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This article establishes an asymptotic theory for volatility estimation
in an infinite-dimensional setting. We consider mild solutions of semilin-
ear stochastic partial differential equations and derive a stable central limit
theorem for the semigroup-adjusted realised covariation (SARCV), which
is a consistent estimator of the integrated volatility and a generalisation of
the realised quadratic covariation to Hilbert spaces. Moreover, we introduce
semigroup-adjusted multipower variations (SAMPV) and establish their weak
law of large numbers; using SAMPV , we construct a consistent estimator of
the asymptotic covariance of the mixed-Gaussian limiting process appearing
in the central limit theorem for the SARCV, resulting in a feasible asymptotic
theory. Finally, we outline how our results can be applied even if observations
are only available on a discrete space-time grid.

1. Introduction. Estimation of volatility is of great importance for capturing the second-
order structure of a random dynamical system. In this work, we develop a feasible asymp-
totic distribution theory for the estimation of the integrated volatility operator

∫ t
0 �s ds :=∫ t

0 σsσ
∗
s ds corresponding to a stochastic partial differential equation (SPDE) in a separable

Hilbert space H of the form

(1) dYt = (AYt + αt) dt + σt dWt, t ∈ [0, T ],
based on discrete observations of its mild solution within a finite time-interval [0, T ] for
T > 0. Here A is the generator of a strongly continuous semigroup S := (S(t))t≥0 on H , W

is a cylindrical Wiener process, α and σ are the drift- and volatility processes, respectively
(see Section 3 below for a detailed specification). Such SPDEs constitute a well-established
framework for describing spatio-temporal dynamics with applications in, for example, fi-
nance, physics, biology, meteorology and mechanics (cf. the textbooks [39, 56, 61] or [44]).
In the context of infill-asymptotics and in the presence of time-discrete observations

Y0, Y�n, . . . , Y�T/�n�, �n := 1

n

of a realisation of a solution to (1), the role of integrated volatility is similar to the one of the
covariance operator in the analysis of i.i.d. functional data. This becomes particularly evident
if σ is independent of W . In this case integrated volatility is the conditional covariance of the
driving noise, that is, ∫ t

0
σs dWs |σ ∼ N

(
0,

∫ t

0
�s ds

)
, t ≥ 0.

Hence, a feasible estimation theory for integrated volatility in this setting could allow stan-
dard functional data analysis methods to be applied to the analysis of observations of solu-
tions to SPDEs.
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Our theory is based on the semigroup-adjusted realised covariation (SARCV), given for
n ∈N by

(2) SARCVn
t :=

�t/�n�∑
i=1

�̃n
i Y

⊗2 :=
�t/�n�∑

i=1

(
Yi�n − S(�)Y(i−1)�n

)⊗2
,

which was shown to be a consistent estimator of the integrated volatility
∫ t

0 �s ds in [17].
Here h⊗2 = 〈h, ·〉h denotes the usual tensor product. In this paper, we consider the more
involved task of proving, under suitable regularity conditions, the functional central limit
theorem

�
− 1

2
n

(
SARCVn

t −
∫ t

0
�s ds

)
L−s=⇒N (0,�t ),

where L−s=⇒ stands for the stable convergence in law as a process in the Skorokhod space
D([0, T ],H). N (0,�t ) is an infinite-dimensional continuous mixed Gaussian process1 with
values in H, the space of Hilbert–Schmidt operators on H , and with a conditional covariance
operator �t , called the asymptotic variance. The above central limit theorem is not feasible,
as the asymptotic variance is a priori unknown, so we also derive a consistent estimator for �.
As this can be done conveniently by appealing to laws of large numbers for certain adjusted
power and bipower variations, we also provide consistency results for general semigroup-
adjusted realised multipower variations (SAMPV) given by

SAMPVn
t (m1, . . . ,mk) :=

�t/�n�−k+1∑
i=1

k⊗
j=1

�̃n
i+j−1Y

⊗mj .(3)

We refer to the preliminaries below for the general tensor power notation.
Compared with the finite-dimensional theory, the semigroup adjustment in the realised

covariation and the multipower variations might seem unusual. Nevertheless, the results pre-
sented here should be understood as a direct generalisation of the theory for multivariate
semimartingales to the setting of semilinear SPDEs as in (1). This is because the semigroup
adjustment just becomes relevant if (Yt )t∈[0,T ] is not a semimartingale, which is a purely
infinite-dimensional issue. In fact, if H is finite-dimensional, (Yt )t∈[0,T ] is automatically a
semimartingale and dropping the semigroup adjustment in (2) still yields a consistent estima-
tor, namely, the quadratic covariation

(4) RV n
t =

�t/�n�∑
i=1

(Yi�n − Y(i−1)�n)
⊗2.

One can equivalently think of choosing the semigroup to equal the identity operator on H

(i.e. S ≡ I ) for the sake of the limit theorems and move the part of the (in this case) strong
solution belonging to the original generator A in equation (1) into the drift α.

For over two decades, there have been many contributions to the asymptotic theory for
stochastic volatility estimation in a finite-dimensional set-up. These include the articles [4,
9–11] and [50], among many others, and the textbooks [52] and [1], focusing on the semi-
martingale set-up. Moreover, recently, attention has also turned towards finite-dimensional
volatility estimation in the context when the observed process is not necessarily a semimartin-
gale, see, for example, [6, 7, 28, 29, 34–36, 63] and [45, 59].

1Recall that a centred Hilbert space-valued random variable X is mixed Gaussian with random covariance
C : H → H if conditional on C the random variable 〈X,h〉 a one-dimensional centred Gaussian distributed
random variable with variance 〈Ch,h〉 for all h ∈ H .



2210 F. E. BENTH, D. SCHROERS AND A. E. D. VERAART

There are two recent strands of research that are related to the infinite-dimensional case:
during the last decade, some effort went into the generalisation of ARCH and GARCH mod-
els for functional data, appearing at a possibly high frequent rate in [5, 25, 49, 62] and [55]. At
the same time, a lot of recent research has been devoted to the intricate problem of estimating
volatility based on observations of finite-dimensional realisations of second-order stochas-
tic partial differential equations (cf. [2, 3, 22, 23, 26, 27, 31, 32, 47, 58] to mention some).
We refer to [30] for a survey. In that sense, volatility estimation has been approached either
discretely in time or discretely in space. So in contrast to the high research activity in both
of these areas, to the best of the authors’ knowledge, there appear to be no results at the in-
tersection that allow making inference on a coherent and potentially smooth spatio-temporal
volatility structure as we do here. Such results, however, may be desirable in many situations.
We discuss some applications and relevant types of data in the following subsection.

The presentation of our results is divided into six sections, where after a short consideration
of data and some brief preliminaries following this introduction, we outline the setting for
the guiding example of term structure models in Section 2 which makes the otherwise rather
abstract operator-theoretic notation more concrete. We present a detailed discussion on limit
theorems and applications of the SARCV in Section 3, where we also include a short section
on the estimation of conditional covariances in Section 3.2 and establish the corresponding
feasible limit theory (accounting for the unknown random covariance structure in the basic
central limit theorem for this estimator) in Section 3.3. A discussion about the convergence
behaviour of the naïve quadratic variation is added in Section 3.4. Afterwards, we outline,
how the limit theory can be applied in the case of discrete observations in time and space
in Section 3.5. Section 4 addresses the laws of large numbers for the general semigroup-
adjusted multipower variations SAMPV(m1, . . . ,mk). Section 5 outlines the proofs of the
limit theorems, which are given in full length in a Supplementary Material. We summarise
and further discuss the results in the concluding Section 6.

1.1. Considerations on data. As the SARCV and the SAMPV take into account the
Hilbert space-valued data (Yi�n, i = 1, . . . , �t/�n�), the theory presented here is part of the
realm of functional data analysis. Functional data, which are usually sampled discretely, are
often smoothed in order to obtain an element in some suitable function space. In our case,
this means that practically every datum Yi�n should be considered as a smoothed version of
discretely sampled data. Assuming that data are of high resolution in the spatial dimension
as well, one can obtain fully feasible consistency results and central limit theorems for the
integrated volatility operators from our results (see Section 3.5 for how this can be done for a
regular sampling grid). This means, however, that (at least locally when estimating function-
als of the integrated volatility) we need to have dense samples in both space and time.

Taking into account the effort that went into the development of volatility estimation in
the case of sampling the solution of an SPDE at a fixed finite number of points in space and
a high frequent rate in time, it might be worth underlining the following: the wording “high
frequent” can be misleading, as this is primarily a matter of scale.

For instance, in financial forward and futures markets, where one wants to capture price
variations for contracts with times-to-maturity of more than a year, intra-daily patterns of
variation might, for some purposes, not be as insightful as for example, intra-monthly ones.
Another example is meteorological data, where in several regions we find a considerable
number of weather stations measuring for instance wind, temperature or rainfall at fixed time
intervals such as every hour. This leads to a reasonable volume of spatio-temporal data for a
week or a month rather than a day. Moreover, reducing volatility estimation on techniques that
allow making inference based on fixed multivariate samples of the SPDE might make it hard
to capture spatial features like slope and curvature induced by the dynamics of neighbouring
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stations via the asymptotic analysis. Dynamics that are dependent on this kind of derivative
information are of course not just relevant to meteorological applications but are for instance
considered important to describe the dynamics of term structure models in finance (cf. [33]).
Smooth features of the volatility operator can be conveniently accessed in the functional data
framework we elaborate on here and derivative information are inherent in the estimator itself
(due to the adjustment).

On the other hand, in contrast to possibly prevalent perception, there are intraday high-
frequency financial data that should eventually be considered functional. One example can
be found in the modern structure of intraday energy markets. In the European intraday en-
ergy markets, participants can continuously trade contracts for energy delivery each day (from
late afternoon til midnight) for all 96 quarter-hours of the day ahead. Interpreting this as a
discretisation of the curve of all potential forward contracts of the next day, this can, due
to no-arbitrage arguments, be considered as a semimartingale in a Hilbert space of func-
tions. We underline, that our results are new also in the semimartingale case S = I , lead-
ing to an infinite-dimensional theory for realised covariation of H -valued semimartingales.
Arguably, in that way, it becomes possible to estimate components of the recently treated
infinite-dimensional stochastic volatility models (cf. [13, 19, 20, 37, 38]).

Preliminaries and notation. Throughout this work, H , is a separable Hilbert space. The
corresponding inner product and norm are denoted by 〈·, ·〉H and ‖ · ‖H and the identity
operator on H by IH , where we will drop the H -dependence most of the time and simply
write 〈·, ·〉, ‖ · ‖ and I . If G is another separable Hilbert space, h ∈ H and g ∈ G, we write
L(G,H) for the space of bounded linear operators from G to H and L(H) := L(H,H). We
write ‖ · ‖op for the operator norm on these spaces. LHS(G,H) denotes the Hilbert space of
Hilbert–Schmidt operators from G into H , that is, B ∈ L(G,H) such that

‖B‖2
LHS(U,H) :=

∞∑
n=1

‖Ben‖2 < ∞,

for an orthonormal basis (en)n∈N of G. If G = H , we write H := LHS(H,H). The operator
h ⊗ g := 〈h, ·〉g is a Hilbert–Schmidt and even nuclear operator from H to G. Recall that
B is nuclear, if

∑∞
n=1 ‖Ben‖ < ∞ for some orthonormal basis (en)n∈N of G. Moreover, we

shortly write h⊗p = h ⊗ (h ⊗ (· · · ⊗ (h ⊗ h)) and
⊗k

j=1 hj := h1 ⊗ · · · ⊗ hk := h1 ⊗ (... ⊗
(hk−1 ⊗ hk)). We write recursively H2 = H = LHS(H,H) and Hm = LHS(H,Hm−1), for
m > 2. Thus, Hm is the space of operators spanned by the orthonormal basis (ej1 ⊗ · · · ⊗
ejm)j1,...,jm∈N, for an orthonormal basis (ej )j∈N of H with respect to the –Schmidt norm.
As Hm is isometrically isomorphic to the space LHS(Hp,Hq) if p + q = m and p,q ≥ 2
(and LHS(H,Hq) or LHS(Hp,H) if p or q is equal to 1), we will alternate between the
notation throughout the paper. For instance, if m is even, Hm can be identified with the space
LHS(Hm

2 ,Hm
2 ), which is why we can speak without loss of generality of symmetric operators

on these spaces. Recall moreover that

(5) �t := σtσ
∗
t ∀t ∈ [0, T ],

where σ is the stochastically integrable Hilbert–Schmidt operator-valued volatility process
(cf. Section 3). We will also need the notation �

Sn
s := S(i�n −s)�sS(i�n −s)∗ for s ∈ ((i−

1)�n, i�n]. We also need different concepts of convergence of stochastic processes. Recall
that a sequence of random variables (Xn)n∈N defined on a probability space (�,F,P) and
with values in a Polish space E converges stably in law to a random variable X defined on an
extension (�̃, F̃, P̃) of (�,F,P) with values in E, if for all bounded continuous f : E →R

and all bounded random variables Y on (�,F) we have E[Yf (Xn)] → Ẽ[Yf (X)] as n → ∞,
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where Ẽ denotes the expectation with respect to P̃. If, for a Hilbert space-valued process Xn,
we have that it converges stably in law as a process in the Skorokhod space D([0, T ];H),

we write Xn L−s=⇒ X. Here and throughout we always assume the space D([0, T ];H) to be
endowed with the classical Skorokhod topology, making it a Polish space (cf. for instance

chapter VI in [24]). Moreover, by Xn u.c.p.−→ X we mean convergence uniformly on compacts
in probability, that is, for all ε > 0 it is P[supt∈[0,T ] ‖Xn(t) − X(t)‖ > ε] → 0 for T > 0.

2. A motivating example: Term structure models. In this section, we discuss the ex-
ample of term structure models from mathematical finance arising in bond and energy mar-
kets. Term structure models, which can conveniently be expressed in the form of stochastic
partial differential equations, relate the time to maturity of financial contracts to their empir-
ical and theoretical characteristics. For an introduction to the SPDE approach to modelling
forward curve evolutions we refer to [42] in the case of instantaneous forward rates in bond
markets and to [14] in the case of instantaneous forward prices in energy and commodity
markets.

Forward curves, respectively forward prices, are usually considered to take their values
in some suitable Hilbert space of functions. Besides the space of square-integrable functions
L2(0,1), reproducing kernel Hilbert spaces (RKHS) and in particular Sobolev spaces such as

H 1(0,1) := {
h : [0,1] → R : h is absolutely continuous and h′ ∈ L2(0,1)

}
equipped with the norm ‖h‖ := h(0)2 + ∫ 1

0 (h′(x))2 dx are a reasonable choice for a state
space of instantaneous forward curves. The compact interval [0,1] contains all observable
times to maturity (normalised by the maximal time to maturity observable). The arbitrage-free
dynamics of forward curves can then be expressed in terms of the Heath–Jarrow–Morton–
Musiela equation

dft = (
∂xft + α(σs)

)
ds + σs dWs,

where σ is a general Hilbert–Schmidt operator valued process from a noise space U into
H = H 1(0,1) and α : LHS(U,H) → H is a continuous mapping (cf. [42], Section 4.3) for
forward rates and vanishes entirely for commodity and energy price curves (cf. e.g., [15]). In
the space L2(0,1) of square-integrable functions, ∂x is defined on its domain D(∂x) = {h ∈
H 1(0,1) : h(1) = 0} and according to [40], Section 2.11, generates the nilpotent semigroup
of left shifts in L2(0,1) given by

(6) S(t)h(x) :=
{
h(x + t) x + t ≤ 1,

0 x + t > 1.

In the Sobolev space, the differential operator ∂x can be defined on its domain D(∂x) = {h ∈
H 1(0,1) : h′ ∈ H 1(0,1)} and combining Corollary 5.1.1 in [42] and [40], Section 2.3, it is
then the generator of the strongly continuous semigroup of left shifts on H 1(0,1) given by

(7) S(t)h(x) :=
{
h(x + t) x + t ≤ 1,

h(1) x + t > 1.

We may choose the noise space to be U = L2(0,1), such that we can interpret σs as a Hilbert–
Schmidt operator from L2(0,1) into itself or that it maps into H 1(0,1) ↪→ L2(0,1) and is
Hilbert–Schmidt with respect to the norm on H 1(0,1) if H = H 1(0,1). As such, it is given
as a kernel operator

σsf (x) =
∫ 1

0
qs(x, y)f (y) dy, ∀s ≥ 0, x ∈ [0,1].
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In the case that H = H 1(0,1) we alternatively could have chosen U = H 1(0,1), as by The-
orem 9 in [21] we have that in an RKHS on [0,1] with kernel k, every continuous linear
operator L is given by a kernel operator with kernel l(x, y) = 〈k(x, ·),L∗k(·, y)〉 in the sense
that

Lf (x) = 〈
f, l(·, x)

〉
, ∀x ∈ [0,1].

We will come back to the estimation of integrated volatility in this setting for H = H 1(0,1)

in Section 3.5.

3. Limit theorems for the SARCV. Throughout this work we fix (Yt )t∈[0,T ] for T > 0
to be the mild solution of the SPDE (1), that is, Y is a continuous adapted stochastic process
defined on a filtered probability space (�,F, (Ft )t∈[0,T ],P) with right-continuous filtration
(Ft )t∈[0,T ] taking values in the separable Hilbert space H and is given by the stochastic
Volterra process

Yt = S(t)Y0 +
∫ t

0
S(t − s)αs ds +

∫ t

0
S(t − s)σs dWs, t ∈ [0, T ].(8)

Here, S := (S(t))t≥0 is a strongly continuous semigroup on H generated by A and W is a
cylindrical Wiener process potentially on another separable Hilbert space U (with covariance
operator IU ). Moreover, α is an almost surely Bochner integrable adapted stochastic process
with values in H and σ is a Hilbert–Schmidt operator-valued process that is stochastically
integrable with respect to W , that is, for �T := [0, T ] × �,

σ ∈
{
� : �T → LHS(U,H) : � predictable and P

[∫ T

0

∥∥�(s)
∥∥2
LHS(U,H) ds < ∞

]
= 1

}

(cf. for instance Chapter 2.5 in [56] for the definition of the stochastic integral in this context).
Both coefficients α and σ can in principle be state (or even path) dependent, provided that
there is a mild solution of the form (8) to the equation. We refer to (Yt )t∈[0,T ] as a mild Itô
process.

We present first our result on the asymptotic behaviour of the semigroup-adjusted realised
covariation (SARCV), as it is the most important example of the (semigroup-adjusted) power
variations. The law of large numbers for general multipower variations is postponed to the
next section.

3.1. Infeasible central limit theorems for the SARCV . As it was shown in [17], the law
of large numbers needs no further assumption on Y :2

THEOREM 3.1. For a mild Itô process Y of the form (8), we have

SARCVn u.c.p.−→
(∫ t

0
�s ds

)
t∈[0,T ]

.

2There are two minor differences with respect to the limit theory established in [17]: First, the driver W was
assumed to have a covariance that is of trace class. However, considering the stochastic integral of a Hilbert–
Schmidt operator-valued process with respect to a cylindrical Wiener noise or the stochastic integral of a process
with values in LHS(Q1/2U,H) with respect to the corresponding trace class (Q-)Wiener process in U , does
not make a difference. The stochastic integral can (on an extension of the probability space) in both cases be
translated into one or the other, due to the martingale representation theorems (cf. Section 2.2.5 in [44]). Second,
the drift was assumed to be almost surely square-integrable. Here, in this paper, we do not aim to derive a rate of
convergence via the laws of large numbers and are in that regard able to drop these conditions.
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The derivation of a corresponding central limit theorem, that is, the asymptotic normality
of

(9) X̃n
t := SARCVn

t −
∫ t

0
�s ds :=

�t/�n�∑
i=1

(
�̃n

i Y
)⊗2 −

∫ t

0
�s ds,

is more involved. First of all, already in finite dimensions some further conditions have to be
imposed, which is why we give an analogue of the fairly mild Assumption 5.4.1(i) from [52]:

ASSUMPTION 1. The coefficients α and σ satisfy the following local integrability con-
dition:

P

(∫ T

0
‖αs‖2 + ‖σs‖4

LHS(U,H) ds < ∞
)

= 1.

The law of large numbers, Theorem 3.1, is very general, as there are no additional assump-
tions imposed on Y . However, the subtle difference to the convergence of realised variation
in the finite-dimensional case is hidden in the rate of convergence. Even if Assumption 1
holds, the speed of convergence may become arbitrarily slow and might not be of magnitude
Op(

√
�n) anymore, where Op denotes boundedness in probability (cf. Example 2 below).

The latter is however an important condition to obtain a general infinite-dimensional central
limit theorem with respect to some uniform operator topology such as the one induced by
the Hilbert–Schmidt norm. In order to overcome this issue, we impose further assumptions
which increase the regularity of the sample paths of the process or consider limit theorems
for the mild solution process evaluated at functionals h that induce some regularity of the
respective finite-dimensional process 〈Yt , h〉.3

To this purpose, we introduce the notion of Favard spaces. Here, for γ ∈ (0,1) the γ -
Favard space F S

γ is defined by

F S
γ = FS

γ (H) :=
{
h ∈ H : ‖h‖FS

γ (N) := sup
t∈[0,N]

∥∥t−γ (I − S(t)
)
h
∥∥< ∞,∀N > 0

}
.

As D(A) ⊂ FS
γ , these spaces always form dense subsets of H and become Banach spaces

when equipped with the norm supN≥0 ‖ · ‖FS
γ (N) as long as the semigroup has a negative

growth bound (cf. [40], Chapter II.5). An example of practical importance for a subset of a
1/2-Favard space are the evaluation functionals in a Sobolev space (this is outlined further in
Section 3.5).

For functionals in the 1
2 -Favard space, we have the following central limit theorem in the

weak operator topology.

THEOREM 3.2. Define the covariance operator process �t for t ∈ [0, T ] on H by

�tB :=
∫ t

0
�s

(
B + B∗)�s ds, B ∈ H.

Let B ∈ H be an operator with a finite-dimensional range of the form B = ∑K
l=1 μlhl ⊗ gl

for hl, gl ∈ FS∗
1
2

, μl ∈ R for l = 1, . . . ,K , K ∈ N and let Assumption 1 hold. Then

(
�

− 1
2

n

〈
X̃n

t ,B
〉
H
)
t∈[0,T ]

L−s=⇒ (
N
(
0, 〈�tB,B〉))t∈[0,T ],

3One might hope to find a uniform rate cn such that c−1
n (SARCVn

t − ∫ t
0 �s ds) converges in distribution to a

nontrivial law with respect some operator topology. This is not possible in the general context we are examining:
Example 2 describes a case, in which for certain irregular functionals

√
n〈(SARCVn

t −∫ t
0 �s ds)h,g〉 diverges. On

the other hand, for another choice of functionals (h,g ∈ D(A) for instance) we obtain convergence in distribution
to a centered Gaussian law.
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where the limiting process on the right is, conditionally on F , a continuous centered Gaussian
process with independent increments defined on a very good filtered extension (�̃, F̃, F̃t , P̃)

of (�,F,Ft ,P).

For the notion of a very good filtered extension we refer to [52], Section 2.4.1. Let us now
give two examples of operators B that can be chosen in Theorem 3.2 to make inference on
term structure models.

EXAMPLE 1. We consider examples of practical importance: local averages and evalua-
tion functionals.

(a) (Local averages) Consider the case that H = L2(0,1) and S is the nilpotent shift
semigroup defined in (6). We have for t ∈ [0,1] that S∗(t)f (x) = I[t,1](x)f (x − t). Then it
holds, for 0 < b ≤ 1 and t < b, that∥∥(S(t)∗ − I

)
I[0,b]

∥∥2
L2(0,1) = (

min(b + t,1) − b
)+ t,

which shows that I[0,b] ∈ FS∗
1
2

but I[0,b] /∈ FS∗
γ for any γ > 1/2. Since Favard-spaces are

vector spaces, this yields in particular, that by virtue of Theorem 3.2 we can analyse one-
dimensional (or multivariate) stochastic processes that arise as local averages over certain
areas of a mild solution. That is, we can readily analyse time series ȳ

a,b
i�n

, i = 0, . . . , �T/�n�
where

ȳ
a,b
i�n

:= 1

b − a

∫ b

a
Yi�n(x) dx = 1

b − a
〈Yi�n, Ia,b〉L2(0,1).

For forward curves in term structure models this kind of sampling structure appears naturally
as differences of yield curve values or (log-)bond prices which can be observed in the market,
since for a zero coupon bond price at time t with time to maturity x + t we have

Pt(x) = e− ∫ x
0 ft (y) dy.

In energy markets we also observe prices as weighted averages of instantaneous forward
prices in the form of energy-swap contracts guaranteeing delivery of energy over a certain
time (cf. [16]). A practically relevant class of operators are, hence, weighted sums of indicator
functionals of the form

d∑
i,j=1

wi,j I[ai ,bi ] ⊗ I[aj ,bj ],

for some intervals [ai, bi] ⊂ [0,1] and wi,j ∈R for i, j = 1, . . . , d .
(b) (Evaluation functionals) For H = H 1(0,1) we can define evaluation functionals δx

by δxf = f (x) for all x ∈ [0,1]. These functionals satisfy δx ∈ FS∗
1
2

, while δx /∈ FS∗
γ for

any γ > 1/2 if x ∈ [0,1). This is shown in Lemma 3.13 below where statistical estimation
within this framework is elaborated in a fully discrete setting. We can, hence, analyse one-
dimensional (or multivariate) stochastic processes that arise as evaluations of mild solutions
of first-order stochastic partial differential equations at a finite number of points. A practically
relevant class of operators are, thus, weighted sums of evaluation functionals of the form

B =
d∑

i,j=1

wi,j δxi
⊗ δxj

,

for some elements xi ⊂ [0,1] and wi,j ∈ R for i, j = 1, . . . , d .
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In order to derive a stable central limit theorem for the SARCV with respect to the Hilbert–
Schmidt norm, we need to impose regularity assumptions on the volatility process itself,
namely:

ASSUMPTION 2. One of the two following conditions holds:

(i)
∫ T

0
sup

t∈[0,T ]
E
[∥∥t− 1

2
(
I − S(t)

)
σs

∥∥2
op

]
ds < ∞;

(ii) P

[∫ T

0
sup

t∈[0,T ]
∥∥t− 1

2
(
I − S(t)

)
σs

∥∥2
op ds < ∞

]
= 1.

REMARK 1. Observe that if the semigroup has negative growth bound and, thus, FS
1
2

is

a Banach space, Assumption 2(i) and (ii) can be rewritten as

(i) σ ∈ L2([0, T ],F S
1
2
(L2(�,L(U,H))))

(ii) P[σ ∈ L2([0, T ],L(U,F S
1
2
(H)))] = 1.

Now we state the associated central limit theorem.

THEOREM 3.3. Let � be as in Theorem 3.2. Under Assumptions 1 and 2 we have that

(10)
(
�

− 1
2

n X̃n
t

)
t∈[0,T ]

L−s=⇒ (
N (0,�t )

)
t∈[0,T ],

where the limiting process on the right is, conditionally on F , a continuous centered H-
valued Gaussian process with independent increments defined on a very good filtered exten-
sion (�̃, F̃, F̃t , P̃) of (�,F,Ft ,P).

Assumption 2 is a sharp regularity criterion for the validity of the central limit theorem in
the Hilbert–Schmidt norm:

EXAMPLE 2. Assumption 2 is sharp in the sense that for all H< 1
2 we can always find a

deterministic and constant volatility σ , such that

(11) sup
t∈[0,T ]

∥∥t−H
(
I − S(t)

)
σ
∥∥
LHS(U,H) < ∞,

but convergence in distribution of
√

nX̃n
t cannot take place, even with respect to the weak

operator topology. Such a specification can be done for instance in the following way: Take
H = L2[0,2], (S(t))t≥0 the nilpotent semigroup of left-shifts, such that for x ∈ [0,2], t ≥ 0
it is S(t)f (x) = I[0,2](x + t)f (x + t) and σ = e⊗X, where e ∈ H such that ‖e‖ = 1 and X is
an appropriately chosen path of a rough fractional Brownian motion. That is, X(x) = BH

x (ω)

for a fractional Brownian motion (BH
x )x≥0 with Hurst parameter H < 1

2 , defined on another
probability space (�̄, F̄, P̄) and ω ∈ �̄ is such that BH

x is H-Hölder continuous and guarantees
divergence of

√
nX̃n

t . Clearly, BH(ω) is globally H-Hölder continuous on [0,2] and we can
find a C > 0 such that∥∥∥∥(I − S(t))

tH
σ

∥∥∥∥2

LHS(U,H)

=
∫ 2−t

0

(
BH

x (ω) − BH
x+t (ω)

tH

)2
dx +

∫ 2

2−t

(
BH

x (ω)

tH

)2
dx ≤ C.

Hence, we have that (11) holds. However, it is intuitively clear, that the lower H is chosen,
the worse the impact on the regularity of Y is, which eventually leads to divergence of

√
nX̃n

t
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for the rough case H < 1
2 . We give a detailed verification of this counterexample as well as

how to choose the appropriate ω in the Supplementary Material [18].
In order to account for such irregularities, one often scales the increments in a particular

way and still obtains a feasible limit theory, such as was done for second-order stochastic
partial differential equations in [22] or [26] and for Brownian semistationary processes in [6,
7, 34–36] and [45, 59]. However, by the law of large numbers, Theorem 3.1 we deduce that
these rescaling arguments would lead to inconsistent estimators.

To get an intuition about the regularity that is induced by Assumption 2, observe the fol-
lowing.

REMARK 2. Assumption 2(i) (and 2(ii)) increases the regularity of Y in space and
time: In fact, suppose that the volatility has bounded second moment, that is,
sups∈[0,T ]E[‖σs‖2

LHS(U,H)] < ∞. The assumption then says that the stochastic convolution is

weakly mean-square 1
2 -regular in time, as for each h ∈ H and 0 ≤ u < t ≤ T

E

[(〈∫ t

0
S(t − s)σs dWs −

∫ u

0
S(u − s)σs dWs,h

〉)2] 1
2

≤
(∫ u

0
E
[∥∥((S(t − u) − I

)
S(u − s)σs

)∗
h
∥∥2]

ds

) 1
2

+
(∫ t

u
E
[∥∥(S(t − s)σs

)∗
h
∥∥2]

ds

) 1
2

=O
(
(t − u)

1
2
)
.

(12)

If we are in a reproducing kernel Hilbert space (i.e., a Hilbert space of functions, say over an
interval in R such that the evaluation functionals δx are continuous) and the semigroup is the
shift semigroup, it is easy to see that the assumption also gives mean-square 1

2 -regularity in
space: To see this, we write δx for the evaluation functionals in H and observe that

E

[∣∣∣∣
∫ t

0
S(t − s)σs dWs(x) −

∫ t

0
S(t − s)σs dWs(y)

∣∣∣∣2
] 1

2

= E

[∣∣∣∣δ0

(∫ t

0
S(t − s)S(y)

(
S(x − y) − I

)
σs dWs

)∣∣∣∣2
] 1

2

≤ ‖δ0‖ sup
t∈[0,T ]

∥∥S(t)
∥∥

op

(∫ t

0
E
[∥∥S(x − y) − I

)
σs

∥∥2
op

]
ds)

1
2

= O
(|x − y| 1

2
)
,

(13)

by Itô’s formula for x > y. Combining (12) and (13) we find that the random field (t, x) �→∫ t
0 S(t − s)σs dWs(x) has mean-square regularity 1

2 in space and in time.

REMARK 3 (What if the semigroup adjustment is infeasible?). The semigroup adjust-
ment can readily be implemented in situations in which the semigroup is known and has
a simple form (e.g., a simple left-shift as in term structure models). However, it should be
noted that the adjustment might be hard or even impossible to implement in some cases. For
instance, a commonly encountered situation is A = κA′ for some known generator A′ of a
strongly continuous semigroup (T (t))t≥0 in H and an unknown parameter κ . In this case,
we have S(t) = T (κt) and without further knowledge of the parameter κ , SARCV is an
infeasible estimator.
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It is, hence, important to characterise situations, in which the semigroup adjustment is
superfluous and we can use the simpler infinite-dimensional realised variation (4). We give
weak regularity conditions on the volatility guaranteeing consistency and asymptotic normal-
ity of RV n

t in Section 3.4. A simple, yet very relevant situation is when the volatility has a
finite second moment and is contained in the domain of the generator A of the semigroup.
Assuming the drift to be zero for convenience, it is well known that in this case the stochastic
convolution (8) is a strong solution to the SPDE

dYt = AYt dt + σt dWt, Y0 = 0, t ∈ [0, T ],
(which is especially fulfilled if A is continuous), cf. [44], Theorem 3.2. This yields that Y is
of the form

Yt =
∫ t

0
AYs ds +

∫ t

0
σs dWs,

such that we can reinterpret Y to be a mild Itô process of the form (8) with the semigroup to
be the identity and αt = AYt for the sake of the limit theory. In that way, Assumption 2 is
trivially fulfilled and the realised covariation RV n

t (cf. (4)) is consistent and asymptotically
mixed normal.

At the same time, the adjustment with the initial semigroup (generated by A) also leads
to a consistent estimator, since the semigroup is Lipschitz-continuous on the range of the
volatility due to the mean value theorem. Thus, SARCVn converges in probability to the same
limit and has the same asymptotic normal distribution as RV n. However, the assumption that
the volatility is in the domain of the generator A or the existence of a strong solution is
oftentimes too strong and we give some weaker regularity conditions in Section 3.4 enabling
us to use RV n

t even in some situations in which Y does not have the pleasant semimartingale
structure of a strong solution. Yet, in some important cases also these conditions might be too
strong and the asymptotic equality of the semigroup-adjusted and the nonadjusted variation
is not in general fulfilled (cf. Section 3.4).

REMARK 4 (Which CLT to use in practise?). Both results Theorem 3.2 and 3.3 are cen-
tral limit theorems for the same process. While Theorem 3.3 yields a more general conver-
gence, it comes along with the additional regularity Assumption 2, while Theorem 3.2 does
not impose further assumptions on the mild Itô process Y itself, but rather on the functionals
under which we observe it.

Hence, we might use Theorem 3.2 in situations in which regularity assumptions on the
volatility are not reasonable or cannot be guaranteed to hold and we are interested in testing
hypotheses or finding confidence intervals of sufficiently regular functionals of the integrated
volatility (in terms of the assumption of the theorem). Two important classes of such func-
tionals (or even linear combinations of these) are presented in Example 1. In term structure
models, for instance, we might want to quantify the estimation error of the volatility corre-
sponding to a particular economic parameter. For instance, it is usually important to consider
the spread between two forward contracts with maturities far from each other. We are then
interested in confidence intervals for the volatility of the process 〈δx − δy, ft 〉)t∈[0,T ] for
the long maturity x and the short term maturity y where δx and δy are evaluation function-
als δxf = f (x) in the Sobolev space H 1(0,1) which is defined in Section 2. In this case, we
have to characterise the asymptotic distribution of

∫ T
0 〈�s(δx − δy), (δx − δy)〉ds. It turns out,

that the evaluation functionals δx and δy are sharply in the space FS∗
1
2

for the shift semigroup

S defined in Section 2, such that we can use Theorem 3.2 with the choice B = (δx − δy)
⊗2

(cf. Lemma 3.13 below).
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On the other hand, if regularity Assumption 2 is reasonable to assume, Theorem 3.3 makes
Theorem 3.2 obsolete. Infinite-dimensional central limit theorems as Theorem 3.3 can be
used to design hypothesis tests based on nonlinear functionals of integrated volatility via an
infinite-dimensional Delta method (cf. [65], Section 3.9), or to make inference on the eigen-
components of integrated volatility in the same way infinite-dimensional limit theorems guar-
antee the asymptotic normality of empirical eigenfunctions for covariance operators (cf. [54])
and we could also test for functionals that are not in the 1/2 Favard-space of the dual of the
semigroup. The latter is for instance the case for indicator functionals (hence, local averages)
in L2(0,1) and the heat semigroup (cf. Section 3.5.1 below), for which the Favard spaces are
sharply embedded into Hölder spaces of continuous functions (cf. [40], Proposition 5.33).

3.2. Estimation of conditional covariance. As argued in the Introduction, estimating in-
tegrated volatility corresponds to the estimation of the conditional covariance of the noise
process if we assume that the volatility and the Wiener process are independent. As opposed
to the semimartingale case, however, it is not the conditional covariance of the increments or
adjusted increments of a mild solution of an SPDE. The latter can, nevertheless be estimated
within our framework as well and might be used for inference on the dynamics.

As a motivation, we show in the next example how we can build time-series models from
HJMM-term structure dynamics.

EXAMPLE 3 (HJMM-time series model). Let us come back to the term structure model
described in Section 2. Assume that the drift and volatility processes are independent of
the cylindrical Wiener process and stationary. We want to build a functional quarterly time-
series (Fi)i∈N for the forward curve process, that describes the dynamics of the arbitrage-free
HJMM-dynamics well and might for instance be used in forecasting. Measuring time in years,
it is then

Fi := Y i
4
= S

(
1

4

)
Yi−1

4
+
∫ i

4

i−1
4

S
(

i

4
− s

)
αs ds +

∫ i
4

i−1
4

S
(

i

4
− s

)
σs dWs

= S
(

1

4

)
Yi−1

4
+ μi + εi,

where

μi :=
∫ i

4

i−1
4

S
(

i

4
− s

)
αs ds, εi :=

∫ i
4

i−1
4

S
(

i

4
− s

)
σs dWs.

Defining �∗
i := ∫ 1

4
0 S(1

4 − s)�
s+ (i−1)

4
S(1

4 − s)∗ ds, we obtain a stationary time-series of co-

variance operators, such that

εi |σ ∼ N
(
0,�∗

i

)
, i ∈N,

forms a weak white noise sequence.
Assuming the time-series μi to be deterministic and constant and potentially violating the

no-arbitrage setting, we can proceed in a straightforward manner: If μ is deterministic and
constant, estimation of mean μ and covariance C = E[�∗

i ] can be based on their empirical
counterparts via the adjusted increments (Y i

4
− S(1

4)Y i−1
4

). We might then conduct a dimen-
sion reduction of the model by functional principal component analysis.

The conditional heteroscedasticity of the Fi would necessitate a sharper analysis of the
time series of conditional covariances (�∗

i )i∈N. We might assume that it follows a particular
functional time-series model and treat it as observed rather than latent in the spirit of [4]. In
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the latter case, this is justified by the observation that in the case of continuous semimartin-
gales integrated volatility is the same as the conditional covariance of the increments of the
process and is observable under continuous observations. In our case integrated volatility
is observable as well by virtue of Theorem 3.1 but does not correspond to the conditional
covariance of adjusted increments anymore. Fortunately, adjusting our estimator appropri-
ately makes observation of the conditional covariance possible as well. Even better, we can
estimate it without imposing the regularity Assumption 2. This result can be found in Corol-
lary 3.4 below.

Let us come back to the general setting. For 0 ≤ U ≤ T , define

(14)
∫ T

U
�T

s ds :=
∫ T

U
S(T − s)�sS(T − s)∗ ds.

In the case that the drift and the volatility are independent of the driving Wiener process this
is the conditional covariance of the adjusted increments. That is, we have

(
YT − S(T − U)YU

)|α,σ ∼ N
(∫ T

U
S(T − s)αs ds,

∫ T

U
�T

s ds

)
.

In that regard, it is helpful to exploit that the process

YT
t := S(T )Y0 +

∫ t

0
S(T − s)αs ds +

∫ t

0
S(T − s)σs dWs

= Ỹ0 +
∫ t

0
α̃s ds +

∫ t

0
σ̃s dWs, t ∈ [0, T ],

is a semimartingale on H , where Ỹ0 := S(T )Y0, α̃t = S(T − t)αt and σ̃t = S(T − t)σt .
Hence, the associated nonadjusted realised covariation is a consistent and asymptotically
normal estimator of

∫ T
0 �T

s ds. Luckily, in the presence of the functional data (Yi�n, i =
1, . . . , �T/�n�), we can reconstruct the quadratic variation corresponding to YT by

YT
i�n

− YT
(i−1)�n

= S(T − i�n)Yi�n − S
(
T − (i − 1)�n

)
Y(i−1)�n.

This yields the following limit theorems as a corollary of Theorem 3.3 and Remark 3, which
do not need Assumption 2:

COROLLARY 3.4. We have

�T/�n�∑
i=1

(
S(T − i�n)Yi�n − S

(
T − (i − 1)�n

)
Y(i−1)�n

)⊗2 u.c.p.−→
∫ T

0
�T

s ds,

and, if Assumption 1 holds, we also have

�
− 1

2
n

(�T/�n�∑
i=1

(
S(T − i�n)Yi�n − S

(
T − (i − 1)�n

)
Y(i−1)�n

)⊗2 −
∫ T

0
�T

s ds

)

L−s=⇒ N
(

0,

∫ T

0
S(T − s)�sS(T − s)∗

(· + ·∗)S(T − s)�sS(T − s)∗ ds

)
.

In particular, we obtain that

�T/�n�∑
i=�U/�n�+1

(
S(T − i�n)Yi�n − S

(
T − (i − 1)�n

)
Y(i−1)�n

)⊗2 u.c.p.−→
∫ T

U
�T

s ds,
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and under Assumption 1 that

�
− 1

2
n

( �T/�n�∑
i=�U/�n�+1

(
S(T − i�n)Yi�n − S

(
T − (i − 1)�n

)
Y(i−1)�n

)⊗2 −
∫ T

U
�T

s ds

)

L−s=⇒N
(

0,

∫ T

U
S(T − s)�sS(T − s)∗

(· + ·∗)S(T − s)�sS(T − s)∗ ds

)
.

REMARK 5 (Inadequacy of the conditional covariance for dimension reduction). It
should be noted that (conditional) covariances may not be a suitable tool for dimension reduc-
tion in situations where the stochastic dynamics imposed by the SPDE should be conserved,
unlike in the case of i.i.d. functional data. This can be of great importance, as SPDE dynam-
ics often encode important physical or economic principles (such as the absence of arbitrage
opportunities in term structure models).

In the energy market, for instance, there is evidence that energy spot prices are not fol-
lowing semimartingale-dynamics (cf. [12]). Energy spot prices as observed in the market are
averages of the lower end of the forward price curve (see, e.g., [16]) and are, thus, bounded
linear functionals of these in the Hilbert-space L2([0,1]). This implies in particular, that en-
ergy forward curves cannot follow a strong solution to the Heath–Jarrow–Morton–Musiela
equation in L2(0,1) (cf. Section 2). Corollary 1 in [41] shows that this excludes the exis-
tence of a finite-dimensional submanifold of L2(0,1) on which the solution to the Heath–
Jarrow–Morton–Musiela equation is viable. Hence, given that observed energy spot prices
do indeed not follow semimartingale-dynamics, the projection onto a finite-dimensional lin-
ear subspace, which is usually done via a functional principal component technique based on
the covariance, violates the principle of the absence of arbitrage in the market.

In contrast, the stochastic noise process and, hence, integrated volatility can conveniently
be replaced by an approximated and potentially low-dimensional version without harming
the stochastic dynamics imposed by the SPDE.

We next outline how to transform Theorems 3.2 and 3.3 (as well as Corollary 3.4) into
feasible results.

3.3. Feasible central limit theorems for the SARCV . The central limit Theorems 3.2 and
3.3 (and Corollary 3.4) are infeasible in practice, as we do not know the asymptotic variance
operator � a priori. A consistent estimator of this random operator is given by the difference
of the corresponding (semigroup-adjusted) fourth power- and the second bipower variation,
and therefore it will be possible to derive feasible versions of Theorems 3.2 and 3.3. For that,
we introduce �̂n given by

(15) �̂n
t := �−1

n

(
SAMPVn

t (4) − SAMPVn
t (2,2)

)
.

It can be seen by the following laws of large numbers in Theorems 4.1 and 4.2 that this
defines a consistent estimator of �. That is, we have in H4

(16) �̂n u.c.p.−→ � as n → ∞
under the following assumption.

ASSUMPTION 3. α is locally bounded and σ is a càdlàg process w.r.t. ‖ · ‖LHS(U,H).

This assumption corresponds to Assumption (H) in [52], p. 238. Due to the next result, the
estimator �̂n behaves well in the sense that it remains in the space of covariance operators:
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LEMMA 3.5. �̂n
t is a symmetric and positive semidefinite nuclear (and therefore Hilbert–

Schmidt) operator.

PROOF. That it is a symmetric nuclear operator follows immediately, since it is the dif-
ference of two symmetric nuclear operators. Notice that for any real vector (x1, . . . , xN) for
some N ∈ N we have

0 ≤
N−1∑
i=1

(xi+1 − xi)
2 =

N−1∑
i=1

x2
i+1 +

N−1∑
i=1

x2
i − 2

N−1∑
i=1

xi+1xi ≤ 2

[
N∑

i=1

x2
i −

N−1∑
i=1

xi+1xi

]
.

Using this elementary inequality we obtain positive semidefiniteness, since for each B ∈ H

〈
�n�̂

n
t B,B

〉
H =

�t/�n�∑
i=1

〈(
�̃n

i Y
)⊗2

,B
〉2
H −

�t/�n�−1∑
i=1

〈(
�̃n

i Y
)⊗2

,B
〉
H
〈(
�̃n

i+1Y
)⊗2

,B
〉
H.

Hence, �̂n is positive semidefinite. �

The following two results are direct corollaries of the central limit theorems 3.2 and 3.3
and the fact that two sequences of random variables defined on the same probability space
with values in a Polish space, where one converges stably in law and the other converges in
probability, converge jointly stably in law (cf. [46], Thm. 3.18 (b)). We now give the feasible
version of the central limit theorem 3.2, which can be used to find confidence intervals (e.g.,
for evaluations in a reproducing kernel Hilbert space setting as in Section 3.5):

COROLLARY 3.6. Let Assumption 3 hold and B ∈ H be an operator with a finite-
dimensional range of the form B = ∑K

l=1 μlhl ⊗ gl for hl, gl ∈ FS∗
1/2, l = 1, . . . ,K , K ∈ N.

Then

�
− 1

2
n 〈X̃n

t ,B〉H√
〈�̂tB,B〉H

d−→ N (0,1),

conditional on the set {〈�tB,B〉H > 0} ⊆ �.

We also obtain a “feasible” version of Theorem 3.3:

COROLLARY 3.7. Under Assumptions 2 and 3, we obtain

(17)
(
�

− 1
2

n X̃n
t , �̂n

t

)
t∈[0,T ]

L−s=⇒ (
N (0,�t ),�t

)
t∈[0,T ],

where we consider the processes in the space H×H4, equipped with the metric

d
(
(B1,�1), (B2,�2)

) := ‖B1 − B2‖H + ‖�1 − �2‖H4 .

3.4. Is the semigroup adjustment necessary?. Certainly, in many situations, it would be
convenient to use the realised quadratic variation instead of the semigroup-adjusted variation.
We shall show below when this is possible but start here with an example where the realised
covariation diverges.

EXAMPLE 4. Assume that for an element e ∈ H such that ‖e‖ = 1 and an H -valued
random variable X the volatility takes the simple form

σs = e ⊗ S(s)X.
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Moreover, we assume that there is no drift and Y(0) = 0 and let X (and hence σs ) be inde-
pendent of the driving cylindrical Wiener process W (i.e., no so-called leverage effect). The
process βt := 〈e,Wt 〉 is well defined and a one-dimensional standard Brownian motion. We
obtain

Yt :=
∫ t

0
S(t − s)σs dWs = βtS(t)X ∀t ∈ [0, T ].

This simple form can be exploited in order to derive counterexamples for the validity of the
law of large numbers and the central limit theorem for the quadratic variation. For that, we
introduce two cases:

(i) (Counterexample for the law of large numbers) H = L2[0,2], X(x) := BH
x , where BH

is a fractional Brownian motion with Hurst parameter H = 1
4 and (S(t))t≥0 is the (nilpotent)

left-shift semigroup given by

S(t)f (x) := f (x + t)I[0,2](x + t) t ≥ 0, x ∈ [0,2].
(ii) (Counterexample for the central limit theorem) H = L2(R), X(x) := I[0,1](x), and

(S(t))t≥0 is the left-shift semigroup given by

S(t)f (x) := f (x + t) x, t ≥ 0.

Observe that in this case Assumptions 1 and 2 are satisfied, such that the central limit theorem
3.3 holds.

We start with the first case and make the following technical observation:∥∥∥∥∥
n∑

i=1

((
S(�n) − I

)
Y(i−1)�n

)⊗2

∥∥∥∥∥
2

H

=
n∑

i,j=1

〈(
S(�n) − I

)
Y(i−1)�n)

⊗2,
(
S(�n) − I

)
Y(j−1)�n)

⊗2〉
H

=
n∑

i,j=1

〈((
S(�n) − I

)
Y(i−1)�n

)
,
((
S(�n) − I

)
Y(j−1)�n

)〉2

≥
n∑

i=1

‖(S(�n) − I
)
Y(i−1)�n)‖4.

Assume now that the realised variation RV n
t converges in probability to the integrated volatil-

ity. One can show, that (RV n
t − ∫ t

0 �s ds − ∑n
i=1((S(�n) − I )Y(i−1)�n)

⊗2) and therefore∑n
i=1 ‖(S(�n) − I )Y(i−1)�n)‖4 converges in probability to 0 and that

∑n
i=1 ‖(S(�n) −

I )Y(i−1)�n)‖4 is uniformly integrable. This is a technical exercise, which can be found in the
Supplementary Material [18]. Thus, in the first case, we must necessarily have by Jensen’s
inequality

0 = lim
n→∞

n∑
i=1

E
[∥∥(S(�n) − I

)
Y(i−1)�n)

∥∥4]≥ lim
n→∞

n∑
i=1

E
[∥∥(S(�n) − I

)
Y(i−1)�n)

∥∥2]2

= lim
n→∞�2+4H

n

n∑
i=1

(i − 1)2 > 0,

which is a contradiction.
Assume now that the realised variation

√
n(RV n

t − ∫ t
0 �s ds) converges in distribution to

a normal distribution. We now turn to the second example (ii). In this case, both
√

n(RV n
t −
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∫ t
0 �s ds) and

√
n(SARCVn

t − ∫ t
0 �s ds) are uniformly integrable, such that their convergence

in distribution implies convergence of their means. This is again a technical exercise and the
details can be found in the Supplementary Material [18]. We observe that

E

[
RV n

t −
∫ t

0
�s ds

]
=E

[
SARCVn

t −
∫ t

0
�s ds

]
+

�t/�n�∑
i=1

E
[[(

S(�n) − I
)
Y(i−1)�n

]⊗2]
.

Normalising by
√

n we find that the first summand converges to 0, due to the uniform
integrability and the central limit theorem 3.3 (i.e., convergence in distribution to a cen-
tred random variable). With the notation �iS = S(i�n) − S((i − 1)�n) we find, since
E[[(S(�n) − I )Y(i−1)�n]⊗2] = ∫ (i−1)�n

0 (�iSI[0,1])⊗2 ds that∥∥∥∥∥E
[

n∑
i=1

[(
S(�n) − I

)
Y(i−1)�n

]⊗2

]∥∥∥∥∥
2

H
=

n∑
i,j=1

(i − 1)(j − 1)�2
n〈�iSI[0,1],�jSI[0,1]〉2

≥ �2
n

n∑
i=1

(i − 1)2‖�iSI[0,1]‖4

= �2
n

n∑
i=1

(i − 1)22�2
n.

After normalisation by n = (
√

n)2 the expression converges to a positive constant, which
verifies that the second case (ii) provides a counterexample for the central limit theorem.

We can, however, impose assumptions on the regularity of the semigroup on the range of
the volatility, such that we again obtain a law of large numbers and a central limit theorem
for the realised variations. The assumption for the law of large numbers is

ASSUMPTION 4. Let almost surely

lim
t→0

∫ T

0

∥∥t− 1
2
(
I − S(t)

)
σs

∥∥2
LHS(U,H) ds = 0.

REMARK 6. Assumption 4 looks similar to Assumption 2. However, in contrast to the
weaker Assumption 2, Assumption 4 excludes some elementary shapes for the volatility such
as the one of Example 4, for which it is simple to see that ‖(I − S(t))σ‖LHS(U,H) = 2t .

Analogously, we obtain a central limit theorem under the following assumption.

ASSUMPTION 5. Let almost surely

lim
t→0

∫ T

0

∥∥t− 3
4
(
I − S(t)

)
σs

∥∥2
LHS(U,H) ds = 0.

We have the following results.

THEOREM 3.8.

(i) (Law of large numbers) If Assumption 4 is valid, we have

(18) RV n
t

u.c.p.−→
∫ t

0
�s ds.
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(ii) (Central limit theorem) If Assumptions 1 and 5 are valid, we have

(19) �
− 1

2
n

(
RV n

t −
∫ t

0
�s ds

)
L−s=⇒N (0,�t ).

We also have a central limit theorem in the weak operator topology as well as a law of
large numbers with mild conditions on the functionals:

THEOREM 3.9.

(i) (Law of large numbers) If B ∈ H is of the form B =∑K
l=1 μlhl ⊗ gl for hl, gl ∈ F S∗

1/2
for l = 1, . . . ,K , K ∈N, we have

(20)
〈
RV n

t ,B
〉
H

u.c.p.−→
∫ t

0
〈�s,B〉H ds.

(ii) (Central limit theorem) If B ∈ H is of the form B =∑K
l=1 μlhl ⊗ gl for hl, gl ∈ FS∗

3/4
for l = 1, . . . ,K , K ∈N and Assumption 1 holds, we have

(21)
〈
�

− 1
2

n

(
RV n

t −
∫ t

0
�s ds

)
,B

〉
H

L−s=⇒ N
(
0, 〈�tB,B〉H).

3.5. Discrete samples in space and time. We discuss in this subsection the case when
we have observations which are discrete in space and time. Discretisation in space yields
many nontrivial challenges (e.g., owing to asynchronicity or noise). Here we want to outline
how our results can be used immediately for estimation of the second-order structure of a
continuous mild Itô process and therefore we assume throughout this subsection that we have
observations of Y on a discrete regular space-time grid. That is, we observe

(22) Yi�n(j�n) := Yti (xj ), i, j = 1, . . . , n,

where for notational reasons we fix T = 1. We assume that H is the Sobolev space

H 1(0,1) := {
h : [0,1] → R : h is absolutely continuous and h′ ∈ L2([0,1])},

equipped with the norm ‖h‖ := h(0)2 + ∫ 1
0 (h′(x))2 dx. This is a reproducing kernel Hilbert

space in which the corresponding reproducing kernel is k(x, y) := 1 + min(x, y), cf. [21].
We write δx = k(x, ·) for both the representer of the evaluation functionals and the evaluation
functionals δxf = f (x) in H .

Define the operator �n : H → H as the orthogonal projection onto

Hn := span(δj�n, j = 1, . . . , n).

Then, for any h ∈ H , �nh can readily be recovered from the finite number of evaluations
h(j�n), j = 1, . . . , n. Indeed, as 〈δj�n,�nh〉 = 〈δj�n, h〉 = h(j�n), �nh is the unique el-
ement in span(δj�n, j = 1, . . . , n) that interpolates the points h(j�n), j = 1, . . . , n. Thus, it
is of the form

�nYi�n =
n∑

j=1

αj,ik(j�n, ·),(23)

where (α1,i , . . . , αn,i)
⊥ = (Kn)

−1(Yi�n(�n), . . . , Yi�n(1))⊥ and Kn denotes the positive def-
inite matrix Kn = (k(j1�n, j2�n))j1,j2=1,...,n. Observe that in this particular case, the kernel
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matrix has a very simple form as k(j1�n, j2�n) = 1+�n min(j1, j2) and its inverse is given
by the symmetric tridiagonal matrix K

−1
n which has entries

(
K

−1
n

)
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−n |i − j | = 1,

2n i = j /∈ {1, n},
n i = j = n,

2 + n2 − 2

n + 1
i = j = 1,

0 |i − j | > 1.

This method yields the interpolating element in H that is minimal with respect to the norm in
H (cf. [21], Theorem 58) and is a very natural choice of reconstructing a curve from discrete
data. The projections are also suitable for asymptotic theory due to the subsequent lemma.

LEMMA 3.10. The projections �n converge strongly to the identity on H = H 1(0,1).

PROOF. According to [21], Theorem 3, K0 := span(δx, x ∈ [0,1]) is dense in H 1(0,1).
For an arbitrary element h = ∑d

i=1 λiδxi
∈ K0 let ĥn = ∑d

i=1 λiδx̂n
i
, where x̂n

i ∈ {j�n, j =
1, . . . , n} which is closest to xi . We then have ‖δxi

− δx̂i
‖ ≤ |xi − x̂i | ≤ �n for all i =

1, . . . , d and, thus, ‖h − ĥn‖ ≤ �n

∑d
j=1 |λj |. Now let h ∈ H and ε > 0. We can choose

a g ∈ span(δx, x ∈ [0,1]) such that ‖h−g‖ ≤ ε
2 and for g we can find an n0 ∈ N such that for

each n ≥ n0 there is an hn ∈ span(δj�n, j = 1, . . . , n) such that ‖g − hn‖ ≤ ε/2. Thus, since
�n is an orthogonal projection, for all n ≥ n0 we have∥∥(I − Pn)h

∥∥≤ ‖h − hn‖ ≤ ‖h − g‖ + ‖g − hn‖ ≤ ε. �

Let us now derive asymptotic results in the fully discrete setting (22). We outline the
situation here in two cases, which are of practical importance and well-suited for these obser-
vations. In the first case, we have a continuous Itô semimartingale in H . This covers suitable
frameworks for intraday energy markets, as mentioned in the introductory section. In the sec-
ond case, S is the semigroup of left shifts, which for instance corresponds to the framework
of Heath–Jarrow–Morton term structure models, cf. [42], for interest rates and for energy
forward markets, cf. [14]. For a different sampling scheme we will also include a short dis-
cussion on the stochastic heat equation in a separate subsection afterwards.

(a) (Semimartingale case) The semigroup is equal to the identity (or can be interpreted as
such in the case of a strong solution as in Remark 3). That is, we observe a continuous Itô
semimartingale

Yt = Y0 +
∫ t

0
αs ds +

∫ t

0
σs dWs.

In that case, we define the operator

�̂n
t = �nRV n

t �n =
�t/�n�∑

i=1

(
�n�

n
i Y

)⊗2
.

The latter is feasible, as we can derive the values �n
i Y (j�n) = Yi�n(j�n) − Y(i−1)�n(j�n)

from data and, hence, can derive �n�
n
i Y by (23).

(b) (Shift case) S is the semigroup of left shifts, given by

S(t)h(x) :=
{
h(x + t) x + t ≤ 1,

h(1) x + t > 1,
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which forms a strongly continuous semigroup on H 1(0,1). In that case, we define the oper-
ator

�̂n
t = �nSARCVn

t �n =
�t/�n�∑

i=1

(
�n�̃

n
i Y

)⊗2
.

The latter is feasible, as we can derive the values �̃n
i Y (j�n) = Yi�n(j�n) − Y(i−1)�n((j +

1)�n) for j = 1, . . . , n − 1 and �n
i Y (1) = 0 (by the definition of the semigroup) from data

and, hence, can derive �n�̃
n
i Y by (23) also in this case.

The proof of the next result makes use of Theorem 3.1.

LEMMA 3.11. In both cases (a) and (b), we have

�̂n
t

u.c.p.−→
∫ t

0
�s ds,

with respect to the Hilbert–Schmidt norm on H = LHS(H
1(0,1)).

PROOF. Let An denote either RV n
t in case (a) or SARCVn

t in case (b). Then it is∥∥∥∥�nAn�n − �n

∫ t

0
�s ds�n

∥∥∥∥
H

≤
∥∥∥∥An −

∫ t

0
�s ds

∥∥∥∥
H

,

which converges to 0 uniformly on compacts in probability in both cases by Theorem 3.1.
Moreover, �n�s�n converges to �s with respect to the nuclear (and hence the Hilbert–
Schmidt) norm for all s ∈ [0,1], which follows by Lemma 3.10 and combining Proposition 4
and Lemma 5 in [57]. The u.c.p. convergence follows by dominated convergence as

sup
t∈[0,1]

∥∥∥∥
∫ t

0
�n�s�n − �s ds

∥∥∥∥
H

≤
∫ 1

0
‖�n�s�n − �s‖H ds. �

Due to the semimartingale property of the processes (Yt (x))t∈[0,T ] in case (a), both by the
finite-dimensional limit theory outlined in [52] or by appealing to Theorem 3.2 we have the
following result.

COROLLARY 3.12. In case (a), for x ∈ [0,1], we have

√
n

(�t/�n�∑
i=1

(
Yi�n(x) − Y(i−1)�n(x)

)2 −
∫ t

0
〈σs, δx〉2 ds

)
L−s=⇒ N

(
0,
〈
�tδ

⊗2
x , δ⊗2

x

〉
H
)
.

A feasible version, conditional on the set {〈�tδ
⊗2
x , δ⊗2

x 〉H > 0} ⊆ �, is given by(
n∑

i=1

(
Yi�n(x) − Y(i−1)�n(x)

)4

−
n−1∑
i=1

(
Yi�n(x) − Y(i−1)�n(x)

)2(
Y(i+1)�n(x) − Y(i)�n(x)

)2)− 1
2

×
(

n∑
i=1

(
Yi�n(x) − Y(i−1)�n(x)

)2 −
∫ t

0
〈σs, δx〉2 ds

)

d−→ N (0,1).
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It is notable that the central limit theorem can be recovered in case (b) as well, due to the
following observation: In the case that H = H 1(0,1), the representations δx of evaluation
functionals are in the 1

2 -Favard spaces of the shift semigroup and its dual. Namely, we have

LEMMA 3.13. Let H = H 1(0,1) and S be the left shift semigroup. Then the represen-
tations δx , for any 0 ≤ x ≤ 1, of the evaluation functionals are elements in the Favard class
F S

1/2 and FS∗
1/2, but for x ∈ (0,1] not in the γ -Favard spaces F S

γ and for x ∈ [0,1) F S∗
γ with

respect to the shift semigroup for γ > 1
2 .

Let us assume for the moment we are in case (b) for the process

Yt (x) =Y0(x + t) +
∫ t

0
αs(x + t − s) ds

∫ t

0
〈σs, δx+t−s〉dWs.

This leads to the following useful limit theorem, which enables us to find confidence bounds
for the process (

∫ t
0 〈σs, δx〉2 ds)t∈[0,T ] based on observations (Yi�n(x), Yi�n(x + �n)), i =

1, . . . , n in case (b):

COROLLARY 3.14. In case (b), we have, for x ∈ [0,1], due to the central limit Theo-
rem 3.2 (respectively, Theorem 3.6)

√
n

(�t/�n�∑
i=1

(
Yi�n(x) − Y(i−1)�n(x + �n)

)2 −
∫ t

0
〈σs, δx〉2 ds

)
L−s=⇒N

(
0,
〈
�tδ

⊗2
x , δ⊗2

x

〉)
.

A feasible version, conditional on the set {〈�tδ
⊗2
x , δ⊗2

x 〉H > 0} ⊆ �, is given by(
n∑

i=1

(
Yi�n(x) − Y(i−1)�n(x + �n)

)4

−
n−1∑
i=1

(
Yi�n(x) − Y(i−1)�n(x + �n)

)2(
Y(i+1)�n(x) − Yi�n(x + �n)

)2)− 1
2

×
(

n∑
i=1

(
Yi�n(x) − Y(i−1)�n(x + �n)

)2 −
∫ t

0
〈σs, δx〉2 ds

)

d−→ N (0,1).

We remark, that even for case (b), Lemma 3.13 also guarantees that Theorem 3.9(i) applies.
Hence, it holds that

n∑
i=1

(
Yi�n(x) − Y(i−1)�n(x)

)2 u.c.p.−→
∫ t

0
〈σs, δx〉2 ds.

Therefore, we just need observations Yi�n(x), i = 1, . . . , n to estimate the quadratic variation
of the one-dimensional processes (Yt (x))t∈[0,T ] consistently.

3.5.1. A note on the stochastic heat equation. As already mentioned in Remark 3, the
semigroup adjustment can be easily implemented in cases in which we know the semigroup
and it has a simple form, which is not always the case. A prototypical example is the stochas-
tic heat equation with an unknown diffusivity κ > 0 taking the form

dYt = κ∂xxYt dt + Q
1
2 dWt .



FUNCTIONAL DATA ANALYSIS FOR SPDE 2229

Here we assume that
∫ t

0 Q
1
2 dWs is formally a Q-Wiener process taking values in H =

L2[0,1] with an unknown nuclear covariance operator Q. The differential operator ∂xx on
the domain D(∂xx) = {h ∈ L2[0,1] : ‖f ′‖ + ‖f ′′‖ < ∞, f (0) = f (1) = 0} generates an an-
alytic semigroup on H given by

S(t)f =
∞∑

j=1

etλj 〈ej , f 〉ej ,

where λj = π2j2κ and ej (x) := √
2 sin(πjx) (see, for instance, Example B.12 in [61]). In

this situation, the regularity of the dynamics is very often expressed in terms of Sobolev
spaces, which can be formally defined as

Ḣ r := D
(
∂

r
2
xx

)=
{
h ∈ H : ‖h‖2

Ḣ r :=
∞∑

j=1

λr
j 〈ej , h〉2 < ∞

}
.(24)

Equipped with the norm ‖ · ‖Ḣ r = ‖(−A)
r
2 · ‖, these are separable Hilbert spaces. Now, if W

is a cylindrical Wiener process on L2(0,1) and

(25) Q
1
2 ∈ LHS

(
L2(0,1), Ḣ r),

it follows by Theorem 6.13 in Section 2.6 of [60]

sup
t∈[0,T ]

t−
r
2
∥∥(S(t) − I

)
Q

1
2
∥∥
LHS(U,H) = sup

t∈[0,T ]
t−

r
2
∥∥A− r

2
(
S(t) − I

)
A

r
2 Q

1
2
∥∥
LHS(U,H)

≤ C
∥∥Ar

2 Q
1
2
∥∥
LHS(U,H)(26)

= C
∥∥Qr

2
∥∥
LHS(U,Ḣ r ) < ∞.

This yields

LEMMA 3.15. If in (25) we have

(a) r = 1, then Assumption 2 holds and the semigroup-adjusted realised covariation sat-
isfies the infinite-dimensional central limit theorem 3.3;

(b) r > 1, then Assumption 4 holds and the realised variation satisfies the infinite-
dimensional law of large numbers Theorem 3.8(i);

(c) r > 3
2 , then Assumption 5 holds and the realised variation satisfies the infinite-

dimensional central limit theorem 3.8(ii).

As we do not necessarily know κ , it might not be possible to implement the semigroup
adjustment. Even if we knew κ , on the basis of discrete observations we would need to
approximate the semigroup appropriately to implement the adjustment such as it is done
in [48]. In this regard, cases (b) and (c) of the previous theorem are particularly appealing,
as they hold for the realised variation, which does not take into account an adjustment by the
semigroup. Still, also the latter has to be approximated by discrete data. Here we assume that
we sample data from the mild solution to the stochastic heat equation as local averages, that
is, we have

ȳ
n,m
i,j := 1

�m

∫ j�m

(j−1)�m

Yi�n(x) dx, i = 0, . . . , n, j = 1, . . . ,m.

Observe that in this case, we can have a different spatial and temporal resolution. Let �m

denote the projection onto the subspace of L2[0,1] spanned by the orthonormal vectors
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�mI[(j−1)�m,j�m]. Then we can recover �m�m
i Y from data as this is simply correspond-

ing to the piecewise constant function given by

�m�m
i Y =

m∑
i=1

(
ȳ

n,m
i,j − ȳ

n,m
i−1,j

)
I[(j−1)�m,j�m].

We can, thus, readily derive the estimator

�̂
n,m
t := �mRV n

t �m =
�t/�n�∑

i=1

(
�m�n

i Y
)⊗2

,

from data as well. For a sufficiently regular Q, we then obtain an infinite-dimensional law of
large numbers:

LEMMA 3.16. Assume (25) holds with r > 1. Then �̂
n,m
t is a consistent estimator, that

is, with respect to the Hilbert–Schmidt norm it is as n,m → ∞
�̂

n,m
t

u.c.p.−→ tQ.

PROOF. We have ∥∥�̂n,m
t − �mtQ�m

∥∥≤∥∥RV n
t − tQ

∥∥,
which converges to 0 by Lemma 3.15 (b) as n → ∞. As �m → I strongly in L2(0,1) as
m → ∞ we also have that ‖�m(tQ)�m − tQ‖LHS(L1(0,1)) converges to 0 as m → ∞ by
combining Proposition 4 and Lemma 5 in [57]. �

We may also derive a central limit theorem for the one-dimensional observations.

LEMMA 3.17. Assume that (25) holds with r > 3/2 and that m = mn with
limn→∞ n�mn = 0. Then for all h ∈ H it is

√
n
〈(
�̂

n,m
t − tQ

)
h,h

〉 L−s=⇒N
(
0,2t〈Qh,h〉2).

PROOF. We decompose
√

n
(
�̂

n,m
t − tQ

)
= √

n
(
RV n

t − tQ
)+ (√

n
(
�̂

n,m
t − �mtQ�m

)− √
n
(
RV n

t − tQ
))

+ √
n(�mtQ�m − tQ).

The first term converges stably in law to the limiting Gaussian process as specified in the as-
sertion as n → ∞. It, thus, remains to show that the other two terms converge to 0 uniformly
on compacts in probability.

For the second summand we denote hm = �mh and find that
√

n
∣∣〈(�̂n,m

t − �mtQ�m

)
h,h

〉− √
n
〈(
RV n

t − tQ
)
h,h

〉∣∣
≤ √

n
∥∥RV n

t − tQ
∥∥‖hm − h‖(‖hm‖ + ‖h‖).

As the first factor is bounded in probability and hm → h as m → ∞, this converges to 0. For
the second summand we have that

√
n(�mQ�m − Q) we find

〈�mQ�mh − Qh,h〉 ≤ ∥∥(I − �m)Qh
∥∥+ ∥∥(I − �m)Qhm

∥∥= (1)m + (2)m.
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For the first summand we can argue that as Q maps into

Ḣ
3
2 ⊂ Ḣ 1 ⊂ H 1(0,1)

by Lemma 3.1 in [64], we have that for any h ∈ H that ∂xQh = (Qh)′ ∈ L2(0,1)

and (Qhm)′ ∈ L2(0,1) as well. Hence, for Qh∗
m(·) := ∑m

i=1 Qh(i�m)I[(i−1)�m,i�m](·) ∈
span(I[(i−1)�m,i�m] : i = 1, . . . ,m) we have

(1)2
m ≤ ∥∥Qh − Qh∗

m

∥∥2 =
∥∥∥∥∥

m∑
i=1

(∫ i�m

x
(Qh)′(y) dy

)
I[(i−1)�m,i�m](x)

∥∥∥∥∥
2

≤�m

∥∥(Qh)′
∥∥2

and in the same way and using Lemma 3.1 in [64]

(2)2
m ≤ �m

∥∥(Qhm)′
∥∥2 = �m

∥∥∂ 1
2
xxQhm

∥∥2 ≤ �m‖Q‖2
LHS(L2(0,1),Ḣ 1)

‖hm‖2.

Summing up, we get
√

n〈�mQ�mh − Qh,h〉 ≤ ∥∥(I − �m)Qh
∥∥+ ∥∥(I − �m)Qhm

∥∥
= √

n
√

�m

(∥∥(Qh)′
∥∥+ ‖Q‖LHS(L2(0,1),Ḣ 1)‖hm‖).

This converges to 0 as
√

n�m → 0 as n → ∞ by assumption. �

Analytic semigroups such as the heat semigroups can impose regularity on the sample
paths of Y and potentially allow to weaken the conditions of Lemma 3.15, which may not be
sharp in this setting. We postpone a thorough analysis of these conditions in case of analytic
semigroups to future research.

4. A law of large numbers for multipower variations. We still have to verify the con-
sistency (16) of the estimator for the asymptotic variance �t . Rather than proving only this
specific result, we provide general laws of large numbers for power and multipower variations
in this section.

For a positive symmetric trace-class operator �, we define the operator ρ�(m), as the mth
tensor moment of an H -valued random variable U ∼ N (0,�), that is,

(27) ρ�(m) = E
[
U⊗m].

This operator can be characterised by the identity

(28)
〈
ρ�s (m),h1 ⊗ · · · ⊗ hm

〉
Hm = ∑

p∈P(m)

∏
(x,y)∈p

〈�hx,hy〉,

for any collection h1, . . . , hm ∈ H , where the sum is taken over all pairings over (1, . . . ,m),
i.e., all ways to disjointly decompose (1, . . . ,m) into pairs. We denote the set of all these
pairings by P(m), which is then given as

P(m) =
{
p ⊂ {1, . . . ,m}2 : #p = m

2
and if (x, y),

(
x′, y′) ∈ p,

then x, y, x′, y′ are pairwise unequal and x < y,x′ < y′
}
.

In particular, ρ�(m) = 0, if m is odd. In the case of power variations, we need

ASSUMPTION 6 (m). For a natural number m ∈N we have

(29) P

[∫ T

0
‖αs‖ 2m

2+m ds +
∫ T

0
‖σs‖m

LHS(U,H) ds < ∞
]

= 1.
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Observe that the assumption above corresponds to Condition 3.4.6 in the finite-dimensional
law of large numbers Theorem 3.4.1 in [52]. We now state a law of large numbers for
semigroup-adjusted power variations:

THEOREM 4.1. Let m ≥ 2 be a natural number and Assumption 6(m) be valid. Then

�
1−m

2
n SAMPVn(m)

u.c.p.−→
(∫ t

0
ρ�s (m)ds

)
t∈[0,T ]

,

with respect to the Hilbert–Schmidt norm on Hm.

Let us study some examples:

EXAMPLE 5. If m = 2, there is just one way to decompose {1,2} into pairs, that is, P(2)

consists of the pair {(1,2)} only. Therefore ρ�s (2) = �s , and in particular, the law of large
numbers reads in this case

SARCVn
t (2)

u.c.p.−→
∫ t

0
�s ds,

which corresponds to the law of large numbers Theorem 3.1.

EXAMPLE 6. If m = 4, then we find that P(4) consists of the pairs {(1,2), (3,4)},
{(1,3), (2,4)} and {(1,4), (2,3)}. Hence, it follows,〈

ρ�s (4), h1 ⊗ · · · ⊗ h4
〉
H4

= 〈�sh1, h2〉〈�sh3, h4〉 + 〈�sh1, h3〉〈�sh2, h4〉 + 〈�sh1, h4〉〈�sh2, h3〉
= 〈

�⊗2
s + �s

(· + ·∗)�s,h1 ⊗ h2 ⊗ h3 ⊗ h4
〉
.

This yields ρ�s (4) = �s(· + ·∗)�s + �⊗2
s .

For a positive symmetric trace class operator � : H → H , define for m,m1, . . . ,mk ∈ N

such that m = m1 + · · · + mk

ρ⊗k
� (m1, . . . ,mk) :=

k⊗
j=1

ρ�(mj ),

which is an operator in Hm, such that for any collection (hj,l) ⊂ H , j = 1, . . . , k and l =
1, . . . ,mj we have〈

ρ⊗k
� (m1, . . . ,mk),

m1⊗
l=1

h1,l ⊗ · · · ⊗
mk⊗
l=1

hk,l

〉
Hm

=
k∏

j=1

∑
p∈P(ml)

∏
(x,y)∈p

〈�shx,j , hy,j 〉.

We have the following law of large numbers for multipower variations.

THEOREM 4.2. Let Assumption 3 hold and m,m1,m2, . . . ,mk be natural numbers such
that m1 + · · · + mk = m ≥ 2. Then

�
1−m

2
n SAMPVn(m1, . . . ,mk)

u.c.p.−→
(∫ t

0
ρ⊗k

�s
(m1, . . . ,mk) ds

)
t∈[0,T ]

.(30)

Let us consider the important example of bipower variation:
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EXAMPLE 7 (Bipower variation). Let m1 = m2 = k = 2, that is, m = 4, and define the
bipower variation

(31) SAMPVn
t (2,2) =

�t/�n�−1∑
i=1

�̃n
i Y

⊗2 ⊗ �̃n
i+1Y

⊗2.

Observe that ρ⊗2
�s

(2,2) = ρ�s ⊗ ρ�s = �⊗2
s by Example 5.

5. Outline of the proofs. We will now provide an outline of the proofs of the main
results (i.e., Theorems 3.1, 3.2, 3.3, 4.1 and 4.2). The remaining results Theorem 3.8, The-
orem 3.9, Lemma 3.11 and Lemma 3.13 as well as Examples 2 and 4 are consequences of
these limit theorems. The detailed proofs are relegated to the Supplementary Material [18].

Throughout this section, we let pN be the projection onto vN := lin({ej : j ≥ N}), for
some orthonormal basis (ej )j∈N that is contained in D(A∗), and P m

N denote the projection
onto lin({⊗m

l=1 ekl
: kl ≥ N}) (where m is variable, corresponding to the particular case). In

the special case m = 2 we write P 2
N =: PN .

First, it is important to note that we can appeal to localised versions of the assumptions of
Theorems 3.1, 3.2, 3.3, 4.1 and 4.2. This is a common procedure that follows the arguments
presented in Section 4.4.1 in [52], which enables us to prove all theorems stated in this work
under such localised assumptions. The localised assumptions essentially impose boundedness
instead of almost sure finiteness, in order to ensure the existence of all necessary moments.

The first important observation is the following: By the localisation procedure, we can
assume there is a constant A, such that

(32)
∫ T

0
‖αs‖m

2 + ‖σs‖m
LHS(U,H) ds < A.

In this case, the SAMPV , when projected onto functionals of the form
⊗m

l=1 ejl
, for an or-

thonormal basis (ej )j∈N which is contained in D(A∗), m ∈ N and j1, . . . , jm ∈ N, corre-
sponds asymptotically to the tensor multipower variations of the semimartingale

St :=
∫ t

0
αs ds +

∫ t

0
σs dWs.

We find that 〈
SAMPVn

t (m1, . . . ,mk),

m⊗
l=1

ejl

〉
Hm

=
�t/�n�∑

i=1

〈
k⊗

j=1

�n
i+j−1S

⊗mj ,

m⊗
l=1

ejl

〉
Hm

+Op

(
�

m
2
n

)
.

(33)

As the left-hand side of (33) corresponds to a multivariate continuous semimartingale, the
limit theorems from [52] are readily available.

Now we come to the second important observation: For that, define the two sequences

(34) aN(z) := sup
n∈N

E

[∫ T

0

∥∥pNαSn
s

∥∥z
H ds

]
, bN(z) := sup

n∈N
E

[∫ T

0

∥∥pNσSn
s

∥∥z
LHS(U,H) ds

]
,

for z ≤ m, σ
Sn
s = S(i�n − s)σs and α

Sn
s = S(i�n − s)αs with s ∈ ((i −1)�n, i�n]. Observe

that

�Sn
s = σSn

s

(
σSn

s

)∗
.
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Under (32) both aN(z) for z ≤ m/2 and bN(z) for z ≤ m converge to 0 as N → ∞ for z ≤ m,
respectively z ≤ m

2 . Moreover, we can find for all m ∈ N a universal constant C > 0 possibly
depending on m, such that

(35)
�t/�n�∑

i=1

E
[∥∥pN�̃n

i Y
∥∥m]≤ C�

m
2 −1
n

(
aN

(
m

2

)
+ bN(m)

)
= o

(
�

m
2 −1
n

)
.

We notice that the Hilbert–Schmidt structure of the volatility is crucial to establish that bN(z)

converges to 0.
The proofs for limit theorems in this work follow a similar pattern. For the laws of large

numbers:

(LLNa) Show that (�
1−m

2
n (I − P m

N )(SAMPVn
t − ∫ t

0 ρ⊗k(m1, . . . ,mk) ds))t∈[0,T ] con-
verges for all N ∈ N to 0 as n → ∞, due to the available limit theory for finite-dimensional
semimartingales.

(LLNb) Show that (�
1−m

2
n P m

N SAMPVn
t )t∈[0,T ] converges to 0 uniformly in n and t as

N → ∞. Standard arguments then imply that(
�

1−m
2

n

(
SAMPVn

t −
∫ t

0
ρ⊗k(m1, . . . ,mk) ds

))
t∈[0,T ]

u.c.p.−→ 0 as n → ∞.

For the central limit theorems for the SARCV we have:

(CLTa) Show that

(36)
(
Z̃

n,2
t

)
t∈[0,T ] :=

(
�

− 1
2

n

(�t/�n�∑
i=1

�̃n
i Y

⊗2 −
∫ i�n

(i−1)�n

�Sn
s ds

))
t∈[0,T ]

for n ∈ N, which is a sequence of sums of martingale differences, is tight in D([0, T ],H)

provided that the (localised) Assumption 1 holds.
(CLTb) Prove that under (localised) Assumption 1 the finite-dimensional distributions

((I − PN)Z̃
n,2
t )t∈[0,T ] converge to an asymptotically conditional Gaussian process with the

covariance (I − PN)�t(I − PN) by virtue of (32) and the finite-dimensional limit Theo-
rem 5.4.2 in [52].

(CLTc) In order to prove Theorem 3.3, we appeal to Assumption 2 to show that

�
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

(
�Sn

s − �s

)
ds

u.c.p.−→ 0,

and for Theorem 3.2 to the fact that the operator B has its finite-dimensional range in the
1/2-Favard class of the dual semigroup in order to show that

�
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

〈(
�Sn

s − �s

)
,B

〉
H ds

u.c.p.−→ 0.

5.1. Comments on the proof of the laws of large numbers. The imposed conditions on
the law of large numbers Theorems 4.1 and 4.2 state that the finite-dimensional multipower
variations

∑�t/�n�
i=1 ((I − P m

N )
⊗k

j=1 �n
i+j−1S

⊗mj ) fulfil the required conditions of the corre-
sponding laws of large numbers. In the case of power variations, that is, under the localised
version of Assumption 6, Theorem 3.4.1 in [52] is applicable. For the multipower variations
with the localised version of Assumption 3, Theorem 8.4.1 in [52] applies and yields (LLNa).
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Now, observe that the triangle inequality yields∥∥∥∥P m
N

(
SAMPVn

t (m1, . . . ,mk) −
∫ t

0
ρ⊗k

�s
(m1, . . . ,mk) ds

)∥∥∥∥
Hm

≤ ∥∥P m
N SAMPVn

t (m1, . . . ,mk)
∥∥
Hm +

∥∥∥∥P m
N

∫ t

0
ρ⊗k

�s
(m1, . . . ,mk) ds

∥∥∥∥
Hm

.

For a given ε > 0, after appealing to the inequalities of Markov and Hölder together with
(35), one finds that

sup
n∈N

P

[
sup
t≤T

�
1−m

2
n

∥∥P m
N SAMPVn

t (m1, . . . ,mk)
∥∥
Hm > ε

]
→ 0 as N → ∞.

Moreover, straightforward calculations lead to

∥∥ρpN�spN
(m)

∥∥2
Hm ≤ ∣∣P(m)

∣∣2(∑
j≥N

∥∥� 1
2
s ej

∥∥2
)m

,

which converges to 0 as N → ∞, since �
1
2
s is a Hilbert–Schmidt operator. Through Markov’s

inequality, one finds

P

[
sup
t≤T

∥∥∥∥P m
N

∫ t

0
ρ⊗k

�s
(m1, . . . ,mk) ds

∥∥∥∥
Hm

> ε

]
≤ |P(m)|

ε

∫ T

0
E

[(∑
j≥N

∥∥� 1
2
s ej

∥∥2
)m

2
]
ds.

Dominated convergence implies that this converges to 0 as N → ∞, which shows (LLNb).

5.2. Comments on the proofs of the central limit theorem. In order to show tightness for
the sequence Z̃n,2 we appeal to a criterion from [53], p.35:

THEOREM 5.1. Let H be a separable Hilbert space. The family of laws (Pψn)n∈N of a
family of random variables (ψn)n∈N in D([0, T ],H) is tight if the following two conditions
hold:

(i) (Pψn
t
)n∈N is tight for each t ∈ [0, T ] and

(ii) (Aldous’ condition) For all ε, η > 0 there is an δ > 0 and n0 ∈ N such that for all
sequences of stopping times (τn)n∈N with τn ≤ T − δ we have

(37) sup
n≥n0

sup
θ≤δ

P
[∥∥ψn

τn
− ψn

τn+θ

∥∥
H > η

]≤ ε.

After some tedious estimations, one can verify Aldous’ condition for Z̃n,2 under the lo-
calised versions of Assumptions 1. Then it remains to show the spatial tightness, that is, tight-
ness of (Z̃

n,2
t )n∈N as random sequences in H for each t ∈ [0, T ]. In order to do this, we argue

under condition (32) that, without loss of generality, we can assume α ≡ 0. Moreover, we
will appeal to the following criterion, which is based on the equi-small tails-characterisation
of compact sets in Hilbert spaces and is well known (cf. Lemma 1.8.1 in [65]).

LEMMA 5.2. Let (Yn)n∈N be a sequence of random variables on a probability space
(�,F,P) with values in a separable Hilbert space H and having finite second moments. If
for some orthonormal basis (en)n∈N we have

(38) lim
N→∞ sup

n∈N

∑
k≥N

E
[〈Yn, ek〉2]= 0,

then the sequence (Yn)n∈N is tight.
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To show the spatial tightness of Z̃n,2, we observe that

∑
m,k≥N

〈
Z̃

2,n
t , ek ⊗ em

〉2
H =

∥∥∥∥∥
�t/�n�∑

i=1

Z̃N
n (i)

∥∥∥∥∥
2

H
,

where

Z̃N
n (i) := �

− 1
2

n

((
pN�̃n

i Y
)⊗2 −

∫ ti

ti−1

pNS(ti − s)�sS(ti − s)∗pN ds

)
.

Next note that t �→ ψt = ∫ t
(i−1)�n

pNS(i�n − s)σs dWs is a martingale for t ∈ [(i −
1)�n, i�n]. From [61], Theorem 8.2, p. 109, we then deduce that the process (ζt )t≥0 given
by ζt = (ψt )

⊗2 − 〈〈ψ〉〉t , where 〈〈ψ〉〉t = ∫ t
(i−1)�n

pNS(ti − s)�sS(ti − s)∗pN ds, is a mar-

tingale w.r.t. (Ft )t≥0. Therefore E[Z̃N
n (i)|Fti−1] = 0 and E[〈Z̃N

n (i), Z̃N
n (j)〉H] = 0, which

yields E[‖∑�t/�n�
i=1 Z̃N

n (i)‖2
H] =∑�T/�n�

i=1 E[‖Z̃N
n (i)‖2

H]. Moreover, it holds

E
[∥∥Z̃N

n (i)
∥∥2
H
]≤ 4�n

∫ i�n

(i−1)�n

E
[∥∥pNσSn

s

∥∥4
LHS(U,H)

]
ds,

such that we ultimately obtain
∑

k,l≥N

E
[〈
Z̃

n,2
t , ek ⊗ el

〉2]≤4 sup
n∈N

∫ T

0
E
[∥∥pNσSn

s

∥∥4
LHS(U,H)

]
ds,

which converges to 0 due to (34). Lemma 5.2 yields the claim in (CLTa), that is, we have
shown the following intermediate result.

THEOREM 5.3. Let Assumption 1 hold. Then the sequence of processes (Z̃
n,2
t )t∈[0,T ] is

tight in D([0, T ],H).

We now outline the proof of the stable convergence in law as a process of the finite-
dimensional distributions (〈Z̃n,2

t , ek ⊗ el〉)k,l=1,...,d . Due to (33) and after some technical
calculations, these finite-dimensional distributions can be asymptotically identified with the
ones of the quadratic variation of the associated multivariate semimartingale, that is, the stable
limit of (〈Z̃n

t ek, el〉)k,l=1,...,d is the same as the one of(
�

− 1
2

n

�t/�n�∑
i=1

(〈
�n

i S, ek

〉〈
�n

i S, el

〉− ∫ i�n

(i−1)�n

〈�sek, el〉ds

))
k,l=1,...,d

.

The latter is a component of the difference between realised quadratic covariation and the
quadratic covariation of the d-dimensional continuous local martingale Sd

t = (〈St , e1〉, . . . ,
〈St , ed〉). Therefore, (〈Z̃n

t ek, el〉)k,l=1,...,d converges by Theorem 5.4.2 from [52] stably as a
process to a continuous (conditional on F ) mixed normal distribution which can be realised
on a very good filtered extension as

Nk,l = 1√
2

d∑
c,b=1

∫ t

0
σ̂kl,bc(s) + σ̂lk,bc(s) dBcb

s .

Here, σ̂ (s) is d2 ×d2-matrix, being the square-root of the matrix ĉ(s) with entries ĉkl,k′l′(s) =
〈�sek, ek′ 〉〈�sel, el′ 〉. Furthermore, B is a matrix of independent Brownian motions. As now
all finite-dimensional distributions converge stably and the sequence of measures is tight, we
obtain by a modification of Proposition 3.9 in [46] that the convergence is indeed stable in the
Skorokhod space. One can then show that the asymptotic normal distribution has covariance
�t . This gives (CLTb) and thus an auxiliary central limit theorem, which does not rely on the
spatial regularity condition in Assumption 2:
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THEOREM 5.4. Let Assumption 1 hold. We have that Z̃n,2 L−s⇒ (N (0,�t ))t∈[0,T ].

In order to prove Theorem 3.3 we have to show �
− 1

2
n

∑�t/�n�
i=1

∫ i�n

(i−1)�n
�

Sn
s −�s ds

u.c.p.−→ 0.

As ek ∈ D(A∗) and due to the fact that ‖(S(�n)
∗ − I )ek‖ = ‖ ∫�n

0 S(u)∗A∗ek du‖ =O(�n),
it is relatively straightforward to show that for all N ∈ N

(39) (I − PN)�
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

(
�Sn

s − �s

)
ds

u.c.p.−→ 0.

Further, we find by the triangle, Bochner and Hölder inequalities

E

[
sup

t∈[0,T ]

∥∥∥∥∥PN�
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

(
�Sn

s − �s

)
ds

∥∥∥∥∥
H

]

≤
(∫ T

0
E
[∥∥�− 1

2
n

(
S
(�s/�n��n − s

)− I
)
σs

∥∥2
op

]
ds

) 1
2

×
(∫ T

0

√
2E

[‖pNσs‖2
LHS(U,H) + ∥∥pNS

(�s/�n��n − s
)
σs

∥∥2
LHS(U,H)

]
ds

) 1
2
.

The first factor is finite by Assumption (2)(i), whereas the second one converges to 0 as
N → ∞ by (34). By combining this with (39) the claim follows and Theorem 3.3 is proved.

In order to prove Theorem 3.2 we can argue similarly as for Theorem 3.3 that we just

have to show �
− 1

2
n

∑�t/�n�
i=1

∫ i�n

(i−1)�n
〈�Sn

s −�s,B〉H ds
u.c.p.−→ 0. We can argue componentwise,

which is why we assume without loss of generality that B = h ⊗ g and split the expression
into two integral terms:

�
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

〈(
�Sn

s − �s

)
h,g

〉
ds

= �
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

〈((
S(i�n − s) − I

)
�sS(i�n − s)∗

)
h,g

〉
ds

+ �
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

〈(
�s

(
S(i�n − s) − I

)∗)
h,g

〉
ds

= (1)n + (2)n.

We can show the convergence for (1)n only, as the convergence for (2)n is analogous. It holds
that

(1)n = �
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

〈
(I − pN)

(
�sS(i�n − s)∗

)
h,
(
S(i�n − s) − I

)∗
g
〉
ds

+ �
− 1

2
n

�t/�n�∑
i=1

∫ i�n

(i−1)�n

〈
pN

(
�sS(i�n − s)∗

)
h,
(
S(i�n − s) − I

)∗
g
〉
ds

= (1.1)n,N + (1.2)n,N .
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Using that (S(i�n − s) − I )ej = ∫ i�n
s S(u − s)Aej ds and that the projection (I − PN) has

the form (I − PN) =∑N−1
j=1 〈·, ej 〉ej , we can show that

(40) sup
t∈[0,T ]

∣∣(1.1)n,N

∣∣≤ �
1
2
n

N−1∑
j=1

∫ T

0
‖�s‖op ds‖h‖‖g‖ sup

t∈[0,T ]
∥∥S(t)

∥∥2
op,

which converges to 0 as n → ∞. In particular, supt∈[0,T ] |(1.1)n,N | u.c.p.→ 0 as n → ∞. From
the assumption that g ∈ FS∗

1/2 we can derive a finite constant

K := sup
t∈[0,T ]

∥∥S(t)
∥∥

op

(∫ T

0
E
[∥∥σ ∗

s

∥∥2
op

]‖h‖2 ds

) 1
2

sup
t≤T

∥∥t− 1
2
(
S(t) − I

)∗
g
∥∥< ∞

such that

E

[
sup

t∈[0,T ]
∣∣(1.2)n,N

∣∣]≤ K

(∫ T

0
E
[‖pNσs‖2

op
]
ds

) 1
2
,

which converges to 0 as N → ∞ by (34). Thus, combining this uniform convergence result
with (40) and the analogous argumentation for (2)n yields the assertion and, thus, (CLTc).

6. Conclusion. In this article, we introduced feasible central limit theorems for the
semigroup-adjusted realised covariations and, thus, provided a basis for functional data anal-
ysis of mild solutions to a large number of semilinear stochastic partial differential equations.
We also addressed the issue of how this can be translated into a fully discrete setting, whereby
we assumed a regular spatio-temporal sampling grid. In general, finding closed forms for the
semigroup-adjusted multipower variations is a task that must be addressed for each semigroup
(or equivalently each infinitesimal generator), each sampling grid and any precise application
separately. Certainly, the Hilbert space approach is well suited to account for potentially any
sampling grid.

To gain an overview of the infinite-dimensional limit theory introduced for both SARCVn

and RV n in this article, it might be helpful to give a systematic summary. For the sake of
presentation, it is tedious and eventually not very instructive to repeat all assumptions in full
technical detail so instead we make a distinction on the basis of the magnitude of pn :=∫ T

0 ‖(S(�n) − I )σs‖LHS(U,H) ds in terms of �n and assume the volatility σ of a mild Itô
process of the form (8) to be deterministic. In this regard we can distinguish four cases:

(i) If pn = o
(
�

3
4
n

)
, then SARCVn and RV n satisfy LLN and CLT .

(ii) If pn = o
(
�

1
2
n

)
, then RV n satisfies LLN, SARCVnsatisfies LLN and CLT.

(iii) If pn = O
(
�

1
2
n

)
, then SARCVn satisfies LLN and CLT.

(iv) In general SARCVn satisfies LLN,

where satisfying LLN (law of large numbers) means convergence to the integrated volatility
in probability and satisfying CLT (central limit theorem) means asymptotic normality of the
normalised estimator. Observe that Example 2 in Section 3 yields that we cannot reduce the
regularity in (iii), if we want to guarantee the validity of a general central limit theorem
for SARCVn. Example 4 shows that RV n does not have to satisfy a central limit theorem if
pn = o(�

1/2
n ) is not valid and underlines the necessity of the adjustment by the semigroup. If

even pn = o(�
1/4
n ) does not hold, then RV n does not even have to satisfy the LLN.
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Moreover, it is likely that in many realistic scenarios, the distribution underlying the data
and the sampling itself yield some additional challenges, which can be approached in our
setting. Let us comment on some of these points:

Functional sampling: In infinite dimensions, we witness sampling schemes that have no
counterpart in finite dimensions. For instance, data could be sampled as averages (or in gen-
eral smooth functionals) of the process of interest over certain time periods in the future or
within a demarcated area. This is for instance the case for energy swap prices or meteorolog-
ical forecasting data. Our framework yields an ideal basis to derive inferential statistical tools
in these situations.

Jumps: Many processes are not considered to be continuous in time. In fact, many finan-
cial time series show jumps and spikes on a regular basis, which is, in particular, the case
in energy markets, a potential application of our theory. This suggests the inclusion of a
pure-jump component to our framework, such as in the framework of [43]. However, as in
finite dimensions, jumps will considerably complicate expressions, applications and proofs
and, thus, more effort has to go into the task of making inference on noncontinuous be-
haviour in infinite-dimensional models. Arguably, the structure of our proof, which appeals
to tightness and already existing limit theorems from finite dimensions, yields a promising
approach.

Asynchronous sampling: It could very well be, that we sample at high frequency in time,
but sparsely and irregularly in space. Ignoring this (for instance by naïve rearrangement to re-
fresh times) can have unpleasant consequences such as the Epps effect, cf. [1], Section 9.2.1.
Again, energy intraday market prices, in which all available maturities are unlikely traded at
the exact same time instances, can be prone to this. Infinite-dimensionality and the potentially
necessary adjustment by the semigroup might make it harder than in the finite-dimensional
case to deal with this issue, as in addition to asynchronous sampling, one has to deal with the
problem of smoothing the adequately aggregated data in space.

Noise: The task of accounting for noise in the samples, often called market microstructure
noise in financial applications has received much attention by the research community (cf.,
for e.g., [8, 66] or [51]), as noise lets the quadratic variation severely overshoot the integrated
volatility in the presence of data sampled at very high frequency. In combination with the
problem of smoothing (and asynchronous sampling) this appears to be a delicate question in
infinite-dimensional applications. However, both finite-dimensional high-frequency statistics
and functional data analysis have several tools available to deal with noise and it is intriguing
to find out how they can be exploited to overcome this problem in the future.
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SUPPLEMENTARY MATERIAL

Supplement to “A feasible central limit theorem for realised covariation of SPDEs
in the context of functional data” (DOI: 10.1214/23-AAP2019SUPP; .pdf). The online
supplement [18] to this article contains the formal proofs of the results. Section A of this
supplement recalls important notation, Section B gives necessary technical results, which are
needed in the proofs of the laws of large numbers, that is, Theorems 4.1 and 4.2, in Section C
and central limit theorems, that is, Theorems 3.3 and 3.2, in Section D. Section E contains the
remaining proofs of Examples 2 and 4 as well as Theorem 3.8, Theorem 3.9 and Lemma 3.13.
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[42] FILIPOVIĆ, D. (2001). Consistency problems for HJM interest rate models. Lecture Notes in Mathematics
1760. Springer, Berlin.
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