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Motivated by applications to single-particle cryo-electron microscopy
(cryo-EM), we study several problems of function estimation in a high noise
regime, where samples are observed after random rotation and possible linear
projection of the function domain. We describe a stratification of the Fisher
information eigenvalues according to transcendence degrees of graded pieces
of the algebra of group invariants, and we relate critical points of the log-
likelihood landscape to a sequence of moment optimization problems, ex-
tending previous results for a discrete rotation group without projections.

We then compute the transcendence degrees and forms of these optimiza-
tion problems for several examples of function estimation under SO(2) and
SO(3) rotations, including a simplified model of cryo-EM as introduced by
Bandeira, Blum-Smith, Kileel, Niles-Weed, Perry and Wein. We affirmatively
resolve conjectures that third-order moments are sufficient to locally identify
a generic signal up to its rotational orbit in these examples.

For low-dimensional approximations of the electric potential maps of two
small protein molecules, we empirically verify that the noise scalings of the
Fisher information eigenvalues conform with our theoretical predictions over
a range of SNR, in a model of SO(3) rotations without projections.

1. Introduction. We study several problems of function estimation in low dimensions,
where the function is observed under random and unknown rotations of its domain. Let
f : X →R be a function on the unit circle X = S1, the unit sphere X = S2 or X = R

3.
Let G be a rotation group acting on X . We seek to estimate f from samples of the form

fg(x) + white noise,

where each sample consists of the function fg(x) = f (g−1 · x) rotated by a uniformly ran-
dom element g ∈ G and observed with continuous Gaussian white noise on X . Equivalently,
choosing an orthonormal basis for L2(X ), the basis coefficients of fg are observed with i.i.d.
Gaussian noise, having some entrywise noise variance σ 2 > 0. We focus on a regime of this
problem where each sample has high noise σ 2 � ‖f ‖2

L2
, and the information from many ro-

tated samples must be combined to obtain an accurate estimate of f . We study also a variant
of this model where samples are observed under an additional linear projection.

Our primary motivation is a formulation of this problem that models molecular reconstruc-
tion in single-particle cryo-electron microscopy (cryo-EM) [13, 16, 21]. In this application,
f : R3 → R is the electric potential of an unknown molecular structure. Two-dimensional
projections of this potential are measured for many samples of the molecule, each in a dif-
ferent and unknown rotated orientation, typically with a high level of measurement noise.
The molecular structure is determined by estimating this electric potential f from the ro-
tated and projected samples, and then fitting an atomic model [6, 41]. A brief introduction to
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cryo-EM and a discussion of its relation to the problems studied in this work are presented in
Appendix F [14].

Among computational procedures for solving this reconstruction problem, regular-
ized versions of maximum likelihood estimation (MLE), as implemented via expectation-
maximization or stochastic gradient descent, are commonly used [35, 37, 38, 40]. However,
many theoretical properties of the optimization landscape and reconstruction errors of these
procedures are not fully understood in cryo-EM applications [6].

In this work, we study the Fisher information matrix and log-likelihood function landscape
associated with maximum likelihood estimation for a basic model of the cryo-EM reconstruc-
tion problem, as well as several simpler statistical models with qualitative similarities. These
models may be of independent interest while building up to the complexity of cryo-EM:

• (Continuous multireference alignment, Section 3.) Estimating a function on the unit circle
X = S1, under SO(2) rotations of the circle [5, 9].

• (Spherical registration, Section 4.1.) Estimating a function on the unit sphere X = S2,
under SO(3) rotations of the sphere [4], Section 4.5.

• (Unprojected cryo-EM, Section 4.2.) Estimating a function on R
3 under SO(3) rotations

about the origin, without tomographic projection [4], Section 4.7. Such a problem arises in
a related application of cryo-ET, discussed in Appendix F.1.

• (Cryo-EM, Section 4.3.) Estimating a function on R
3 under SO(3) rotations about the

origin, with tomographic projection [4], Section 4.7.

1.1. Group orbit recovery and related literature. Classical literature on function estima-
tion has explored the rich interplay between the complexity of infinite-dimensional function
classes, the statistical difficulty of estimation and the role of regularization [22, 24, 42]. We
restrict attention instead to a finite-dimensional function space for each of the above models,
with the goal of understanding connections between estimation in these models having latent
rotations and the algebraic structure of the underlying rotational group.

Choosing a d-dimensional function basis, each of the above function estimation problems
may be restated as an orbit recovery problem [3, 4] of estimating the coefficients θ∗ ∈ R

d

of f in this basis, from noisy observations of θ∗ that are rotated by elements of a subgroup
G ⊂ O(d). This subgroup G represents the transformation of basis coefficients under rotations
of the function domain X . A body of recent literature has studied both specific and general
instances of this orbit recovery problem [2–5, 12, 15, 33, 34, 36]. When G is the group of
cyclic rotations of coordinates (a.k.a. discrete multireference alignment), [33] first proved that
the optimal squared error for estimating generic signals θ∗ ∈ R

d in high noise is significantly
larger than that in the model without latent rotations, scaling as σ 6 rather than as just the
noise variance σ 2. This analysis was extended to nongeneric signals for continuous multi-
reference alignment in [5] and to general group actions in [3, 4]. Many authors have studied
further extensions of the multireference alignment and cryo-EM models, including models
with nonuniform distributions of group elements [1, 39], with a dihedral group [8], with
down-sampled observations [10] and with sparse signals [11, 18].

Our current work is inspired, in particular, by results of [4], which placed cryo-EM and
other examples of function estimation in this context, and connected statistical properties of
method-of-moments estimators in these problems to properties of the invariant algebra of
the group action. Further connections between the algebraic structure of invariants and the
geometry of the log-likelihood function landscape were developed in [15, 26]. As a central
technical ingredient, these papers derived a series expansion of the log-likelihood function in
powers of σ−1, in [15] for orbit recovery models without linear projection, and in [26] for
more general Gaussian mixture models that include the models we study in this work. We
discuss below several relevant results of [4, 15, 26] in further detail.
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1.2. Overview of results. In Section 2, we introduce the general orbit recovery model
both with and without a linear projection, and describe results that connect geometric prop-
erties of the log-likelihood function to properties of the invariant algebra of the group action.
In Sections 3 and 4, we apply this connection to study the preceding problems of function es-
timation, including continuous multireference alignment (MRA) and cryo-EM. In Section 5,
we report results of numerical simulations for estimating the electric potential functions of
two small protein molecules in an unprojected cryo-EM model, which corroborate predic-
tions of our theory for the spectra of the Fisher information matrices.

Here, we provide a brief overview of these results in the context of related literature.

Fisher information and log-likelihood function landscape. For general orbit recovery
problems with θ∗ ∈ R

d , in a high-noise regime σ 2 � ‖θ∗‖2, results of [15, 26] demonstrated
that it is informative to study properties of the (negative) population log-likelihood function
R(θ) via a series expansion in powers of σ−1 of the form

(1.1) R(θ) =
∞∑

k=0

1

σ 2k
Rk(θ).

Each term Rk(θ) is a G-invariant polynomial function of θ , which locally around θ∗, may
depend on a number of “degrees-of-freedom” of θ (indicated by the rank of ∇2Rk(θ∗)) that
may be strictly smaller than the total dimension d . For a model with discrete group G and no
linear projection, [15] showed this number exactly coincides with trdegRG≤k , the transcen-
dence degree of the invariant subalgebra generated by all G-invariant polynomials of degree
≤ k. This implies a graded structure of the Fisher information matrix I (θ∗) for generic signal
vectors θ∗, where eigenvalues corresponding to different degrees-of-freedom have different
scalings with σ−1. Furthermore, local minimizers of R(θ) have a certain correspondence
with successive local minimizers of each function Rk(θ).

In this work, we first extend these results to a model where G ⊆ O(d) may be continuous,
and samples may be observed with an additional linear projection. This extension encom-
passes a basic formulation of the molecular reconstruction problem in cryo-EM. The main
result of [26] implies that a series expansion analogous to (1.1) continues to hold for the
population log-likelihood function R(θ) in such a model. However, as anticipated from the
structure of the expansion in [26], the algebraic properties of its terms differ from the unpro-
jected setting studied in [15]. We show here that the number of degrees-of-freedom associated
to each function Rk(θ) coincides with the transcendence degree of a possibly reduced sub-
algebra generated by order-k moments of the projected signal (Theorem 2.7). In addition,
a version of the correspondence between local minimizers of R(θ) and of successive local
minimizers of Rk(θ) remains true over a bounded domain of Rd (Theorems 2.11 and 2.13).
When the group G is continuous, we extend the arguments of [15] to address technical issues
arising from the Fisher information matrix I (θ∗) being singular, and the locus of minimizers
of R(θ) being a manifold of positive rather than zero dimension.

Multireference alignment and cryo-EM. These general results enable our study of max-
imum likelihood procedures in specific function estimation problems, the main focus of our
work. In high-noise regimes of these problems, statistical properties of the MLE are related
to the structures of the subalgebras RG≤k and to their transcendence degrees. In particular, the
squared-error risk of the MLE is dictated by the smallest nonzero eigenvalue of the Fisher
information matrix I (θ∗), and scales as σ 2K for generic signals θ∗ where K is the smallest in-
teger for which trdegRG≤K equals trdegRG, the transcendence degree of the full G-invariant
algebra. This connects with a central result of [4], which showed that K is the lowest-order
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moment needed to identify θ∗ up to a finite list of group orbits, and that σ 2K is also the scal-
ing of the sample complexity required for estimating θ∗ up to such a finite list. We apply our
general results to determine the explicit value of K in several function estimation examples.

For our model of continuous MRA on S1, we verify that K = 3 (Theorem 3.1). This is ex-
pected from known results about estimation using third-order moments in similar observation
models for both discrete and continuous MRA in [5, 33]. We also show that the optimization
landscape of R(θ) may possess spurious local minimizers even for generic Fourier coefficient
vectors θ∗ ∈ R

d (Theorem 3.4) when the number of Fourier basis functions d exceeds a small
constant. This statement is analogous to results shown for discrete MRA in [15], although
our construction here in the continuous setting has a different structure.

For spherical registration and projected and unprojected cryo-EM under an SO(3)-action,
a primary contribution of our work is proving also that trdegRG≤K = trdegRG for K = 3. An
iterative algorithm for estimating θ∗ from third-order moments in cryo-EM was first proposed
by Kam in [25], which implicitly assumed that these moments are sufficient to identify θ∗
(up to symmetries such as chirality). Formal conjectures that K = 3 were stated in [4] and
verified numerically for small values of the basis dimension d in exact-precision arithmetic.
We prove that K = 3 for d exceeding small absolute constants (Theorems 4.1, 4.6 and 4.9),
hence resolving several of these conjectures that third-order moments are sufficient to locally
identify the orbit of θ∗.

Writing the terms Rk(θ) of (1.1) as

Rk(θ) = sk(θ) + qk(θ),

where sk(θ) depends on the additional degrees-of-freedom of θ beyond those which define
Rk−1(θ), our proofs of K = 3 leverage a connection between trdegRG≤k and the generic
ranks of the Hessians ∇2sk(θ) (Lemma 2.8). We show that ∇2s3(θ) is generically of full rank
by using an inductive “frequency marching” argument on the dimension d and explicitly
analyzing rank(∇2s3(θ)) for special choices of θ ∈ R

d . As a byproduct of these analyses, we
derive explicit forms for s3(θ), which define optimization problems analogous to bispectrum
inversion problems studied in MRA models [7].

In an unprojected spherical registration model over S2, recent independent work of [29]
provides a more quantitative version of this inductive frequency marching argument. The
result of [29], Lemma 5.6, implies that for some absolute constant d and any dimension
d > d , the last d − d columns of ∇2s3(θ) are of full rank for generic θ ∈ R

d , and [29]
obtained a quantitative lower bound on the smallest singular value in a smoothed analysis
over θ . Our proofs show versions of this statement that are less quantitative but more explicit
about the value of d , holding down to d small enough where the full-rank condition for
the entire matrix ∇2s3(θ) may be explicitly checked. We carry this out for both spherical
registration and cryo-EM, and in particular, our inductive argument in the projected cryo-EM
model is more complex than in the unprojected models and uses different ideas.

Simulations of the Fisher information for small proteins. To empirically investigate the
predictions of this body of theory in a cryo-EM example, we computed in simulation the
observed Fisher information matrices for the electric potential functions of two small pro-
tein molecules—a rotavirus VP6 trimer and hemoglobin—in a model without tomographic
projection.

We developed and employed a procedure of adaptively constructing a radial function basis
in the Fourier domain (Appendix E) so as to reduce the dimension of the function space
needed to approximate the true potential. Applying this construction, we obtained function
bases of dimension d ≈ 400 that capture the coarse trimer structure of the rotavirus example,
and of dimension d ≈ 4000 that capture the secondary structures of both proteins up to spatial
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resolutions of 7–8 Angstroms. At these dimensions and spatial resolutions, the theoretically
predicted σ−2, σ−4 and σ−6 scalings of the Fisher information eigenvalues were apparent
in simulation for sufficiently high noise. We observe deviations from these predictions at
lower levels of noise, and also in higher-dimensional function spaces that may be necessary
to approximate the potentials to better spatial resolutions.

Notation. We use the conventions 〈u, v〉 = ∑
i uivi for the complex inner product, ‖u‖

for the (real or complex) �2-norm, ‖M‖ for the �2 → �2 operator norm for matrices and
i = √−1 for the imaginary unit.

For a measure space (X,μ), L2(X,C) is the L2-space of functions f : X → C with inner-
product

∫
X f (x)g(x)μ(dx). We write L2(X) = L2(X,R) for the analogous L2-space of real-

valued functions. S1 and S2 are the unit circle and unit sphere.
For differentiable f :Rd → R

k , df (x) ∈ R
k×d is its derivative or Jacobian at x. For twice-

differentiable f : Rd → R, ∇f (x) = df (x)� ∈ R
d is its gradient, and ∇2f (x) ∈ R

d×d is its
Hessian. We will write dx , ∇x , ∇2

x to clarify that the variable of differentiation is x. For a
subset of coordinates y, we write ∇yf (x) and ∇2

yf (x) as the components of this gradient
and Hessian in y.

For a smooth manifold M and twice-differentiable f : M → R, we write ∇f (x)|M and
∇2f (x)|M for its gradient and Hessian evaluated in any choice of local chart at x ∈ M. We
will often not make the choice of chart explicit when referring to properties of ∇f (x)|M and
∇2f (x)|M that do not depend on the specific choice of chart.

2. The general orbit recovery model in high noise.

2.1. Model and likelihood. Let θ∗ ∈ R
d be an unknown signal of interest. Let G ⊆ O(d)

be a known compact subgroup of the orthogonal group of dimension d . We denote by � the
unique Haar probability measure on G, satisfying

�(G) = 1, �(g · S) = �(S · g) = �(S),

for any g ∈ G and Borel measurable subset S ⊆ G. In the unprojected orbit recovery model,
we observe n noisy and rotated samples of θ∗, given by

(2.1) Yi = gi · θ∗ + σεi ∈ R
d, i = 1, . . . , n,

where g1, . . . , gn
i.i.d.∼ � are Haar-uniform random elements of G, and ε1, . . . , εn

i.i.d.∼
N (0, Idd×d) are Gaussian noise vectors independent of g1, . . . , gn. The signal θ∗ is iden-
tifiable only up to an arbitrary rotation in G, that is, it is identifiable up to its orbit

Oθ∗ = {g · θ∗ : g ∈ G}.
Our goal is to estimate Oθ∗ from the observed rotated samples Y1, . . . , Yn.

In the projected orbit recovery model, we consider an additional known linear map � :
R

d → R
d̃ . (Note that � may not necessarily be an orthogonal projection; our terminology is

borrowed from the example of tomographic projection in cryo-EM.) We observe n samples

(2.2) Yi = �(gi · θ∗) + σεi ∈ R
d̃ , i = 1, . . . , n,

where g1, . . . , gn
i.i.d.∼ � as before, and ε1, . . . , εn

i.i.d.∼ N (0, Id
d̃×d̃

) are Gaussian noise vectors

in the projected dimension d̃ . Our goal is again to estimate Oθ∗ from Y1, . . . , Yn.
The unprojected and projected orbit recovery models are both Gaussian mixture models,

where the distribution of mixture centers is the law of g ·θ∗ ∈ R
d or of �(g ·θ∗) ∈ R

d̃ induced
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by the uniform law g ∼ � over G. This mixture distribution may be continuous if G ⊆ O(d)

is a continuous subgroup. In both models, we denote the negative sample log-likelihood as

Rn(θ) = −1

n

n∑
i=1

logpθ(Yi),

where pθ(Yi) is the Gaussian mixture density for Yi , marginalizing over the unknown rotation
gi ∼ �. This density is given in the projected setting by

(2.3) pθ(y) =
∫

G

1

(2πσ 2)d̃/2
exp

(
−‖y − �(g · θ)‖2

2σ 2

)
d�(g),

and in the unprojected setting by the same expression with � = Id and d̃ = d . The maximum
likelihood estimator (MLE) of θ∗ is θ̂n = arg minθ∈Rd Rn(θ). Since Rn satisfies the invariance
Rn(θ) = Rn(g · θ) for all g ∈ G, the MLE is also only defined up to its orbit O

θ̂n
.

REMARK 2.1 (Identifiability of the orbit). The parameter θ∗ is identifiable up to the
distribution of the mixture centers g · θ∗ or �(g · θ∗). In the unprojected model, the equality

in law g · θ L= g · θ ′ over g ∼ � holds if and only if Oθ = Oθ ′ , so θ∗ is identifiable exactly up
to its orbit.

In projected models, there may be further nonidentifiability. For instance, under the tomo-

graphic projection arising in cryo-EM, we have �(g · θ)
L= �(g · θ ′) when θ ′ represents the

mirror reflection of θ [6]. Thus, in this setting there may be two distinct orbits, which cannot
be further identified, and θ∗ is recovered only up to chirality.

In general, the number of distinct orbits with the same image under � depends on the
interaction between the structures of G and �, and can be infinite. For example, for the trivial
group G = {Id} and the projection � : Rd → R

d−k that removes the last k coordinates of θ ,
Oθ = {θ} and �(Oθ ) = �(Oθ∗) for any θ sharing the same first d − k coordinates as θ∗.

We use the equivalence notation

�(Oθ ) ≡ �(Oθ∗)

to mean that �(Oθ ) = �(Oθ∗) as subsets of Rd̃ , and in addition, �(g · θ)
L= �(g · θ∗) under

the Haar-uniform law g ∼ �. Thus, θ∗ is identifiable up to this equivalence. We will restrict
attention to projected models where
(2.4)

there are a finite number of orbits Oθ such that �(Oθ ) ≡ �(Oθ∗), for generic θ∗ ∈ R
d .

An equivalent algebraic characterization is provided in Proposition 2.6(b) below.
We denote the negative population log-likelihood function by

(2.5) R(θ) = E
[
Rn(θ)

] = −E
[
logpθ(Y )

]
,

where the expectation is taken under the true model Y ∼ pθ∗ . R(θ) depends implicitly on θ∗,
but we will omit this dependence in the notation. This population log-likelihood is minimized
at θ ∈ Oθ∗ in the unprojected model, and at {θ : �(Oθ ) ≡ �(Oθ∗)} in projected models.

2.2. Invariant polynomials and the high-noise expansion. For sufficiently high noise σ 2,
it is informative to study R(θ) via a series expansion of the Gaussian density of (2.3) in
powers of σ−1, as developed in [15, 26]. We review this expansion in this section.

Let RG be the (real) algebra of all G-invariant polynomial functions p : Rd → R. These
are the polynomials p that satisfy

p(θ) = p(g · θ) for all θ ∈ R
d and g ∈ G.
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For each integer k ≥ 0, let RG≤k be the subalgebra generated by the G-invariant polynomials
having total degree at most k. This subalgebra consists of the polynomials p ∈ RG that may
be expressed as p(θ) = q(p1(θ), . . . , pj (θ)) for some polynomial q and some p1, . . . , pj ∈
RG each having degree ≤ k (where p itself may have degree larger than k).

Examples of polynomials in RG≤k include the entries of the symmetric moment tensors

(2.6) Tk(θ) =
∫

G
(g · θ)⊗k d�(g) ∈ R

d×···×d,

where Tk(θ) is a tensor of order k. The entries of Tk(θ) are the kth-order mixed moments
of the distribution of Gaussian mixture centers g · θ . Conversely, any G-invariant polynomial
p(θ) of degree ≤ k satisfies the identity

p(θ) =
∫

G
p(g · θ)d�(g),

and decomposing p on the right-hand side into a sum of monomials shows that p(θ) is an
affine linear combination of entries of T1, . . . , Tk . Hence, RG≤k is generated by T1, . . . , Tk ,
and the subalgebra RG≤k may be intuitively understood as containing all information in the
moments of orders 1 to k for the Gaussian mixture defined by θ .

For the projected model with projection �, we define analogously the projected moment
tensors

T̃k(θ) =
∫

G
(� · g · θ)⊗k d�(g) ∈ R

d̃×···×d̃ ,

which are again the mixed moments of the Gaussian mixture centers � · g · θ . We then define

R̃G≤k = subalgebra of RG generated by the entries of T̃1, . . . , T̃k.

Since each entry of T̃k is a G-invariant polynomial of degree k, we have R̃G≤k ⊆ RG≤k , but
equality does not necessarily hold.

We denote by 〈·, ·〉 the Euclidean inner product in the vectorization of these tensor spaces
R

d×···×d and R
d̃×···×d̃ , and by ‖·‖2

HS the corresponding squared Euclidean norm. We will use
the following general form of the large-σ series expansion of the population log-likelihood
R(θ). We explain how the results of [26] yield this form in Appendix A.

THEOREM 2.2. Let G ⊆ O(d) be any compact subgroup. Fix any θ∗ ∈R
d and any integer

K ≥ 0.

(a) In the unprojected orbit recovery model, R(θ) admits an expansion

(2.7) R(θ) = C0 +
K∑

k=1

1

σ 2k

(
sk(θ) + qk(θ)

) + q(θ).

Here, C0 ∈ R, qk ∈ RG≤k−1 is a polynomial of degree at most 2k, and sk ∈RG≤k is the polyno-
mial

(2.8) sk(θ) = 1

2(k!)
∥∥Tk(θ) − Tk(θ∗)

∥∥2
HS.

The remainder q(θ) is G-invariant and satisfies, for all θ ∈ R
d with ‖θ‖ ≤ σ ,

∣∣q(θ)
∣∣ ≤ CK(1 ∨ ‖θ‖)2K+2

σ 2K+2 ,

∥∥∇q(θ)
∥∥ ≤ CK(1 ∨ ‖θ‖)2K+1

σ 2K+2 ,

∥∥∇2q(θ)
∥∥ ≤ CK(1 ∨ ‖θ‖)2K

σ 2K+2 .

(2.9)
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(b) In the projected orbit recovery model, R(θ) admits an expansion

(2.10) R(θ) = C0 +
K∑

k=1

1

σ 2k

(
s̃k(θ) + 〈

T̃k(θ),Pk(θ)
〉 + qk(θ)

) + q(θ).

Here, C0 ∈ R, qk ∈ R̃G≤k−1 is a polynomial of degree at most 2k, all entries of Pk are poly-

nomials of degree at most k belonging to R̃G≤k−1, Pk satisfies Pk(θ∗) = 0 and s̃k ∈ R̃G≤k is the
polynomial,

(2.11) s̃k(θ) = 1

2(k!)
∥∥T̃k(θ) − T̃k(θ∗)

∥∥2
HS.

The remainder q(θ) is G-invariant and satisfies (2.9) for all θ ∈ R
d with ‖θ‖ ≤ σ .

The above constants C0, CK , the coefficients of the polynomials qk(θ) and Pk(θ), and the
forms of the functions q(θ) may all depend on θ∗, G, d , d̃ and the projection �.

The exact forms of qk(θ) and Pk(θ) can be explicitly derived (see [15], Section 4.2, for
these derivations in the unprojected setting) but we will not require them in what follows.
Our arguments will only require the forms of the “leading” terms sk(θ) and s̃k(θ) defined in
(2.8) and (2.11).

2.3. Fisher information in high noise. Consider the Fisher information matrix

I (θ∗) = ∇2R(θ)|θ=θ∗ .

In this section, we characterize the eigenvalues and eigenvectors of I (θ∗) for high noise
and generic θ∗ ∈ R

d . This generalizes [15], Theorem 4.14, for the unprojected model and a
discrete group.

DEFINITION 2.3. A subset S ⊆ R
d is generic if Rd \ S is contained in the zero set of

some nonzero analytic function ψ :Rd →R
k , for some k ≥ 1.

If S ⊆ R
d is generic, then R

d \S has zero Lebesgue measure [32]. We say that a statement
holds for generic θ∗ ∈R

d if it holds for all θ∗ in some generic subset of Rd .
Our characterization of I (θ∗) is in terms of the number of distinct “degrees-of-freedom”

captured by the moments of the Gaussian mixture model up to each order k. This is formal-
ized by the notion of the transcendence degrees of the subalgebras RG≤k and R̃G≤k .

DEFINITION 2.4. Polynomials p1, . . . , pk : Rd → R are algebraically independent
(over R) if there is no nonzero polynomial q : Rk → R such that q(p1(θ), . . . , pk(θ)) is
identically 0 for all θ ∈R

d .
For any A ⊆ RG, its transcendence degree trdeg(A) is the maximum cardinality of any

algebraically independent subset A ⊆ A. Any maximal such subset A ⊆ A is a transcendence
basis for A.

Geometrically, by the Jacobian criterion for algebraic independence (cf. Lemma A.2), the
transcendence degree coincides with the maximum number of linearly independent gradient
vectors of the polynomials in A, evaluated at any generic point θ ∈ R

d .
As a simple example, if G is the symmetric group of all permutations of d coordinates,

then RG is the algebra of all symmetric polynomials in d variables. Each subalgebra RG≤k for
k ≤ d has transcendence degree exactly equal to k, and one choice of a transcendence basis
for RG≤k is the set of symmetric power sums {θj

1 + · · · + θ
j
d : j = 1, . . . , k}.

For the full invariant algebra RG, if G ⊂ O(d) is any discrete subgroup as studied in [15],
then trdeg(RG) = d . More generally, we have the following.
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PROPOSITION 2.5. Let G be a compact subgroup of O(d). Then

trdeg
(
RG) = d − max

θ∈Rd
dim(Oθ ),

where dim(Oθ ) is the dimension of the orbit Oθ as a submanifold of Rd . Here, the maximum
orbit dimension maxθ∈Rd dim(Oθ ) is also the orbit dimension for generic points θ ∈ R

d .

We will mostly consider group actions where this generic orbit dimension equals the group
dimension dim(G), so that trdeg(RG) = d −dim(G). In particular, for the function estimation
examples to be discussed in Sections 3 and 4, we will have trdeg(RG) = d − 1 for an action
of G that is isomorphic to SO(2), and trdeg(RG) = d −3 for an action of G that is isomorphic
to SO(3).

It was shown in [4], Theorem 3.15, for generic signals θ∗ ∈ R
d , that the values of the

moment tensors T1(θ∗), . . . , Tk(θ∗) are sufficient to identify θ∗ up to a finite list of possible
orbits if and only if trdeg(RG≤k) = trdeg(RG). More informally, the order of moments needed
to “locally” identify the orbit of θ∗ coincides with the order of moments needed to capture
all trdeg(RG) degrees-of-freedom of the invariant algebra. Throughout this paper, we will
denote this number as K in the unprojected model and as K̃ in the projected model, which
are well defined by the following proposition. We defer proofs of Propositions 2.5 and 2.6 to
Appendix A.

PROPOSITION 2.6. For any compact subgroup G ⊆ O(d),

(a) there is a smallest integer K < ∞ for which trdeg(RG≤K) = trdeg(RG).
(b) � satisfies (2.4) if and only if there is a smallest integer K̃ < ∞ for which

trdeg(R̃G
≤K̃

) = trdeg(RG).

In the unprojected model, let us now denote

(2.12) d0 = max
θ∈Rd

dim(Oθ ), dk = trdegRG≤k − trdegRG≤k−1 for k = 1, . . . ,K

to decompose the total dimension of θ∗ as d = d0 + d1 + · · · + dK . In the projected model,
assuming the condition (2.4), let us similarly denote

(2.13) d̃0 = max
θ∈Rd

dim(Oθ ), d̃k = trdeg R̃G≤k − trdeg R̃G≤k−1 for k = 1, . . . , K̃

to decompose the total dimension as d = d̃0 + d̃1 + · · · + d̃K̃ . The following result expresses
the spectral properties of the Fisher information matrix in terms of these decompositions.

THEOREM 2.7. For generic θ∗ ∈ R
d , some (θ∗,G,�)-dependent constants σ0,C, c > 0

and function ε(σ ) satisfying ε(σ ) → 0 as σ → ∞, and all σ > σ0:

(a) In the unprojected orbit recovery model:

1. The Fisher information matrix I (θ∗) has rank exactly trdeg(RG) = d −d0. Defin-
ing K by Proposition 2.6(a), for each k = 1, . . . ,K ,

exactly dk eigenvalues of I (θ∗) belong to
[
cσ−2k,Cσ−2k].

2. For each k = 1, . . . ,K , let Vk be the subspace spanned by the leading d1 + · · · +
dk eigenvectors of I (θ∗), and let Wk be the subspace spanned by the gradient vectors
{∇p(θ∗) : p ∈ RG≤k}. Then the sin-theta distance between Vk and Wk is bounded as∥∥sin
(Vk,Wk)

∥∥ < ε(σ).
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3. For any k = 1, . . . ,K and any polynomial p ∈ RG≤k , the gradient ∇p(θ∗) ∈ R
d is

orthogonal to the null space of I (θ∗) and satisfies

∇p(θ∗)�I (θ∗)†∇p(θ∗) ≤ Cσ 2k,

where I (θ∗)† is the Moore–Penrose pseudo-inverse.

(b) In the projected orbit recovery model satisfying condition (2.4), the same statements
hold with RG≤k , K and dk replaced by R̃G≤k , K̃ and d̃k , where K̃ is defined by Propo-
sition 2.6(b).

REMARK. Theorem 2.7(a1) states that I (θ∗) has eigenvalues on differing scales of σ−2

in high noise, with dk such eigenvalues scaling as σ−2k , and d0 = dim(Oθ∗) eigenvalues
of 0 representing the nonidentifiable degrees-of-freedom tangent to Oθ∗ . Thus there are
dk degrees-of-freedom in θ∗ that are estimated with asymptotic variance O(σ 2k/n) by the
MLE. The largest such variance is O(σ 2K/n), which is in accordance with results about list-
recovery of generic signals in [4] and with the σ 6 sample complexity established in [33] for
multireference alignment, where K = 3.

REMARK. Theorem 2.7(a2) describes also the associated spaces of eigenvectors of
I (θ∗), where the eigenspaces corresponding to eigenvalues at scales σ−2, . . . , σ−2k coin-
cide approximately with the span of the gradients of G-invariant polynomials up to degree
k. Theorem 2.7(a3) then implies that the functional p(θ∗) for any p ∈ RG≤k is estimated by

the plug-in MLE p(θ̂n) with asymptotic variance O(σ 2k/n). Similar statements hold for pro-
jected models by Theorem 2.7(b).

The following result connects the above sequences of transcendence degrees and gradients
{∇p(θ∗) : p ∈ RG≤k} to the terms sk(θ) and s̃k(θ) in the series expansions of R(θ) in Theo-
rem 2.2. We will use this to deduce the values of these transcendence degrees for the function
estimation examples of Sections 3 and 4.

LEMMA 2.8.

(a) In the unprojected orbit recovery model, let sk(θ) be defined by (2.8). Then each
matrix ∇2sk(θ)|θ=θ∗ is positive semidefinite. For any k ≥ 1, at generic θ∗ ∈ R

d ,

(2.14) trdeg
(
RG≤k

) = rank
(∇2s1(θ) + · · · + ∇2sk(θ)|θ=θ∗

)
,

and the span of {∇p(θ∗) : p ∈ RG≤k} is the column span of ∇2s1(θ) + · · · + ∇2sk(θ)|θ=θ∗ .
(b) In the projected orbit recovery model, the same holds for R̃G≤k and s̃k(θ) as defined

by (2.11).

REMARK 2.9. We restrict attention to generic signals θ∗ ∈ R
d in this work. The specific

condition for θ∗ that we use in Theorem 2.7 and in Theorems 2.11 and 2.13 to follow is
that the gradient vectors {∇p(θ∗) : p ∈ RG≤K} or {∇p(θ∗) : p ∈ R̃G

≤K̃
} span a subspace of

dimension trdeg(RG) or trdeg(R̃G), respectively.
Different behavior may be observed for nongeneric signals: For G = {+ Id,− Id}, which

has been studied in [43, 44], the Fisher information I (θ∗) is singular at θ∗ = 0 (even though
d0 = 0, as the group is discrete). This leads to a n−1/4 rate of estimation error near θ∗ = 0,
instead of the n−1/2 parametric rate. This n−1/4 rate holds more generally for any discrete
group G at signals θ∗ whose orbit points are not pairwise distinct, which are precisely those
signals where the Fisher information I (θ∗) is singular [12].
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A different distinction between generic and nongeneric signals was highlighted in [33]
when G is the group of cyclic rotations of coordinates in R

d . There, orbits of generic signals
are uniquely identified by moments up to the order K = 3, but identification of nongeneric
signals having zero power in certain Fourier frequencies may require moments up to the
order d − 1. For such nongeneric signals, we expect I (θ∗) to be nonsingular and the MLE
to attain the parametric rate, but with asymptotic variance scaling as σ 2(d−1)/n rather than
σ 2K/n = σ 6/n. In a related model of continuous MRA, this asymptotic scaling is implied
by the results of [5].

2.4. Global likelihood landscape. In this section, we establish correspondences between
global and local minimizers of the population negative log-likelihood R(θ) with those of
a sequence of moment optimization problems. These results are similar to results of [15],
Sections 4.3 and 4.5, for discrete groups G, with a distinction that when G is continuous,
these minimizers are not isolated points but rather manifolds of positive dimension.

We recall the following structural property for smooth nonconvex optimization landscapes,
under which convergence to the global optimum from a random initialization is guaranteed
for various descent-based optimization algorithms [17, 23, 28].

DEFINITION 2.10. The problem of minimizing a twice-continuously differentiable func-
tion f : V → R over a smooth manifold V is globally benign if each point x ∈ V where
∇f (x)|V = 0 is either a global minimizer of f over V , or has a direction of strictly negative
curvature, λmin(∇2f (x)|V) < 0.

Here, ∇f (x)|V and ∇2f (x)|V denote the gradient and Hessian of f on V , which may be
taken in any choice of a smooth local chart around x ∈ V .

Minimizing R(θ) in high noise may be viewed as successively solving a sequence of mo-
ment optimizations defined by the terms of its expansion in Theorem 2.2. To ease notation,
let us collect the vectorized moment tensors up to order k as

Mk(θ) = vec
(
T1(θ), . . . , Tk(θ)

) ∈ R
d+d2+···+dk

,(2.15)

M̃k(θ) = vec
(
T̃1(θ), . . . , T̃k(θ)

) ∈ R
d̃+d̃2+···+d̃k

.(2.16)

Fixing the true signal θ∗ ∈ R
d , we define the moment varieties

Vk(θ∗) = {
θ ∈ R

d : Mk(θ) = Mk(θ∗)
}
, V0(θ∗) = R

d,(2.17)

Ṽk(θ∗) = {
θ ∈ R

d : M̃k(θ) = M̃k(θ∗)
}
, Ṽ0(θ∗) = R

d .(2.18)

These are the points θ ∈ R
d for which the mixed moments of the Gaussian mixture model

defined by θ match those of the true signal θ∗ up to order k.
We state a general result on the optimization landscape, assuming that the Jacobian ma-

trices dMk and dM̃k have constant rank over Vk(θ∗) and Ṽk(θ∗), so that Vk(θ∗) and Ṽk(θ∗)
are smooth manifolds. Then, recalling sk(θ) and s̃k(θ) from (2.8) and (2.11), we consider the
optimization problem

(2.19) minimize sk(θ) over θ ∈ Vk−1(θ∗)

in the unprojected setting, and

(2.20) minimize s̃k(θ) over θ ∈ Ṽk−1(θ∗)

in the projected setting. These are polynomial optimization problems in θ that are defined
independently of the noise level σ 2. The following theorem guarantees that the landscape
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of R(θ) is globally benign in high noise, as long as the landscape of each problem (2.19)
or (2.20) is globally benign, and the final moment variety VK(θ∗) or ṼK̃ (θ∗) contains only
the points which globally minimizer R(θ). We illustrate part (a) of this result using a simple
example of orthogonal Procrustes alignment at the conclusion of this section.

THEOREM 2.11. For generic θ∗ ∈ R
d :

(a) In the unprojected model, define K by Proposition 2.6(a). Suppose that VK(θ∗) =
Oθ∗ . Suppose also that for each k = 1, . . . ,K , the derivative matrix dMk(θ) has constant
rank over Vk(θ∗), and the minimization of sk(θ) over Vk−1(θ∗) is globally benign. Then for
some σ0 ≡ σ0(θ∗,G) and any σ > σ0, the minimization of R(θ) is also globally benign.

(b) In the projected model satisfying (2.4), define K̃ by Proposition 2.6(b). Suppose that
ṼK̃ (θ∗) = {θ : �(Oθ ) ≡ �(Oθ∗)}. Suppose also that for each k = 1, . . . , K̃ , the derivative
matrix dM̃k(θ) has constant rank over Ṽk(θ∗), and the minimization of s̃k(θ) over Ṽk−1(θ∗)
is globally benign. Then for any constant B > 0, some σ0 ≡ σ0(θ∗,G,�,B), and any σ > σ0,
the minimization of R(θ) is globally benign over the domain {θ ∈ R

d : ‖θ‖ < B(‖θ∗‖ + σ)}.

In Theorem 2.11(b), we have restricted to a ball {θ ∈ R
d : ‖θ‖ < B(‖θ∗‖ + σ)}, as the

landscape of R(θ) outside this ball may depend on the specific interaction between G and �.
In practice, such a bound for ‖θ‖ may be known a priori, so that optimization may indeed be
restricted to this ball. (In unprojected models, we show that R(θ) cannot have critical points
outside this ball for any group G, allowing us to remove such a restriction in part (a).)

Whether the conditions of Theorem 2.11 hold depends on the specific model, and both
positive and negative examples for discrete groups were exhibited in [15]. In models where
they do not hold, R(θ) may in fact have spurious local minimizers in high noise, and The-
orem 2.2 can be used to further establish a correspondence between the local minimizers of
R(θ) and those of the above moment optimizations. We formalize one such result—not fully
general, but sufficient to study many examples of interest—as follows.

DEFINITION 2.12. Suppose VK−1(θ∗) is a smooth manifold. A critical point θ of
sK(θ)|VK−1(θ∗) is nondegenerate up to orbit if Oθ is a smooth manifold of dimension d0
in a local neighborhood of θ , and

rank
(∇2sK(θ)|VK−1(θ∗)

) = dim
(
VK−1(θ∗)

) − d0.

Note that ∇2sK(θ)|VK−1(θ∗) is a symmetric matrix of dimension dim(VK−1(θ∗)). For any
critical point θ of sK |VK−1(θ∗), the null space of this Hessian must contain the tangent space
to Oθ , and Definition 2.12 ensures that this Hessian has no further rank degeneracy.

THEOREM 2.13. For generic θ∗ ∈ R
d :

(a) In the unprojected model, suppose that dMk(θ) has constant rank over Vk(θ∗), and the
minimization of sk(θ) over Vk−1(θ∗) is globally benign for each k = 1, . . . ,K − 1. Then
for some (θ∗,G)-dependent constant σ0 > 0 and function ε(σ ) satisfying ε(σ ) → 0 as
σ → ∞, and for all σ > σ0:

1. Let θ+ be any local minimizer of sK(θ) over VK−1(θ∗) that is nondegenerate up
to orbit. Then there exists a local minimizer θ ′+ of R(θ) where ‖θ+ − θ ′+‖ < ε(σ).

2. Conversely, suppose that all critical points of sK(θ) over VK−1(θ∗) are nonde-
generate up to orbit. Let θ+ be any local minimizer of R(θ). Then there exists a local
minimizer θ ′+ of sK(θ) over VK−1(θ∗) where ‖θ+ − θ ′+‖ < ε(σ).
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(b) In the projected model satisfying (2.4), statement (1.) holds with K , Mk , Vk and sk re-
placed by K̃ , M̃k , Ṽk and s̃k , where σ0 and ε(σ ) may depend also on the projection �.
Statement (2) holds for local minimizers θ+ of R(θ) satisfying ‖θ+‖ < B(‖θ∗‖ + σ) for
any constant B > 0, where σ0 and ε(σ ) may depend also on � and B .

The guarantees of Theorems 2.11 and 2.13 may be translated to the sample log-likelihood
Rn(θ) by establishing concentration of ∇Rn(θ) and ∇2Rn(θ) around ∇R(θ) and ∇2R(θ)

[31]. For orbit recovery models in the high-noise regime, we believe that it may be possible
to obtain sharp concentration bounds by deriving a series expansion also of the empirical
log-likelihood function Rn(θ) in powers of σ−1, and analyzing the concentration term-by-
term. Some results of this form were obtained for models without linear projection in [15],
Lemma 4.11 and Corollary 4.18, and we leave the analysis of the empirical log-likelihood
function and landscape for more general models as an open problem for future work.

EXAMPLE 2.14 (Landscape of orthogonal Procrustes alignment). We illustrate Theo-
rems 2.11 and 2.13 using a simple example of orthogonal Procrustes alignment [19, 20,
34].

In this problem, samples of an object consisting of m ≥ 3 atoms in R
3 are observed under

random orthogonal rotations and reflections. We represent the object as θ∗ ∈ R
3×m ∼= R

d

where d = 3m. The rotational group is G = O(3)⊗ Idm ⊂ O(d), where a common orthogonal
matrix in three dimensions is applied to all m atoms. Assuming the generic condition that
rank(θ∗) = 3, that is, these m atoms do not lie on a common 2-dimensional subspace, we
study the likelihood landscape for estimating θ∗ from many independently rotated samples.

In this model, we check in Appendix B that K = 2, (d0, d1, d2) = (3,0, d − 3), V1(θ∗) =
R

d , and V2(θ∗) = {g · θ∗ : g ∈ G} = Oθ∗ . The first two moment tensors T1(θ) and T2(θ) are
given by T1(θ) = 0 and T2(θ) = 1

3 Id3×3 ⊗(θ�θ) ∈ R
d×d , and the terms s1(θ) and s2(θ) in

(2.7) are given by s1(θ) = 0 and

s2(θ) = 1

12

∥∥θ�θ − θ�∗ θ∗
∥∥2

HS,

where θ�θ, θ�∗ θ∗ ∈ R
m×m. The minimization of s1(θ) over V0(θ∗) = R

d is trivially globally
benign. We show in Appendix B that dM2(θ) has constant rank over V2(θ∗), and that the min-
imization of s2(θ) over V1(θ∗) = R

d is also globally benign, with minimizers given exactly
by V2(θ∗) = Oθ∗ . Thus, Theorem 2.11(a) implies that the landscape of R(θ) is also globally
benign for sufficiently high noise, and the only local minimizers of R(θ) are rotations and
reflections of the true object.

A variation of this problem is the rotation-only variant, where we observe 3-dimensional
rotations (but not reflections) of the object. Then the rotational group is instead G = SO(3)⊗
Idm ⊂ O(d). We show in Appendix B that still K = 2, (d0, d1, d2) = (3,0, d − 3), and the
forms of T1(θ), T2(θ), V1(θ∗), V2(θ∗), s1(θ), s2(θ) are identical to the above (even though
the full log-likelihood R(θ) is not). Thus the minimization of s2(θ) over V1(θ∗) = R

d is still
globally benign, with minimizers V2(θ∗). However, this set of minimizers is now written as

V2(θ∗) = {g · θ∗ : g ∈ G} ∪ {−g · θ∗ : g ∈ G} =Oθ∗ ∪O−θ∗

constituting two distinct orbits under this more restrictive group action. The first orbit Oθ∗
are the global minimizers of R(θ). The second orbit corresponds to the mirror reflection −θ∗,
which does not globally minimize R(θ), but the difference between R(θ∗) and R(−θ∗) lies in
the remainder term of the expansion (2.7). Theorem 2.13(a) shows that for high noise, R(θ)

will have spurious local minimizers near (but not exactly equal to) this second orbit O−θ∗ .
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3. Continuous multireference alignment. We now specialize the preceding general re-
sults to the problem of estimating a periodic function on the circle, observed under SO(2)

rotations of its domain. We will refer to this as the continuous MRA model. This provides a
simpler 1-dimensional analogue of the 2-dimensional and 3-dimensional problems that we
will discuss in Section 4.

To describe the model, let f : S1 →R be a periodic function on the unit circle S1 ∼= [0,1).
We identify the rotational group SO(2) also with [0,1), and represent the rotation of f by an
element g ∈ SO(2) ∼= [0,1) as fg(t) = f (t + g mod 1). Each sample is an observation of the
rotated function fg with additive white noise,

fg(t)dt + σ dW(t),

where g ∼ Unif([0,1)) and dW(t) denotes a standard Gaussian white noise process on S1.
This may be understood as observing a realization of the Gaussian process {F(h)}h∈L2(S1) =
{∫ h(t)[fg(t)dt + σ dW(t)]}h∈L2(S1) with mean and covariance functions

(3.1) E
[
F(h)

] =
∫ 1

0
h(t)fg(t)dt, Cov

[
F(h1),F (h2)

] = σ 2
∫ 1

0
h1(t)h2(t)dt,

or equivalently as observing all coefficients of fg in a complete orthonormal basis {hj (t)}∞j=1

of L2(S1) with independent N (0, σ 2) noise for each basis coefficient.
We consider the real Fourier basis on S1, given by

(3.2) h0(t) = 1, hl1(t) = √
2 cos 2πlt, hl2(t) = √

2 sin 2πlt for l = 1,2,3, . . . .

We then restrict our model to the finite-dimensional space of functions f : S1 →R that have
finite bandlimit L ≥ 1 in this basis, that is, f admits a representation

(3.3) f (t) = θ(0)h0(t) +
L∑

l=1

θ
(l)
1 hl1(t) +

L∑
l=1

θ
(l)
2 hl2(t).

Importantly, the space of such bandlimited functions is closed under rotations of S1. Writing

θ = (
θ(0), θ

(1)
1 , θ

(1)
2 , . . . , θ

(L)
1 , θ

(L)
2

) ∈ R
d, d = 2L + 1

for the vector of Fourier coefficients, the rotation f �→ fg corresponds to θ �→ g · θ , where g

belongs to the block-diagonal representation

(3.4) G =
{

diag
(

1,

(
cos 2πg sin 2πg

− sin 2πg cos 2πg

)
, . . . ,

(
cos 2πLg sin 2πLg

− sin 2πLg cos 2πLg

))
: g ∈ [0,1)

}

of SO(2). The observation model for the Fourier coefficients of f then takes the form of
(2.1), where we observe coordinates of g · θ with entrywise i.i.d. N (0, σ 2) noise.

Theorem 3.1 below first characterizes, for this model, the decomposition of total dimension
described in Theorem 2.7. As a direct consequence of this result, we state Corollary 3.2 which
summarizes the implications for identifying θ∗ based on its low-order moments, and for the
spectral structure of the Fisher information matrix I (θ∗).

THEOREM 3.1. For any L ≥ 1, we have

trdeg
(
RG≤1

) = 1, trdeg
(
RG≤2

) = L + 1, trdeg
(
RG≤3

) = trdeg
(
RG) = 2L = d − 1.

COROLLARY 3.2. A generic signal θ∗ ∈ R
d in this continuous MRA model has the fol-

lowing properties:



66 Z. FAN ET AL.

(a) θ∗ is identified up to a finite list of orbits by the moments of g · θ∗ up to order K = 3
when L ≥ 2, and order K = 2 when L = 1.

(b) For (θ∗,G)-dependent constants C,c > 0 independent of σ , the Fisher information
I (θ∗) has d0 = 1 eigenvalue of 0 and dk eigenvalues in [cσ−2k,Cσ−2k] for k = 1,2,3 and
(d1, d2, d3) = (1,L,L − 1).

Part (a) of this corollary follows immediately from [4], Theorem 3.15, (which we review
in Appendix A.2), and part (b) follows from Theorem 2.7.

In Appendix C.1, we provide a proof of Theorem 3.1 using our general result of
Lemma 2.8, as a warm-up for our analyses of the SO(3)-rotational models to follow. We
note that for a similar observation model of continuous MRA studied in [5], a stronger form
of Corollary 3.2(a) is already known, namely that third-order moments are sufficient to iden-
tify generic signals θ∗ ∈ R

d up to a single unique orbit.
Next, we study the moment optimization problems of (2.19), and we describe more explicit

forms for these optimization problems in this continuous MRA example. Denote the Fourier
coefficients of the true function f by θ∗ ∈R

d . Define the complex Fourier coefficients

u(0)(θ) = θ(0) ∈ R, u(l)(θ) = θ
(l)
1 + iθ(l)

2 = rl(θ)eiλl(θ) ∈ C,

where (rl(θ), λl(θ)) for l ≥ 1 are the magnitude and phase of u(l)(θ). Write as shorthand

rl,l′,l′′(θ) = rl(θ)rl′(θ)rl′′(θ), λl,l′,l′′(θ) = λl(θ) − λl′(θ) − λl′′(θ).

Here, λl,l′,l′′(θ) are the elements of the Fourier bispectrum of θ .

THEOREM 3.3. For any L ≥ 1,

s1(θ) = 1

2

(
θ(0) − θ(0)∗

)2
,

s2(θ) = 1

4

((
θ(0))2 − (

θ(0)∗
)2)2 + 1

8

L∑
l=1

(
rl(θ)2 − rl(θ∗)2)2

,

s3(θ) = 1

48

((
u(0)(θ)

)3 − (
u(0)(θ∗)

)3)2

+ 1

16

L∑
l,l′,l′′=0
l=l′+l′′

∣∣u(l)(θ)u(l′)(θ)u(l′′)(θ) − u(l)(θ∗)u(l′)(θ∗)u(l′′)(θ∗)
∣∣2

= 1

12

((
θ(0))3 − (

θ(0)∗
)3)2 + 1

8

L∑
l=1

(
θ(0) · rl(θ)2 − θ(0)∗ · rl(θ∗)2)2

+ 1

16

L∑
l,l′,l′′=1
l=l′+l′′

(
rl,l′,l′′(θ)2 + rl,l′,l′′(θ∗)2

− 2rl,l′,l′′(θ)rl,l′,l′′(θ∗) cos
(
λl,l′,l′′(θ∗) − λl,l′,l′′(θ)

))
.

Since each moment variety Vk(θ∗) in (2.17) is precisely the set of points {θ ∈ R
d : s1(θ) =

0, . . . , sk(θ) = 0}, this implies also that

V0(θ∗) = R
d, V1(θ∗) = {

θ : θ(0) = θ(0)∗
}
,

V2(θ∗) = {
θ : θ(0) = θ(0)∗ and rl(θ) = rl(θ∗) for each l = 1, . . . ,L

}
.



MAXIMUM LIKELIHOOD FOR HIGH-NOISE GROUP ORBIT ESTIMATION 67

Thus the minimization of s1(θ) on V0(θ∗) is over the global function mean θ(0), the mini-
mization of s2(θ) on V1(θ∗) is over the Fourier power spectrum {rl(θ) : l = 1, . . . ,L} and the
minimization of s3(θ) on V2(θ∗) is over the Fourier bispectrum {λl,l′,l′′(θ) : l = l′ + l′′}.

In high noise, minimizing the population log-likelihood function R(θ) becomes similar to
successively minimizing s1(θ), s2(θ) and s3(θ). The following result describes the nature of
these three optimization landscapes.

THEOREM 3.4. For any L ≥ 1 and generic θ∗ ∈ R
d , the minimizations of s1(θ) over

V0(θ∗) and of s2(θ) over V1(θ∗) are globally benign. However, for any L ≥ 30, there exists
a nonempty open subset U ⊂ R

d such that for any θ∗ ∈ U , the minimization of s3(θ) over
V2(θ∗) has a local minimizer outside Oθ∗ that is nondegenerate up to orbit.

The correspondence between optimization landscapes shown in Theorem 2.13(a) then im-
plies that, for the class of signals θ∗ ∈ U described in Theorem 3.4 and in sufficiently high
noise, the landscape of the population negative log-likelihood function R(θ) must also have
spurious local minimizers near those of s3(θ). The particular local minimizers of s3(θ) that
we exhibit in the proof of Theorem 3.4 correspond to certain Fourier phase shifts of the true
signal. This example is somewhat analogous to the spurious local minimizers discovered in
dimensions d ≥ 53 for the log-likelihood landscape of discrete MRA in [15], Section 4.6.

We conjecture, based on the algebraic similarities between these models, that spurious
local minimizers of R(θ) may also exist for generic θ∗ ∈ R

d in the SO(3)-rotational models
to be discussed in Section 4, and we leave this as an open question.

4. Spherical registration and cryo-EM. We now describe examples of estimating a
function in 2 or 3 dimensions, observed under SO(3) rotations of its domain. Section 4.1
studies estimation on the sphere, Section 4.2 studies estimation in R

3 and Section 4.3 studies
a simplified “cryo-EM model” of estimation in R

3 with a tomographic projection onto a
2-dimensional plane.

4.1. Spherical registration. Let S2 ⊂ R
3 be the unit sphere, and let f : S2 → R be a

function on this sphere. We parametrize S2 by the latitude φ1 ∈ [0, π] and longitude φ2 ∈
[0,2π). Writing fg(φ1, φ2) = f (g−1 ·(φ1, φ2)) for the rotation of the function f , we consider
the observation model with samples

fg(φ1, φ2)d(φ1, φ2) + σ dW(φ1, φ2),

where g ∈ SO(3) is a uniform random rotation for each sample, d(φ1, φ2) = sinφ1 dφ1 dφ2
denotes the surface area measure on S2, and dW(φ1, φ2) is a standard Gaussian white noise
process on S2. This observation model may be understood as observing a realization of the
Gaussian process {∫ h(φ1, φ2)[fg(φ1, φ2)d(φ1, φ2) + σ dW(φ1, φ2)]}h∈L2(S2) defined analo-
gously to (3.1), or equivalently, as observing each coefficient of fg in an orthonormal basis
of L2(S2) with i.i.d. N (0, σ 2) noise.

We choose as our orthonormal basis the real spherical harmonics

hlm(φ1, φ2) for l = 0,1,2, . . . and m = −l,−l + 1, . . . , l − 1, l.

We assume that f : S2 →R has a finite bandlimit L ≥ 1 in this basis, that is, it takes the form

(4.1) f (φ1, φ2) =
L∑

l=0

l∑
m=−l

θ (l)
m hlm(φ1, φ2).

We may then represent f by its vector of real spherical harmonic coefficients

θ = (
θ(l)
m : l = 0, . . . ,L and m = −l, . . . , l

) ∈ R
d, d = (L + 1)2.
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This subspace of bandlimited functions is closed under SO(3)-rotations of S2, and we review
the forms of hlm and of the rotational action on the basis coefficients in Appendix D.2.

The following result describes the decomposition of total dimension in Theorem 2.7(a) for
bandlimits L ≥ 10.

THEOREM 4.1. For any L ≥ 10, we have

trdeg
(
RG≤1

) = 1, trdeg
(
RG≤2

) = L + 1, trdeg
(
RG≤3

) = trdeg
(
RG) = d − 3.

COROLLARY 4.2. A generic signal θ∗ ∈ R
d in this spherical registration model for L ≥

10 has the following properties:

(a) θ∗ may be identified up to a finite list of orbits by the moments of g · θ∗ up to order
K = 3.

(b) For (θ∗,G)-dependent constants C,c > 0 independent of σ , the Fisher information
I (θ∗) has d0 = 3 eigenvalues of 0 and dk eigenvalues in [cσ−2k,Cσ−2k] for k = 1,2,3 and
(d1, d2, d3) = (1,L,L(L + 1) − 3).

REMARK 4.3. The result of Theorem 4.1 was conjectured for all bandlimits L ≥ 10
in [4], Conjecture 4.11, and it was verified numerically in exact-precision arithmetic for L ∈
{10, . . . ,16}. Our result resolves this conjecture for all L ≥ 10. Conversely, for low bandlimits
L ≤ 9, it was shown in [4], Section 4.5, that K > 3 strictly, meaning that moments up to third
order are insufficient to locally identify θ∗ up to its orbit.

Turning to the forms of sk(θ) in (2.19), let us denote the real spherical harmonic coeffi-
cients of the true function by θ∗ ∈ R

d . We write as shorthand

u(l)(θ) = (
u(l)

m (θ) : m = −l, . . . , l
) ∈ C

2l+1

for the complex spherical harmonic coefficients at frequency l, which are defined from the
real coefficients (θ

(l)
m : m = −l, . . . , l) by a unitary transform described in (D.S11). We denote

(4.2) Bl,l′,l′′(θ) =
l∑

m=−l

l′∑
m′=−l′

l′′∑
m′′=−l′′

m′′=m+m′

〈
l,m; l′,m′|l′′,m′′〉u(l)

m (θ)u
(l′)
m′ (θ)u

(l′′)
m′′ (θ),

where 〈l,m; l′,m′|l′′,m′′〉 ∈ R is the Clebsch–Gordan coefficient. These quantities express
the integrals of three-fold products of spherical harmonics over S2 and arise naturally in the
computation of third-order moments of g · θ . We review their definition in Appendix D.1.
The functions Bl,l′,l′′(θ) are analogous to the scaled components rl,l′,l′′(θ)λl,l′,l′′(θ) of the
Fourier bispectrum that appeared in the 1-dimensional MRA example of Section 3. The min-
imizations of s1(θ), s2(θ) and s3(θ) described in Theorem 2.13 may then be analogously
understood as minimizing the global function mean, the power in each spherical harmonic
frequency, and certain “bispectrum” variables for each frequency.

THEOREM 4.4. For any L ≥ 1,

s1(θ) = 1

2

(
u(0)(θ) − u(0)(θ∗)

)2
,

s2(θ) = 1

4

L∑
l=0

1

2l + 1

(∥∥u(l)(θ)
∥∥2 − ∥∥u(l)(θ∗)

∥∥2)2
,

s3(θ) = 1

6

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1

∣∣Bl,l′,l′′(θ) − Bl,l′,l′′(θ∗)
∣∣2.
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We prove Theorems 4.1 and 4.4 in Appendix D.2. Here, let us describe the high-level proof
idea for Theorem 4.1, which is used also in our analyses of the cryo-EM models to follow. By
Lemma 2.8, it suffices to analyze the ranks of the Hessians ∇2s1(θ∗), ∇2s2(θ∗) and ∇2s3(θ∗)
at a generic point θ∗ ∈ R

d . This analysis is straightforward for s1, s2 and the core of the proof
is to show that ∇2s3(θ∗) has full rank d − 3 (which accounts for the 3-dimensional orbit of
θ∗) when L ≥ 10.

Importantly, for any matrix M(θ) that is analytic in θ , we have rank(M(θ)) < k if and only
if every k ×k submatrix of M(θ) has determinant 0. Because the k ×k minors are themselves
analytic in θ , this holds either for all θ ∈ R

d , or only for θ outside a generic subset of Rd . So,
if rank(M(θ)) ≥ k at some point θ ∈ R

d , then it must hold that rank(M(θ)) ≥ k at all generic
θ ∈R

d , and we record this for reference as the following fact.

FACT 4.5. For any k ≥ 1 and matrix M(θ) whose entries are analytic in θ , we have
rankM(θ∗) ≥ k for generic points θ∗ ∈ R

d if and only if there exists at least one point θ∗ ∈ R
d

for which this inequality holds.

Thus, to show that rank(∇2s3(θ∗)) ≥ d − 3 for generic θ∗ ∈ R
d , it suffices to construct a

single point θ∗ ∈ R
d where this holds. We do this by analyzing the explicit form of ∇2s3(θ∗)

derived from Theorem 4.4. For L = 10, we exhibit such a point θ∗ numerically. We then use
this as a base case to inductively construct θ∗ for all L ≥ 10, by carefully choosing certain
coordinates of θ∗ to be 0 so that ∇2s3(θ∗) has a sparse structure and its rank may be explicitly
deduced from the ranks of 2 × 2 submatrices.

4.2. Unprojected cryo-EM. Consider now a function f : R3 → R, and the action of
SO(3) on R

3 given by rotation about the origin. Write fg(x) = f (g−1 · x) for the rotated
function. We consider the observation model with samples

fg(x)dx + σ dW(x),

where g ∈ SO(3) is uniformly random for each sample, and dW(x) is a standard Gaussian
white noise process on R

3. This is an unprojected model of the single-particle reconstruction
problem in cryo-EM, to which we will add a tomographic projection in the next section. This
model may be of independent interest for applications to cryo-ET, described in Appendix F.1.

We model f using a basis representation for its Fourier transform f̂ : R3 → C, similar
to the approach of [4], Section 4.6. We parametrize the Fourier domain R

3 by spherical
coordinates (ρ,φ1, φ2) with radius ρ ≥ 0, latitude φ1 ∈ [0, π] and longitude φ2 ∈ [0,2π)

and decompose f̂ (ρ,φ1, φ2) in a complex basis {ĵlsm} given by the product of the complex
spherical harmonics ylm(φ1, φ2) (reviewed in Appendix D.1) with radial functions zs(ρ):

(4.3) ĵlsm(ρ,φ1, φ2) = zs(ρ)ylm(φ1, φ2) for s ≥ 1, l ≥ 0,m ∈ {−l, . . . , l}.
Here, {zs : s ≥ 1} may be any system of radial basis functions zs : [0,∞) → R satisfying the
orthogonality relation

(4.4)
∫ ∞

0
ρ2zs(ρ)zs′(ρ) dρ = 1

{
s = s′},

so that {ĵlsm} are orthonormal over L2(R
3,C). The inverse Fourier transforms {jlsm} of {ĵlsm}

then provide a complex orthonormal basis in the original signal domain of f .
Fixing integer bandlimits L ≥ 1 and S0, . . . , SL ≥ 1, we define the index set

(4.5) I = {
(l, s,m) : 0 ≤ l ≤ L,1 ≤ s ≤ Sl,−l ≤ m ≤ l

}
, d = |I| =

L∑
l=0

(2l + 1)Sl
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and assume that f is (L,S0, . . . , SL)-bandlimited in the sense of admitting the finite basis
representation

(4.6) f = ∑
(l,s,m)∈I

u(ls)
m · jlsm, u = (

u(ls)
m : (l, s,m) ∈ I

) ∈ C
d .

This corresponds to modeling the Fourier transform f̂ up to the spherical frequency L, and
up to the radial frequency Sl for each spherical component l = 0,1, . . . ,L. For real-valued
functions f , writing u = V̂ ∗θ for a unitary transform V̂ ∈C

d×d defined explicitly in (D.S31),
we then obtain a real sequence representation

(4.7) f = ∑
(l,s,m)∈I

θ(ls)
m · hlsm, θ = (

θ(ls)
m : (l, s,m) ∈ I

) ∈R
d

for a real-valued orthonormal basis {hlsm}. We describe the forms of hlsm and the rotational
action on the basis coefficients θ ∈ R

d in Appendix D.3.
The following result describes the decomposition of total dimension in Theorem 2.7(a),

assuming L ≥ 1 and Sl ≥ 2 for each l = 0, . . . ,L. (Note that the case of S0 = · · · = SL = 1
would be similar to the spherical registration example of Section 4.1, and a lower bound of
L ≥ 10 would be needed in this case to ensure K = 3.)

THEOREM 4.6. For any L ≥ 1 and S0, . . . , SL ≥ 2, we have

trdeg
(
RG≤1

) = S0,

trdeg
(
RG≤2

) =
L∑

l=0

d(Sl), d(Sl) ≡
⎧⎨
⎩

Sl(Sl + 1)

2
for Sl < 2l + 1,

(2l + 1)(Sl − l) for Sl ≥ 2l + 1,

trdeg
(
RG≤3

) = trdeg
(
RG) = d − 3.

COROLLARY 4.7. In this unprojected cryo-EM model with S0, . . . , SL ≥ 2, a generic
signal θ∗ ∈ R

d may be identified up to a finite list of orbits by the moments of g · θ∗ up to
order K = 3 if L ≥ 2, and up to order K = 2 if L = 1.

Turning to the forms of sk(θ) that define the moment optimization (2.19), write θ∗ ∈ R
d

for the true coefficients in the above real basis {hlsm}. Let

(4.8) u(ls)(θ) = (
u(ls)

m (θ) : m = −l, . . . , l
) ∈ C

2l+1

be the components of the complex coefficients u = V̂ ∗θ for the frequency pair (l, s), and
define analogously to (4.2)
(4.9)

B(l,s),(l′,s′),(l′′,s′′)(θ) =
l∑

m=−l

l′∑
m′=−l′

l′′∑
m′′=−l′′

m′′=m+m′

〈
l,m; l′,m′|l′′,m′′〉u(ls)

m (θ)u
(l′s′)
m′ (θ)u

(l′′s′′)
m′′ (θ).

When the original function f : R3 →R is real valued, we verify in the proof of Theorem 4.8
below that each B(l,s),(l′,s′),(l′′,s′′)(θ) is also real valued.

THEOREM 4.8. For any L ≥ 1 and S0, . . . , SL ≥ 1,

s1(θ) = 1

2

S0∑
s=1

(
u(0s)(θ) − u(0s)(θ∗)

)2
,
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s2(θ) = 1

4

L∑
l=0

1

2l + 1

Sl∑
s,s′=1

(〈
u(ls)(θ), u(ls′)(θ)

〉 − 〈
u(ls)(θ∗), u(ls′)(θ∗)

〉)2
,

s3(θ) = 1

12

L∑
l,l′,l′′=0

|l−l′|≤l′′≤l+l′

1

2l′′ + 1

Sl∑
s=1

Sl′∑
s′=1

Sl′′∑
s′′=1

(
B(l,s),(l′,s′),(l′′,s′′)(θ) − B(l,s),(l′,s′),(l′′,s′′)(θ∗)

)2
.

In this model, the optimization of s1(θ) is over the mean component u(0s)(θ) correspond-
ing to each radial frequency s. The optimization of s2(θ) is over not just the power ‖u(ls)(θ)‖2

within each frequency pair (l, s), but also the cross-correlations between u(ls) and u(ls′) for
different radial frequencies s and s′.

The proofs of Theorems 4.6 and 4.8 are deferred to Appendix D.3. The argument for
Theorem 4.6 is similar to that of Theorem 4.1: When S0, . . . , SL ≥ 2, the claim that
rank(∇2s3(θ∗)) ≥ d − 3 may be established by induction on L down to the base case of
L = 1 rather than L = 10, using a different construction of the point θ∗ ∈ R

d that induces a
sparse structure in ∇2s3(θ∗).

4.3. Projected cryo-EM. We now extend the model of the preceding section to include
the tomographic projection arising in cryo-EM. In this projected model, we observe samples

(4.10) (� · fg)(x)dx + σ dW(x)

on R
2 where, for x = (x1, x2) ∈ R

2, the tomographic projection � is defined by

(4.11) (� · fg)(x1, x2) =
∫ ∞
−∞

fg(x1, x2, x3)dx3,

and dW(x) in (4.10) is a standard Gaussian white noise process on the projected domain R
2.

Our model setup is similar to [4], Section 4.6. We again model the Fourier transform of f

in a basis {ĵlsm} given by the product of complex spherical harmonics with radial functions.
We restrict f to a space of (L,S0, . . . , SL)-bandlimited functions with representation

(4.12) f = ∑
(l,s,m)∈I

u(ls)
m · jlsm = ∑

(l,s,m)∈I
θ(ls)
m · hlsm

for the index set I defined in (4.5), where {jlsm} are the inverse Fourier transforms of {ĵlsm},
and the second equality describes a parametrization by an equivalent real orthonormal ba-
sis {hlsm} as before. In Appendix D.4, we apply the Fourier slice theorem to derive basis
representations for the tomographic projection � · f . These take the forms

(4.13) � · f = ∑
(s,m)∈Ĩ

ũ(s)
m jsm = ∑

(s,m)∈Ĩ
θ̃ (s)
m hsm,

where {jsm} and {hsm} are (complex and real, resp.) basis functions over R2, and � · f is
bandlimited to an index set

(4.14) Ĩ = {
(s,m) : 1 ≤ s ≤ S,−L ≤ m ≤ L

}
, d̃ = |Ĩ| = S(2L + 1)

for S = max(S0, . . . , SL). This expresses � as a linear map from θ ∈ R
d to θ̃ ∈ R

d̃ , and
we give its explicit form in (D.S57). We choose radial functions to ensure that the basis
{hsm} is orthonormal in L2(R

2), so that (4.10) is equivalent to observing the coefficients of
� · f in this basis with i.i.d. N (0, σ 2) noise. Further details of the setup are described in
Appendix D.4.

The following result verifies that when the bandlimits satisfy L ≥ 1 and S1, . . . , SL ≥ 4,
we have also trdeg R̃G

≤K̃
= trdegRG for K̃ = 3.
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THEOREM 4.9. For any L ≥ 1 and S0, . . . , SL ≥ 4, we have

trdeg
(
R̃G≤1

) = S0,

trdeg
(
R̃G≤2

) =
L∑

l=0

d(Sl), d(Sl) ≡
⎧⎨
⎩

Sl(Sl + 1)

2
for Sl < 2l + 1,

(2l + 1)(Sl − l) for Sl ≥ 2l + 1,

trdeg
(
R̃G≤3

) = trdeg
(
RG) = d − 3,

which matches the values of trdeg(RG≤1), trdeg(RG≤2), and trdeg(RG≤3) in the unprojected
setting of Theorem 4.6.

COROLLARY 4.10. In this projected cryo-EM model with S0, . . . , SL ≥ 4, a generic sig-
nal θ∗ ∈ R

d may be identified up to a finite list of orbits by the moments of �(g · θ∗) up to
order K̃ = 3 if L ≥ 2, and order K̃ = 2 if L = 1.

We prove Theorem 4.9 in Appendix D.4, where we also state an analogue of Theorem 4.8
that describes the explicit forms of s̃k(θ) for k = 1,2,3 in this projected model.

Our proof of Theorem 4.9 again constructs a point θ∗ ∈ R
d where rank(∇2s̃3(θ∗)) ≥ d −

3. However, the form of ∇2s̃3(θ∗) now involves the precise form of the projection �, and
our choice of θ∗ does not induce sparsity in this Hessian. Instead, we choose θ∗ to have
many coordinates equal to 0, and track the dependence of minors of ∇2s̃3(θ∗) on the nonzero
coordinates of θ∗ to show they are generically nonvanishing. We give this argument in the
proof of Lemma D.10 in Appendix D.4.

REMARK 4.11. Taking S0 = · · · = SL = S yields a model equivalent to the projected
cryo-EM model with S spherical shells in [4], Section 4.6. In [4], Conjecture 4.17, the authors
conjectured that a generic signal θ∗ may be identified up to a finite list of orbits by third-order
moments if S ≥ 2. Corollary 4.10(a) thus resolves this conjecture positively when S ≥ 4. The
constraint S ≥ 4 is technical, and we believe that the conjecture holds as stated for S ∈ {2,3}
as well, but we do not pursue these cases in this work.

5. Numerical evaluations of the Fisher information. We conclude with an empirical
investigation of the spectrum of the Fisher information matrix in two simulated examples of
the unprojected cryo-EM model described in Section 4.2.

In each example, we begin with a near-atomic-resolution electric potential map estimated
from a cryo-EM experiment. We obtain a finite-dimensional approximation to this map by
applying a low-pass filter to its Fourier transform, followed by a basis approximation for the
filtered map. We simulate noisy and rotated samples using this finite-dimensional approxi-
mation as the underlying true signal, for various inverse-SNR parameters

α ≡ σ 2/‖θ∗‖2.

We then study the dependence of eigenvalues of the observed information matrix ∇2Rn(θ∗)
on α.

Rotavirus VP6 trimer. We consider a map of the VP6 trimer in bovine rotavirus, re-
ported in [45] (EMDB:1461). A contour plot of this map is overlaid with the atomic struc-
ture previously obtained by [30] (PDB:1QHD), in Figure 1(a). We applied low-pass filters
in the Fourier domain at two different cutoff frequencies, a “low-resolution” frequency of
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FIG. 1. (a) 3.8Å-resolution cryo-EM map of the rotavirus VP6 trimer, overlaid with the atomic structure. (b) A
finite-dimensional approximation using 405 basis functions at 24.6Å-resolution (displayed in a rotated orientation
for clarity). (c) An approximation using 4410 basis functions at 8.2Å-resolution. (d–f) We stratify the eigenvalues
of the 405-dimensional observed Fisher information corresponding to (b) into three “eigenvalue tiers” according
to Theorem 4.6, and plot the scalings of the 10th, 30th, 50th, 70th and 90th percentiles of eigenvalues in each
tier against 1/α ∝ σ−2, 1/α2 ∝ σ−4 and 1/α3 ∝ σ−6. (These quantiles nearly overlap for Tier 1.) Linear trends
fitted using least squares are shown as dashed lines. (g–i) The same for the 4410-dimensional Fisher information
matrix corresponding to (c).

(24.6Å)−1 and a “medium-resolution” frequency of (8.2Å)−1. The corresponding smoothed
maps in the spatial domain are depicted in Figure S1 of Appendix E.

We approximated each smoothed map using a finite basis of the form (4.3), with an adap-
tive construction of the radial functions {zs} to maximize the power captured by each suc-
cessive radial frequency. Details of our numerical procedures are described in Appendix E.
Choosing bandlimits (S,L) = (5,8) and total dimension d = L(S + 1)2 = 405 gave an ac-
curate approximation to the 24.6Å-resolution map that reveals the trimer composition of the
VP6 complex, as depicted in Figure 1(b). Choosing bandlimits (S,L) = (10,20) and total
dimension d = L(S + 1)2 = 4410 gave an accurate approximation of the 8.2Å-resolution
map that captures interesting aspects of the tertiary and secondary structure, as shown in
Figure 1(c). We denote the basis coefficients of these approximated maps as θ∗ ∈R

d .
We computed the Hessians ∇2Rn(θ∗) of the empirical negative log-likelihood functions

from n = 500,000 simulated samples, with inverse-SNR α = σ 2/‖θ∗‖2 ∈ [0.04,0.10]. We
then separated the largest d − 3 eigenvalues of ∇2Rn(θ∗) into three “tiers” with cardinalities
(d1, d2, d3) as implied by Theorem 4.6. Figure 1(d–f) depicts representative eigenvalues in
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FIG. 2. (a) 3.4Å-resolution cryo-EM map of hemoglobin, overlaid with the atomic structure. (b) A finite-dimen-
sional approximation using 3528 basis functions at 7.0Å-resolution. (c–e) The 10th, 30th, 50th, 70th and 90th
percentiles of eigenvalues within each “eigenvalue tier” of the 3528-dimensional observed Fisher information,
plotted against 1/α ∝ σ−2, 1/α2 ∝ σ−4, 1/α3 ∝ σ−6 as in Figure 1.

each tier, plotted against 1/α ∝ σ−2, 1/α2 ∝ σ−4 and 1/α3 ∝ σ−6. A linear trend is observed
in all settings, in agreement with the prediction of Theorem 2.7. This may be contrasted with
Figure S2 in Appendix E, which instead plots eigenvalues in all three tiers against 1/α ∝ σ−2,
and where nonlinearity of the scaling is visually apparent for Tiers 2 and 3.

Hemoglobin. We consider a map of hemoglobin, reported in [27] (EMDB:3650,
PDB:5NI1). A contour plot overlaid with the atomic structure is presented in Figure 2(a).
We applied a low-pass filter with cutoff frequency (7.0Å)−1 in the Fourier domain, depicted
in Figure S1. We then applied a basis approximation with bandlimits (S,L) = (8,20) and
total dimension d = 3528. The approximated map is shown in Figure 2(b), and captures
important aspects of the secondary structure including the locations of the α-helices and
embedded prosthetic heme groups. We denote the basis coefficients of this approximation
as θ∗.

Figure 2(c–e) again depicts the leading d − 3 eigenvalues of ∇2Rn(θ∗) computed from
n = 500,000 simulated samples, stratified into three tiers of sizes (d1, d2, d3). Linear trends
with 1/α ∝ σ−2, 1/α2 ∝ σ−4 and 1/α3 ∝ σ−6 are again observed, and may be contrasted
with the nonlinear scalings of eigenvalues in Tiers 2 and 3 with 1/α as depicted in Figure S2.

We note that although the eigenvalues of ∇2Rn(θ∗) do scale with powers of the SNR 1/α

according to our theoretical predictions, at any fixed SNR and for basis dimensions exceeding
d ≈ 100, we do not observe a clear separation between the eigenvalues of Tier 2 and of Tier 3,
due to the variation in magnitude of eigenvalues corresponding to differing radial frequencies
within each tier.

In these examples, we also begin to observe some deviations from the predicted eigenvalue
scalings at the higher and lower ends of tested SNR. Deviations in higher basis dimensions
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d and at lower SNR 1/α (seen in Figures 1(h–i) and 2(d)) are likely finite-sample effects
due to differences between the observed information matrix ∇2Rn(θ∗) and the (population)
Fisher information I (θ∗) = ∇2R(θ∗). We believe that deviations at higher SNR 1/α (seen
in Figures 1(e–f) and 2(e)) reflect a departure of the behavior of the population Fisher infor-
mation I (θ∗) from the predictions of the large-σ theoretical regime. Our largest tested SNR
1/α = 25 yields a spectral SNR (average power of signal / average power of noise at a fixed
Fourier radius) of 0.2–0.4 near the origin of the Fourier domain, which we believe reflects a
level of noise that may be slightly higher than that of modern cryo-EM experiments.

6. Conclusion. In this work, we characterized properties of the Fisher information ma-
trix and log-likelihood function landscape for continuous group orbit estimation problems in
a high noise regime, showing that they are related to the structure of the invariant algebra
of the rotational group. We applied these results to study several models of function estima-
tion in finite-dimensional function spaces, in particular establishing that third-order moment
information is sufficient to locally identify generic signals in these models.

In many interesting applications including single-particle cryo-EM, the target function at
full spatial resolution may not admit an accurate low-dimensional approximation. In such set-
tings, our theoretical results may have relevance to estimating lower-dimensional smoothed
approximations of the function. We demonstrated in simulation that this theory can accu-
rately predict the noise scalings of the Fisher information eigenvalues for two small protein
molecules over a range of sufficiently high noise, or low SNR. We highlight the theoretical
understanding of likelihood-based estimation in high-dimensional and infinite-dimensional
settings and over a broader range of SNR as a question for future work.
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contain proofs of our general results in Section 2, further details for Example 2.14 on the
Procrustes alignment model, further details and proofs for the function estimation problems
discussed in Sections 3 and 4, details on our numerical simulations in Section 5 and a brief
introduction to cryo-EM and its relation the problems studied in this work.
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