Asymptotic normality and optimalities in esti-
mation of large Gaussian graphical models. Ann. Statist. 43 991–1026. MR3346695 https://doi.org/10.
1214/14-AOS1286

[67] ROTHMAN, A. J., BICKEL, P. J., LEVINA, E. and ZHU, J. (2008). Sparse permutation invariant covariance
estimation. Electron. J. Stat. 2 494–515. MR2417391 https://doi.org/10.1214/08-EJS176

[68] RUBINOV, M. and SPORNS, O. (2010). Complex network measures of brain connectivity: Uses and inter-
pretations. NeuroImage 52 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

[69] SHAW, P., KABANI, N. J., LERCH, J. P., ECKSTRAND, K., LENROOT, R., GOGTAY, N., GREENSTEIN, D.,
CLASEN, L., EVANS, A. et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex.
J. Neurosci. 28 3586–3594. https://doi.org/10.1523/JNEUROSCI.5309-07.2008

[70] SHEN, S. and LU, J. (2023). Combinatorial-probabilistic trade-off: P-values of community property test in
the stochastic block models. IEEE Trans. Inf. Theory 69 6605–6618. MR4650324

https://mathscinet.ams.org/mathscinet-getitem?mr=3161453
https://doi.org/10.1214/13-AOS1169
https://mathscinet.ams.org/mathscinet-getitem?mr=2662363
https://doi.org/10.1214/09-AOS774
https://mathscinet.ams.org/mathscinet-getitem?mr=3262475
https://doi.org/10.1214/14-AOS1249
http://arxiv.org/abs/arXiv:1707.09114
https://mathscinet.ams.org/mathscinet-getitem?mr=2278363
https://doi.org/10.1214/009053606000000281
https://mathscinet.ams.org/mathscinet-getitem?mr=3909951
https://doi.org/10.1214/17-AOS1650
https://mathscinet.ams.org/mathscinet-getitem?mr=2541591
https://doi.org/10.1198/jasa.2009.0126
https://doi.org/10.1016/j.neuron.2013.07.035
https://mathscinet.ams.org/mathscinet-getitem?mr=2836766
https://doi.org/10.1214/11-EJS631
https://mathscinet.ams.org/mathscinet-getitem?mr=3346695
https://doi.org/10.1214/14-AOS1286
https://mathscinet.ams.org/mathscinet-getitem?mr=2417391
https://doi.org/10.1214/08-EJS176
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1523/JNEUROSCI.5309-07.2008
https://mathscinet.ams.org/mathscinet-getitem?mr=4650324
https://doi.org/10.1016/j.neuron.2013.07.035
https://doi.org/10.1214/14-AOS1286


102 L. ZHANG AND J. LU

[71] SHEN, X., PAN, W. and ZHU, Y. (2012). Likelihood-based selection and sharp parameter estimation. J.
Amer. Statist. Assoc. 107 223–232. MR2949354 https://doi.org/10.1080/01621459.2011.645783

[72] SIROIS, I., AGUILAR-MAHECHA, A., LAFLEUR, J., FOWLER, E., VU, V., SCRIVER, M.,
BUCHANAN, M., CHABOT, C., RAMANATHAN, A. et al. (2019). A unique morphological phenotype
in chemoresistant triple-negative breast cancer reveals metabolic reprogramming and PLIN4 expres-
sion as a molecular vulnerability. Mol. Cancer Res. 17 2492–2507. https://doi.org/10.1158/1541-7786.
MCR-19-0264

[73] SLEPIAN, D. (1962). The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 41 463–501.
MR0133183 https://doi.org/10.1002/j.1538-7305.1962.tb02419.x

[74] SUN, T. and ZHANG, C.-H. (2012). Scaled sparse linear regression. Biometrika 99 879–898. MR2999166
https://doi.org/10.1093/biomet/ass043

[75] SUR, P. and CANDÈS, E. J. (2019). A modern maximum-likelihood theory for high-dimensional logistic
regression. Proc. Natl. Acad. Sci. USA 116 14516–14525. MR3984492 https://doi.org/10.1073/pnas.
1810420116

[76] VAN DE GEER, S., BÜHLMANN, P., RITOV, Y. and DEZEURE, R. (2014). On asymptotically optimal
confidence regions and tests for high-dimensional models. Ann. Statist. 42 1166–1202. MR3224285
https://doi.org/10.1214/14-AOS1221

[77] VAN DEN HEUVEL, M. P. and SPORNS, O. (2013). Network hubs in the human brain. Trends Cogn. Sci. 17
683–696. https://doi.org/10.1016/j.tics.2013.09.012

[78] XIA, Y., CAI, T. and CAI, T. T. (2015). Testing differential networks with applications to the detection of
gene-gene interactions. Biometrika 102 247–266. MR3371002 https://doi.org/10.1093/biomet/asu074

[79] XIA, Y., CAI, T. and CAI, T. T. (2018). Multiple testing of submatrices of a precision matrix with ap-
plications to identification of between pathway interactions. J. Amer. Statist. Assoc. 113 328–339.
MR3803468 https://doi.org/10.1080/01621459.2016.1251930

[80] XING, X., ZHAO, Z. and LIU, J. S. (2023). Controlling false discovery rate using Gaussian mirrors. J.
Amer. Statist. Assoc. 118 222–241. MR4571118 https://doi.org/10.1080/01621459.2021.1923510

[81] YANG, Z., NING, Y. and LIU, H. (2018). On semiparametric exponential family graphical models. J. Mach.
Learn. Res. 19 Paper No. 57, 59. MR3899759

[82] YU, M., GUPTA, V. and KOLAR, M. (2020). Simultaneous inference for pairwise graphical models with
generalized score matching. J. Mach. Learn. Res. 21 Paper No. 91, 51. MR4119159

[83] YUAN, L., CHEN, L., QIAN, K., QIAN, G., WU, C.-L., WANG, X. and XIAO, Y. (2017). Co-expression
network analysis identified six hub genes in association with progression and prognosis in human clear
cell renal cell carcinoma (ccRCC). Genomics Data 14 132–140.

[84] YUAN, M. and LIN, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika
94 19–35. MR2367824 https://doi.org/10.1093/biomet/asm018

[85] ZHANG, L. and LU, J. (2024). Supplement to “StarTrek: Combinatorial variable selection with false dis-
covery rate control.” https://doi.org/10.1214/23-AOS2296SUPP

[86] ZHAO, Q., SUR, P. and CANDÈS, E. J. (2022). The asymptotic distribution of the MLE in high-dimensional
logistic models: Arbitrary covariance. Bernoulli 28 1835–1861. MR4411513 https://doi.org/10.3150/
21-bej1401

[87] ZHAO, T., LIU, H., ROEDER, K., LAFFERTY, J. and WASSERMAN, L. (2012). The huge package for
high-dimensional undirected graph estimation in R. J. Mach. Learn. Res. 13 1059–1062. MR2930633

https://mathscinet.ams.org/mathscinet-getitem?mr=2949354
https://doi.org/10.1080/01621459.2011.645783
https://doi.org/10.1158/1541-7786.MCR-19-0264
https://mathscinet.ams.org/mathscinet-getitem?mr=0133183
https://doi.org/10.1002/j.1538-7305.1962.tb02419.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2999166
https://doi.org/10.1093/biomet/ass043
https://mathscinet.ams.org/mathscinet-getitem?mr=3984492
https://doi.org/10.1073/pnas.1810420116
https://mathscinet.ams.org/mathscinet-getitem?mr=3224285
https://doi.org/10.1214/14-AOS1221
https://doi.org/10.1016/j.tics.2013.09.012
https://mathscinet.ams.org/mathscinet-getitem?mr=3371002
https://doi.org/10.1093/biomet/asu074
https://mathscinet.ams.org/mathscinet-getitem?mr=3803468
https://doi.org/10.1080/01621459.2016.1251930
https://mathscinet.ams.org/mathscinet-getitem?mr=4571118
https://doi.org/10.1080/01621459.2021.1923510
https://mathscinet.ams.org/mathscinet-getitem?mr=3899759
https://mathscinet.ams.org/mathscinet-getitem?mr=4119159
https://mathscinet.ams.org/mathscinet-getitem?mr=2367824
https://doi.org/10.1093/biomet/asm018
https://doi.org/10.1214/23-AOS2296SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=4411513
https://doi.org/10.3150/21-bej1401
https://mathscinet.ams.org/mathscinet-getitem?mr=2930633
https://doi.org/10.1158/1541-7786.MCR-19-0264
https://doi.org/10.1073/pnas.1810420116
https://doi.org/10.3150/21-bej1401

	Introduction
	Related work
	Outline
	Notation

	Methodology
	StarTrek ﬁlter

	Cramér-type comparison bounds for Gaussian maxima
	Discovering hub responses in multitask regression
	Discovering hub nodes in Gaussian graphical models
	StarTrek for general graphical models
	Numerical results
	Simulations for multitask regression
	Simulations for Gaussian graphical models
	Comparison with the grid search based on the skip-down method
	Comparison with other testing procedures
	Application to gene expression data

	Discussions
	Funding
	Supplementary Material
	References

